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ABSTRACT

Pooling design is a very helpful tool for reducing the number of tests in DNA library
screening, which is a key process to obtain high-quality DNA libraries for studying gene
functions. Three basic problems in pooling design are, given an m�n binary matrix and a
positive integer d, to decide whether the matrix is d-separable (�dd-separable, or d-disjunct).
The three problems are all known to be coNP-complete. Since in most applications, d is a
small integer compared to n, it is interesting to investigate whether there are efficient algo-
rithms solving the above problems when the value of d is small. In this article, we give a
negative answer to the above question by studying the parameterized complexity of these
three problems, with d as the parameter. We show that the parameterized versions of all the
three problems are co-W[2]-complete. An immediate implication of our results is that, given
an m�n binary matrix and a positive integer d, a deterministic algorithm with running time
f(d)�(mn)O(1) (where f is an arbitrary computable function) to decide whether the matrix is
d-separable (�dd-separable, or d-disjunct) should not be expected.

Key words: disjunct matrices, DNA library screening, parameterized complexity, pooling de-

signs, separable matrices.

1. INTRODUCTION

ADNA library consists of thousands of separate DNA clones. The basic task of DNA library

screening is, for a collection of probes, to determine which clone from the library contains which probe.

Given a probe, a clone is said to be positive if it contains the probe; otherwise, it is said to be negative. In

practice, to identify all positive clones from a library, clones are often pooled together to be tested against

each probe, since checking each clone-probe pair is expensive, and usually only a few clones in the library

contain a given probe. An example is when Sequenced-Tagged Site markers (also called STS probes) are used

(Olson et al., 1989). There are experimental tests (e.g., the Polymerase Chain Reaction) that can determine in

a given pool whether or not there exists at least one clone containing a given probe.

The above application is an instance of the combinatorial group testing problem, in which we have n

items (each can be either positive or negative), and the number of positives is upper bounded by an integer

d (usually we assume that d� n). Suppose there exists some method that can test for any subset of items

whether or not it contains at least one positive item. We say that the test outcome is positive if the test result

indicates that the subset contains at least one positive item; otherwise, we say that the test outcome is
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negative. Usually the problem is to identify all positives by using the minimum number of tests. The study

of group testing dates back to World War II, at first for economical mass blood testing (Dorfman, 1943).

Due to its basic nature, it has found applications in many different areas. Group testing procedures can be

adaptive or nonadaptive. An adaptive procedure conducts the tests one by one, and allows us to design later

tests using the outcome information of all previous tests. A nonadaptive procedure specifies all tests at the

beginning before knowing the outcomes of any test. The benefit is that all tests can be performed simul-

taneously. Between fully adaptive and nonadaptive group testing procedures, there are also two-stage

procedures, which are of considerable interest (Knill, 1995; Macula, 1999; Berger et al., 2000; De Bonis

et al., 2005; Eppstein et al., 2007).

1.1. Pooling design

Probably the most important modern applications of group testing are in the area of computational

molecular biology, in which one important subject is clone library screening (Balding et al., 1995; Farach

et al., 1997; Du and Hwang, 2006). In applications to molecular biology, a group testing procedure is called

a pooling design, and the composition of each test is called a pool. In such applications, screening one pool

at a time is far more expensive and time-consuming than screening many pools in parallel; this strongly

encourages the use of nonadaptive procedures.

A nonadaptive group testing procedure can be represented as a 0-1 matrix M¼ (mij), in which the

columns are associated with the items and the rows are associated with the tests, and mij¼ 1 indicates that

item j is contained in test i. The test outcomes can be represented by a 0-1 vector, the outcome vector,

where 0 indicates a negative outcome and 1 indicates a positive outcome. It is not hard to verify that if

subset S of columns correspond to all the positive items, then the outcome vector is equal to vector U(S),

the union (i.e., the componentwise Boolean sum) of all column vectors in S.

In order to identify all positives as long as the number of positives is no more than d, matrix M should

satisfy that for any two distinct subsets S1 and S2 of columns such that jS1j � d and jS2j � d,

U(S1) 6¼ U(S2). A matrix satisfying this property is called �dd-separable. In the definition, if we replace

the condition ‘‘jS1j � d and jS2j � d’’ by ‘‘jS1j ¼ jS2j ¼ d,’’ a matrix satisfying this property is called

d-separable. If the matrix representing a nonadaptive pooling design is �dd-separable (or d-separable), then

theoretically, based on the test outcomes, we can unambiguously identify up to d (or exactly d) positives

from the given set. However, the actual process of determining the positives from the outcome vector, that

is the decoding process, could be very time-consuming. In practice, we can adopt matrices with stronger

property to make the decoding process more efficient.

For two 0-1 vectors u and v with the same number of components, if for any component of u the value is

1, the corresponding component of v is also 1, then we say that u is covered by v. A 0-1 matrix is said to be

d-disjunct if no column is covered by the union of any d other columns. The same structure is also called

cover free family (Erdös et al., 1985; Ruszinkó, 1994; Füredi, 1996) in combinatorics, and superimposed

code (Kautz and Singleton, 1964; D’yachkov et al., 1989, 2000) in information theory, and has been

extensively studied. Obviously if a matrix is d-disjunct, then it is also �dd-separable, and thus is d-separable.

If the matrix M representing a nonadaptive pooling design is d-disjunct and the number of positives is no

more than d, then we have the following efficient decoding procedure with running time linear in the size of

M: a column c corresponds to a positive item if and only if c is covered by the outcome vector. d-Disjunct

matrix is an important structure in pooling design, and a lot of work has been done on its constructions

(Kautz and Singleton, 1964; Erdös et al., 1985; Hwang and Sós, 1987; Macula, 1996; D’yachkov et al.,

2000; Ngo and Du, 2002; Park et al., 2003; Du et al., 2006; Fu and Hwang, 2006; Eppstein et al., 2007;

Cheng and Du, 2007, 2008).

1.2. Main results

Given an m�n binary matrix and a positive integer d, to decide whether the matrix is d-separable

(�dd-separable, or d-disjunct) are basic problems in pooling design. They are known to be coNP-complete in

classical complexity theory (Du and Ko, 1987). Thus, we shouldn’t expect any polynomial time algorithm

to solve any of them. However, since in most applications we have that d� n, an interesting question is

whether there are efficient algorithms solving the above decision problems for small values of d.

In this article, by studying the parameterized complexity of the above three problems with d as the

parameter, we give a negative answer to the above question. More formally, we study the parameterized
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decision problems p-Disjunctness-Test, p-Separability-Test, and p-Separability*-Test defined as

follows (where N denotes the set of positive integers).

p-Disjunctness-Test

Instance: A binary matrix M and d 2 N .

Parameter: d.

Problem: Decide whether M is d-disjunct.

p-Separability-Test

Instance: A binary matrix M and d 2 N .

Parameter: d.

Problem: Decide whether M is d-separable.

p-Separability
*-Test

Instance: A binary matrix M and d 2 N .

Parameter: d.

Problem: Decide whether M is �dd-separable.

The main results of our paper are summarized in the following theorem, whose proof will be presented in

Section 3.

Theorem 1.1. p-Disjunctness-Test, p-Separability
*-Test, and p-Separability-Test are all co-

W[2]-complete.

W[2] is the parameterized complexity class at the second level of the W-hierarchy, and co-W[2] is the class

of all parameterized problems whose complements are in W[2]. They will be introduced in detail in the next

section. Theorem 1.1 indicates that, given an m�n binary matrix and a positive integer d, a deterministic

algorithm with running time f(d)�(mn)O(1) (where f is an arbitrary computable function) to decide whether

the matrix is d-separable (�dd-separable, or d-disjunct) does not exist unless the class W[2] collapses to FPT

(the class of all fixed-parameter tractable problems), which is commonly conjectured to be false.

2. PRELIMINARIES

Before proving our main results, we first briefly recall the notions of fixed-parameter tractability, rela-

tional structures, first-order logic, and the W-hierarchy of parameterized complexity classes.

2.1. Fixed-parameter tractability

The theory of fixed-parameter tractability (Downey and Fellows, 1999; Flum and Grohe, 2006)

has received considerable attention in recent years, for both theoretical research and practical com-

putation. In this article, we adopt the notations and conventions in Flum and Grohe (2006). Let S denote

a fixed finite alphabet. A parameterization of S* is a polynomial time computable mapping � : �� ! N .

A parameterized problem (over S) is a pair (Q,k) consisting of a set Q � �� and a parameterization k
of S*.

An algorithm A with input alphabet S is an fpt-algorithm with respect to k, if for every x [ S* the

running time of A on input x is at most f (�(x))jxjO(1)
, for some computable function f. A parameterized

problem (Q,k) is fixed-parameter tractable if there is an fpt-algorithm with respect to k that decides Q. The

key point of the definition of fpt-algorithm is that the superpolynomial growth of running time is confined

to the parameter k(x), which is usually known to be comparatively small. The class of all fixed-parameter

tractable problems is denoted by FPT.

Many NP-hard problems such as the Vertex Cover problem (Chen et al., 2001) and the ML Type-

Checking problem (Lichtenstein and Pnueli, 1985) have been shown to be fixed-parameter tractable. On

the other hand, there is strong theoretical evidence that certain well-known parameterized problems, for

instance, the Independent Set problem and the Dominating Set problem, are not fixed-parameter

tractable (Downey and Fellows, 1999). This evidence is provided, similar to the theory of NP-complete-

ness, via a completeness theory based on the following notion of reductions: Let (Q,k) and (Q0,k0) be
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parameterized problems over alphabets S and S0, respectively. An fpt-reduction from (Q,k) to (Q0,k0) is a

mapping R : �� ! (�0)� such that:

1. For all x [ S*, x [ Q if and only if R(x) [ Q0.
2. R is computable by an fpt-algorithm (with respective to k). That is, there is a computable function f such that R(x)

is computable in time f (�(x))jxjO(1)
.

3. There is a computable function g : N ! N such that �0(R(x)) � g(�(x)), for all x [ S*.

In the above definition, the last requirement is to ensure that class FPT is closed under fpt-reductions,

that is, if a parameterized problem (Q,k) is reducible to another parameterized problem (Q0,k0) and

(Q0,k0) [ FPT, then (Q,k) [ FPT.

2.2. Relational structures

In later discussions, we adopt the conventions in descriptive complexity theory, in which instances of

decision problems are viewed as structures of some vocabulary instead of languages over some finite

alphabet.

A (relational) vocabulary t is a set of relation symbols. Each relation symbol R [ t has an arity

arity(R) � 1. A structure A of vocabulary t consists of a set A called the universe and an interpretation

RA � Aarity(R) of each relation symbol R [ t. For a tuple �aa 2 Aarity(R), we write RA�aa (or �aa 2 RA) to denote

that �aa belongs to the relation RA. In this article, we only consider nonempty finite vocabularies and

structures with a finite universe.

Recall that a hypergraph is a pair H¼ (V,E) consisting of a set V of vertices and a set E of hyperedges.

Each hyperedge is a subset of V. Graphs are hypergraphs with hyperedges of cardinality two. The following

example illustrates how to represent a hypergraph using a relational structure.

Example 2.1. Let tHG be the vocabulary consisting of the unary relation symbols VERT and EDGE and

the binary relation symbol I. A hypergraph H¼ (V,E) can be represented by a relational structure H of

vocabulary tHG as follows:

� The universe of H is V [ E.
� VERTH :¼V and EDGEH :¼E.
� IH :¼f(v, e) : v 2 V , e 2 E, and v 2 eg is the incidence relation.

2.3. First-order logic

We briefly recall the syntax of first-order logic. Let t be a vocabulary. Atomic first-order formulas of

vocabulary t are of the form x¼ y or Rx1. . . x‘, where R [ t is ‘-ary (i.e., has arity ‘) and x, y, x1, . . . , x‘ are

variables. First-order formulas of vocabulary t are built from atomic formulas using Boolean connectives ^
(and), _ (or), : (negation), together with the existential and universal quantifiers A and V. The connectives

? (implication) and$ (equivalence) are not part of the language defining first-order formulas, but we use

them as abbreviations: j ? c stands for :j_c, and j $ c stands for (’!  ) ^ ( ! ’).

For a variable x, we call x a free variable of j if x occurs in j but is not in the scope of a quantifier

binding x. We write ’(x1, . . . , x‘) to indicate that all free variables of j belong to set fx1, . . . , x‘g. A

formula without free variables is called a sentence. Let both S0 and P0 denote the class of quantifier-free

first-order formulas. For t � 0, let Stþ 1 be the class of all formulas (9x1 . . . 9x‘)’, where j [ Pt, and let

Ptþ1 be the class of all formulas (8x1 . . . 8x‘)’, where j [ St.

For formulas of second-order logic, in addition to the individual variables, they may also contain relation

variables, each of the relation variables has a prescribed arity. We use lowercase letters (e.g., x,y,z) to

denote individual variables and uppercase letters (e.g., X,Y,Z) to denote relation variables. As in Flum and

Grohe (2006), for convenience we allow free relation variables to be in first-order formulas, since the

crucial difference between first-order and second-order logic is not that second-order formulas can have

relation variables, but that second-order formulas can quantify over relations. Therefore, in this paper the

syntax of first-order logic is enhanced by including new atomic formulas of the form Xx1 . . . x‘, where X is

an ‘-ary relation variable. The meaning of formula Xx1 . . . x‘ is: The tuple of elements interpreting

(x1, . . . , x‘) is contained in the relation interpreting the relation variable X. We also extend classes such as

St and Pt to include formulas with free relation variables. It is worth emphasizing again that in first-order

logic we do not allow quantification over relation variables.
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2.4. W-hierarchy

We give a brief introduction to the W-hierarchy of parameterized complexity classes, which plays a

central role in the theory of parameterized intractability. Roughly speaking, the W-hierarchy classifies

problems according to the syntactic form of their definitions, and the definitions are formalized using

languages of mathematical logic. The W-hierarchy can be defined in several different ways, we adopt the

following definition based on the weighted Fagin-defined problems.

Let j(X) be a first-order formula with a free relation variable X of arity s. Define p-WDj to be the

following parameterized decision problem.

p-WDu:

Instance: A structure A and k 2 N .

Parameter: k.

Problem: Decide whether there is a relation S � As of cardinality k such that Aj¼’(S).

Here, Aj¼’(S) stands for that structure A satisfies sentence j(S) (or, A is a model of j(S)), and S is called

a solution for j in structureA. The readers are referred to Section 4.2 of Flum and Grohe (2006) for more

detailed introduction to the semantics of first-order formulas.

For a class F of first-order formulas, let p-WD-F be the class of all parameterized problems p-WDj with

j [ F. For t � 1, define W[t]:¼ [p-WD-Pt]
fpt, which is the class of all parameterized problems that are

fpt-reducible to some problems in p-WD-Pt. The classes W[t], for t� 1, form the W-hierarchy. Thus, the

levels of W-hierarchy essentially correspond to the number of alternations between universal and existential

quantifiers in the definitions of their complete problems. Problems hard for W[1] or higher class are as-

sumed not to be fixed-parameter tractable. For instance, the Independent Set problem is W[1]-complete

and the Dominating Set problem is W[2]-complete.

For a parameterized problem (Q,k) over the alphabet S, let (Q,k)c denote its complement, that is the

parameterized problem (S*\ Q,k). Let C be a parameterized complexity class. Then co-C is defined to be the

class of all parameterized problems (Q,k) such that (Q,k)c [ C. Clearly, FPT¼ co-FPT. From the definition

of fpt-reductions, it is easy to see that if class C is closed under fpt-reductions, so is co-C. In particular, each

class W[t], t � 1, gives rise to a new parameterized complexity class co-W[t]. Also, it is easy to prove that

if (Q,k) is complete in parameterized complexity class C under fpt-reductions, then (Q,k)c is complete in

class co-C under fpt-reductions.

3. PROOF OF THEOREM 1.1

We devote this section to the proof of Theorem 1.1. For a binary matrix M, let RM be the set consisting of

all rows in M and let CM be the set consisting of all columns in M.

Relational structure for a binary matrix. Let tBM be the vocabulary consisting of the unary relation

symbols ROW and COLUMN and the binary relation symbol I. Then, the binary matrix M can be re-

presented by a structure M of vocabulary tBM, where the universe of M is RM [ CM, and the interpre-

tations for the relation symbols in tBM are as follows:

� ROWM :¼RM .
� COLUMNM :¼CM .
� IM :¼f(r, c) : r 2 RM , c 2 CM , and M(r, c)¼ 1g, which is the incidence relation.

The proof of Theorem 1.1 is partitioned into the following six lemmas.

Lemma 3.1. p-Disjunctness-Test [ co-W[2].

Proof. We consider the following complement problem of p-Disjunctness-Test.

p-Nondisjunctness-Test

Instance: A binary matrix M and d 2 N .

Parameter: d.

Problem: Decide whether M is NOT d-disjunct.
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We will define a P2 formula nondisj(X), with a free relation variable X of arity 2, and show that

p-Nondisjunctness-Test is equal to p-WDnondisj(X) (see Section 2.4 for the definition of problem p-WDj).

This implies that p-Nondisjunctness-Test is in p-WD-P2, therefore is in W[2].

A binary matrix is not d-disjunct if and only if there is a set D of d columns and another column c =2 D

such that U(D) covers c. Our idea is assuming that the solution S to X is of the form {(ci,c) : ci [ D}.

Therefore, X should be a binary relation variable and the solution S to X should have cardinality d.

Define �1 :¼8c18c2(Xc1c2 ! (COLUMNc1 ^ COLUMNc2 ^ (c1 6¼ c2))), and define �2 :¼8c38c4

8c58c6 ((Xc3c4 ^ Xc5c6)! (c4¼ c6)). Here w1 and w2 are to guarantee that the solution S to X of cardinality

d has the form f(c1, c), . . . , (cd, c)g, where c [ CM, ci [ CM, and ci 6¼ c, for 1 � i � d. Define

nondisj0(X) :¼8r9c79c8(ROWr ! (Xc7c8 ^ (Irc8 ! Irc7))). nondisj0(X) is to guarantee that, the solution S

to X satisfies that the union of columns in {ci : (ci,c) [ S} covers c (so thatM is not d-disjunct). Finally,

define nondisj(X) :¼�1 ^ �2 ^ nondisj0(X), which is equivalent to a P2 formula.

From the above definition, clearly if there exists a relation S � C2
M of cardinality d such that Mj¼

nondisj(S), thenM is not d-disjunct. On the other hand, ifM is not d-disjunct, then there exist a subset D

of d columns c1, . . . , cd and another column c =2 D such that c is covered by U(D). It is not hard to verify

that the relation S¼f(c1, c), . . . , (cd, c)g satisfies Mj¼ nondisj(S). Therefore, M is not d-disjunct if and

only if there exists a relation S of cardinality d such that Mj¼ nondisj(S). That is, p-Nondisjunctness-

Test is p-WDnondisj(X). Thus, p-Nondisjunctness-Test [ W[2], and so p-Disjunctness-Test [ co-

W[2]. &

Lemma 3.2. p-Separability-Test [ co-W[2].

Proof. We consider the following complement problem of p-Separability-Test.

p-Nonseparability-Test

Instance: A binary matrix M and d 2 N .

Parameter: d.

Problem: Decide whether M is NOT d-separabe.

We will define a formula nonsep(Y), with a free relation variable Y of arity 2, and show that

p-Nonseparability-Test is equal to p-WDnonsep(Y).

A binary matrix is not d-separable if and only if there exist two distinct subsets D1 and D2 each contains

d columns such that U(D1)¼U(D2). Assume that D1¼fc11, c12, . . . , c1dg and D2¼fc21, c22, . . . , c2dg. The

idea is to assume that the solution S to Y is of the form f(c11, c21), (c12, c22), . . . , (c1d, c2d)g, and so Y should

be a binary relation variable and the solution S to Y should have cardinality d. We define the formula

nonsep(Y) satisfying that, there exists a relation S � C2
M of cardinality d such that Mj¼ nonsep(S) if and

only if M is not d-separable.

Define �3 :¼8c18c2(Yc1c2 ! (COLUMNc1 ^ COLUMNc2)),�4 :¼8c38c48c58c6((Yc3c4 ^ Yc5c6)!
((c3¼ c5)$ (c4¼ c6))), and �5 :¼9c79c88c9((Yc7c8 ^ :Yc9c7)). Here w3 is to guarantee that the relation

variable Y � C2
M ;�4 is to build a bijection between the first component of elements in S and the second

component of elements in S, which guarantees that the two subsets fc1i : 9cs:t:(c1i, c) 2 Sg and

fc2j : 9cs:t:(c, c2j) 2 Sg (which intend to be D1 and D2 respectively) have the same cardinality; w5 is to

guarantee that the two subsets fc1i : 9cs:t:(c1i, c) 2 Sg and fc2j : 9cs:t:(c, c2j) 2 Sg are distinct from each

other. Define nonsep0(Y) :¼8r(ROWr ! ((9c109c11Yc10c11 ^ Irc10)$ (9c129c13Yc12c13 ^ Irc13))), which

is to guarantee that, the solution S to Y satisfies that the union of columns in fc1i : 9cs:t:(c1i, c) 2 Sg is equal

to the union of columns in fc2j : 9cs:t:(c, c2j) 2 Sg. From basic logic computation it is not hard to verify

that nonsep0(Y) is a P2 formula with free relation variable Y. Finally, define nonsep(Y) :¼�3^
�4 ^ �5 ^ nonsep0(Y).

From the above definition of nonsep(X), if a relation S � C2
M of cardinality d satisfies that Mj¼

nonsep(S), then the two subsets fc1i : 9cs:t:(c1i, c) 2 Sg and fc2j : 9cs:t:(c, c2j) 2 Sg both contain d columns

of M and are distinct from each other, moreover their unions are identical. This implies that M is not

d-separable. On the other hand, ifM is not d-separable, then there exist two distinct subsets D1 and D2 each

contains d columns such that U(D1)¼U(D2). Assume that D1¼fc11, . . . , c1dg, and D2¼fc21, . . . , c2dg. It

is not hard to verify that the relation S¼f(c11, c21), (c12, c22), . . . , (c1d, c2d)g satisfies Mj¼ nonsep(S).
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From above, there exists a relation S � C2
M of cardinality d such that Mj¼ nonsep(S) if and only if

M is not d-separable, therefore p-Nonseparability-Test is p-WDnonsep(Y). w3 and w4 are P1 formulas, w5

is a S2 formula, nonsep0(Y ) is a P2 formula, therefore nonsep(Y)¼�3 ^ �4 ^ �5 ^ nonsep0(Y) is equiv-

alent to a S3 formula, which implies that p-Nonseparability-Test is in p-WD-S3. Here we apply the

fact that p-WD-�3 � p-WD-�2.1 Thus, p-Nonseparability-Test [ W[2], and so p-Separability-

Test [ co-W[2]. &

Lemma 3.3. p-Separability
*-Test [ co-W[2].

Proof. Since W[2] is closed under fpt-reductions, so is co-W[2]. We will show that p-Separability
*-

Test is fpt-reducible to p-Separability-Test. Since the latter is in co-W[2] (lemma 3.2), this implies that

p-Separability
*-Test [ co-W[2]. The reduction can be obtained immediately from the following fact

(lemma 2.1.6 in Du and Hwang [2006]): A binary matrix M0 containing a zero column is d-separable if and

only if the matrix M obtained by removing this zero column from M0 is �dd-separable.

Let (M,d) be an instance of p-Separability*-Test, where M is a binary matrix and the parameter d is a

positive integer. We map (M,d) to (M0,d), where M0 is obtained by adding a zero column to M. From the

above lemma, (M,d) [ p-Separability*-Test if and only if (M0,d) [ p-Separability-Test. It is easy to

see that this is an fpt-reduction from p-Separability*-Test to p-Separability-Test. &

Lemma 3.4. p-Disjunctness-Test is co-W[2]-complete.

Proof. A hitting set in a hypergraphH¼ (V , E) is a set T of vertices that intersects each hyperedge, that

is T \ e 6¼ ; for all e [ E. The classical Hitting-Set problem is to find a hitting set of a given cardinality

k in a given hypergraph H, which is known to be NP-complete. The following parameterized hitting set

problem is W[2]-complete (see, Theorem 7.14 in Flum and Grohe [2006]).

p-Hitting-Set

Instance: A hypergraph H and k 2 N .

Parameter: k.

Problem: Decide whether H has a hitting set of k vertices.

We give an ftp-reduction from p-Hitting-Set to p-Nondisjunctness-Test, based on an idea similar to

that in Du and Ko (1987). Let (H,k) with H¼ (V , E) be an instance of p-Hitting-Set, where

V ¼f1, . . . , ng, E¼fe1, . . . , emg, and each ei, 1 � i � m, is a subset of V. Define d¼ k, and define an

(nþm) · (nþ 1) binary matrix M with rows Ri as follows (here we represent each row as a subset of the set

of all columns f1, 2, . . . , nþ 1g, in the most natural way).

Ri¼fig, i¼ 1, . . . , n;

Rnþ j¼ ej [ fnþ 1g, j¼ 1, . . . , m:

First, assume thatH has a hitting set T � V of size k. Consider the subset S1¼ T of columns of M. Since T

is a hitting set of H, U(S1) covers column nþ 1. Notice that |S1|¼ d and column nþ 1 is not in S1, M is not

d-disjunct.

Conversely, assume that M is not d-disjunct. Then, there exist a subset S1 of d columns in

f1, 2, . . . , nþ 1g and another column c =2 S1 such that U(S1) covers c. From the way we define the first n

rows of matrix M, c can only be column nþ 1. Thus, column nþ 1 is not in S1. Set T¼ S1, then |T |¼ k and

T is a subset of V . Since U(S1) covers column nþ 1, it is easy to see that T is a hitting set of H.

It is not hard to verify that the above is an fpt-reduction. Therefore, p-Nondisjunctness-Test is W[2]-

complete, and so p-Disjunctness-Test is co-W[2]-complete. &

Lemma 3.5. p-Separability*-Test is co-W[2]-complete.

1More generally, p-WD-�tþ 1 � p-WD-�t, for t � 1. The main idea to prove this conclusion is not complicated; we
refer the reader to Proposition 5.4 in Flum and Grohe (2006) for the proof.
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Proof. We give an ftp-reduction from p-Hitting-Set to p-Nonseparability*-Test. For an instance

(H, k) of p-Hitting-Set, define matrix M in the same way as in the proof of lemma 3.4, and define

d¼ kþ 1. Next we show the correctness of this reduction.

First, assume that H has a hitting set T � V of size k. Consider the following two subsets of columns in

M: S1¼ T and S2¼ T [ fnþ 1g. Then, for 1 � i � n, it is obvious that U(S1)i¼U(S2)i; for ni � nþm,

since T is a hitting set of H, U(S1)i¼ 1¼U(S2)i. Notice that jS1j, jS2j � d and S1 6¼ S2, M is not
�dd-separable.

Conversely, assume that M is not �dd-separable. Then, there exist two subsets S1 and S2 of columns in

f1, 2, . . . , nþ 1g such that jS1j, jS2j � d, S1 6¼ S2, and U(S1)¼U(S2). Since U(S1)i¼U(S2)i for 1 � i � n,

we have that S1 \ f1, . . . , ng¼ S2 \ f1, . . . , ng. To have S1 6¼ S2, column nþ 1 must belong to exactly one

of S1 and S2. Without loss of generality, assume that nþ 1=2S1, and nþ 1 2 S2. Set T ¼ S1, then

jT j ¼ jS1j ¼ jS2j � 1 � d� 1¼ k, and T is a subset of V . From U(S1)i¼U(S2)i¼ 1 for ni � nþm, T is a

hitting set of H.

Therefore, p-NonSeparability*-Test is W[2]-complete, and so p-Separability*-Test is co-W[2]-

complete. &

Lemma 3.6. p-Separability-Test is co-W[2]-complete.

Proof. Since as proved before in lemma 3.3 that p-Separability*-Test is fpt-reducible to p-

Separability-Test, and in lemma 3.5 that p-Separability*-Test is co-W[2]-complete, p-Separability-

Test is co-W[2]-hard. Together with lemma 3.2 that p-Separability-Test [ co-W[2], we obtain that

p-Separability-Test is co-W[2]-complete. &

4. DISCUSSION

In this article, we studied the parameterized complexity of three basic problems in pooling design: given

an m�n binary matrix and a positive integer d, to decide whether the matrix is d-separable ( �dd-separable, or

d-disjunct). We proved that these problems are co-W[2]-complete; thus, they do not admit algorithms with

running time f (d) · (mn)O(1) for any computable function f. To the best of our knowledge, in general the

best known algorithms for the above problems are simply brute-force. It is interesting to investigate

whether these problems admit better algorithms.
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