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Abstract

The complexity of the Bandpass problem is re-investigated. Specifically, we show that the
problem with any fixed bandpass number B ≥ 2 is NP-hard. Next, a row stacking algorithm
is proposed for the problem with three columns, which produces a solution that is at most 1
less than the optimum. For the special case B = 2, the row stacking algorithm guarantees an
optimal solution. On approximation, for the general problem, we present an O(B2)-algorithm,
which reduces to a 2-approximation algorithm for the special case B = 2.
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1 Introduction

The Bandpass problem was the first time formulated and presented in the Annual INFORMS
meeting, October 2004, Denver, CO, USA, 2004 [3]. Some complexity and algorithmic results were
recently summarized in [2], where a library of instances are included to challenge the algorithm
design. The Bandpass problem can be easily described as follows. Given a binary matrix A of
dimension m×n, and a positive integer B called the bandpass number, a set of B consecutive non-
zero elements in a column of the matrix is called a bandpass. Two bandpasses in the same column
are not allowed to have common rows. The Bandpass problem is to find an optimal permutation of
rows of the matrix such that the total number of extracted bandpasses is maximized.

This combinatorial optimization problem arises in optical communication networks, to design
an optimal packing of information flows on different wavelengths into groups to obtain the highest
available cost reduction using wavelength division multiplexing technology [2]. The matrix Am×n

represents a sending point which has m information packages to be sent to n different destination
points, where aij = 0 if information package i is destined for point j, or aij = 1 otherwise. Roughly
speaking, a bandpass provides an opportunity for merging information and thus to reduce the com-
munication cost. Different bandpass numbers can be used in practice for cost reduction. However,
according to [2], this would increase handling complexities and eventually induce additional costs.
In the current version of the Bandpass problem, only one bandpass number is considered [2]. The
interested readers might refer to [3, 2] for more details of the application.
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Babayev et al. concluded that it is not reasonable to try to find an optimal solution to the
Bandpass problem by exhaustive search over all row permutations [2]. They tried to study the
computational complexity of the Bandpass problem, and modeled the problem as an integer pro-
gram followed by calling existing integer programming solvers. Heuristics were also proposed to
generate good solutions, though no guaranteed performance. Besides, they created a library of
problem instances with known and unknown optimal solutions, open for public use.

Unfortunately, the proof of the NP-hardness for the Bandpass problem, via a reduction from
3SAT, provided in [5] does not seem correct. In fact, the presented reduction is from the Bandpass
problem to 3SAT. Furthermore, the claim that the Bandpass problem with three or more columns
in the matrix is NP-hard is probably wrong. In this paper, we prove the NP-hardness of the
Bandpass problem with any fixed bandpass number B ≥ 2 by providing a natural reduction from
the Hamiltonian path problem [5]. For the problem containing exactly three columns, we present a
row stacking algorithm which produces a solution at most 1 less than the optimum. Furthermore,
such an algorithm gives an optimal solution for the special case B = 2. On approximation, an
O(B2)-algorithm is presented for the general problem, which reduces to a 2-approximation for the
special case B = 2.

2 The complexity

The Bandpass problem looks for a permutation of rows of the given matrix to maximize the total
number of bandpasses that can be extracted from the resultant matrix. In this section, we present
a reduction from the Hamiltonian path problem [5] to prove the NP-completeness of the Bandpass
decision problem. Given a graph, a Hamiltonian path in the graph is a permutation of vertices such
that every two consecutive vertices in the permutation are adjacent (i.e., connected by an edge) in
the graph.

Hamiltonian Path (HP)
Instance: Graph G = (V,E)
Question: Does G contain a Hamiltonian path?

We construct an instance of the Bandpass decision problem as follows. Let vertices in V be
labeled as v1, v2, . . . , vn. Each vertex vi corresponds to three rows, indexed 3i− 2, 3i− 1, 3i, in the
target matrix A. The number of rows in A is 3n and the number of columns in A is 2n2+ 1

2(n2−n) =
5
2n2 − 1

2n. All entries in A are initialized to 0. Next we flip some entries to 1. Firstly, in the three
rows corresponding to vi, a3i−2,j = 1 for j = 2(i−1)n+1, 2(i−1)n+2, . . . , 2(i−1)n+n, a3i−1,j = 1 for
j = 2(i−1)n+1, 2(i−1)n+2, . . . , 2in, and a3i,j = 1 for j = 2(i−1)n+n+1, 2(i−1)n+n+2, . . . , 2in.
Columns indexed from 2n2 + 1 to 2n2 + 1

2(n2 − n) in matrix A one-to-one correspond to pairs of
vertices (vi1 , vi2) where i1 < i2. For each edge (vi1 , vi2) ∈ E, with i1 < i2, let j be the index of
the corresponding column. Then, a3i1−2,j = 1, a3i1,j = 1, a3i2−2,j = 1, and a3i2,j = 1. Lastly, set
B = 2, and the construction is complete. Given a sample graph showing in Figure 1(a), the matrix
A constructed in the above way is illustrated in Figure 1(b).

In the following, we prove that graph G contains a Hamiltonian path if and only if there is a
row permutation for matrix A which generates 2n2 + (n − 1) bandpasses. The “only if” part is
fairly straightforward. Given a Hamiltonian path of graph G, without loss of generality, assume
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12345678 9–16 17–24 25–32 33 34 35 36 37 38
1 11110000 00000000 00000000 00000000 1 0 1 0 0 0
2 11111111 00000000 00000000 00000000 0 0 0 0 0 0
3 00001111 00000000 00000000 00000000 1 0 1 0 0 0
4 00000000 11110000 00000000 00000000 1 0 0 0 1 0
5 00000000 11111111 00000000 00000000 0 0 0 0 0 0
6 00000000 00001111 00000000 00000000 1 0 0 0 1 0
7 00000000 00000000 11110000 00000000 0 0 0 0 0 1
8 00000000 00000000 11111111 00000000 0 0 0 0 0 0
9 00000000 00000000 00001111 00000000 0 0 0 0 0 1

10 00000000 00000000 00000000 11110000 0 0 1 0 1 1
11 00000000 00000000 00000000 11111111 0 0 0 0 0 0
12 00000000 00000000 00000000 00001111 0 0 1 0 1 1

(b)

Figure 1: (a) A sample graph G = ({v1, v2, v3, v4}, {(v1, v2), (v1, v4), (v2, v4), (v3, v4)}), and (b) the
constructed matrix A in the Bandpass instance, where columns 33–38 one-to-one corresponds to
vertex pairs (v1, v2), (v1, v3), (v1, v4), (v2, v3), (v2, v4), and (v3, v4), respectively.

that the vertex order in the path is v1, v2, . . . , vn (i.e., (vi, vi+1) ∈ E, for 1 ≤ i ≤ n−1). The matrix
A constructed in the above way has one bandpass in each of the first 2n2 columns. Furthermore,
one bandpass can be extracted from one among columns 2n2 + 1 to 2n2 + 1

2(n2 − n) between rows
3i and 3(i + 1)− 2, corresponding to vertices vi and vi+1 respectively, for i = 1, 2, . . . , n− 1. This
gives a total of 2n2 + (n− 1) bandpasses.

To prove the “if” part, we first notice that for rows indexed 3i−2 and 3i, the maximum possible
number of bandpasses extracted from columns 2n2 + 1 to 2n2 + 1

2(n2 − n) is at most n − 1. The
maximum case happens only if the degree of vertex vi in graph G is n− 1, and that these two rows
are consecutive in the given row permutation. It follows that for at least one of these two rows,
no bandpass can be extracted from columns 1 to 2n2. Moreover, for the row indexed 3i − 1, the
maximum possible number of bandpasses extracted from all columns is reduced to n. Therefore, we
can always move both rows 3i− 2 and 3i to line up with row 3i− 1, with an increasing number of
bandpasses. This way, we can always, if necessary, obtain from the given row permutation another
row permutation, in which rows indexed 3i − 2, 3i − 1, 3i appear sequentially. In this new row
permutation, the number of bandpasses generated from columns 1 to 2n2 is exactly 2n2. Let the
order of vertices corresponding to this row permutation be vi1 , vi2 , . . . , vin . It follows that for every
j = 1, 2, . . . , n − 1, there is one bandpass extracted in between rows 3ij and 3ij+1 − 2, from some
column indexed 2n2+1 to 2n2+ 1

2(n2−n). Equivalently speaking, vertices vij and vij+1 are adjacent
in graph G. That is, graph G contains a Hamiltonian path 〈vi1 , vi2 , . . . , vin〉.
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For the matrix A illustrated in Figure 1(b), the number of bandpasses is 34. If swapping
row group {7, 8, 9} with row group {10, 11, 12}, while maintaining their internal sequential orders,
then one more bandpass can be extracted from column 37, corresponding to edge (v2, v4). Since
35 = 2n2 + (n− 1), graph G contains a Hamiltonian path and the induced Hamiltonian path from
the row permutation is 〈v1, v2, v4, v3〉.

For a fixed B ≥ 2, we can make B − 1 more copies of those rows indexed 3i − 1, for all i, and
B − 2 copies of a new type of rows, each of them corresponds to an edge and has exactly one 1 in
the column associated with the edge. This constructs an instance for the general Bandpass problem
with a fixed bandpass number B. Similarly, it can be proven that graph G contains a Hamiltonian
path if and only if this instance has a row permutation generating (at least) 2n2+(n−1) bandpasses.
In summary, we have proved the following theorem.

Theorem 1 The Bandpass problem with a fixed bandpass number B ≥ 2 is NP-hard.

3 Algorithmic results

Let n denote the number of columns in the Bandpass problem. The claim that the Bandpass
problem with n ≥ 3 is NP-hard is probably incorrect as made in [2]. Next, we extend the idea
in the polynomial time exact algorithm for the special case n ≤ 2 [2] to case n = 3 to obtain a
solution which generates the maximum number of, or 1 less, bandpasses. Moreover, when B = 2,
we guarantee to produce an optimal solution.

For n = 1, it is clear that putting the non-zero rows consecutively gives an optimal permutation,
no matter what B is; For n = 2, firstly rows are classified into (0 0)-, (0 1)-, (1 0)-, and (1 1)-rows,
then stacking them in the order of (0 0)-rows, then (0 1)-rows, then (1 1)-rows, lastly (1 0)-rows gives
an optimal permutation, again no matter what B is. The optimality of the above two algorithms
lies in the fact that all 1’s in each column are placed consecutively. That is, for each column, the
maximum number of bandpasses is achieved.

Such an idea can be extended for case n = 3, where we have 8 possible types of rows, (0 0 0)-,
(0 0 1)-, (0 1 0)-, (0 1 1)-, (1 0 0)-, (1 0 1)-, (1 1 0)-, and (1 1 1)-rows. We stack the rows in the
order of firstly (0 0 0)-rows, then sequentially (0 0 1)-rows, (0 1 1)-rows, (0 1 0)-rows, (1 1 0)-rows,
(1 1 1)-rows, (1 0 1)-rows, and lastly (1 0 0)-rows. In this placement, the 1’s in each of the first two
columns appear consecutively, respectively, and the 1’s in the third column are either consecutive
as well or separated into two bands. Therefore, the number of bandpasses in this row stacking
solution differs the optimum by at most 1.

There are many scenarios in which the achieved solution is optimal, for example, when there
are no (0 1 0)- or (1 1 0)-rows, or when one of the two bands in the third column has size that is
a multiple of B. In the special case of B = 2, if there is one column containing an odd number of
1’s, then swapping this column into the third first, the row stacking solution is optimal.

In the other case, we tentatively assume that the achieved solution is non-optimal. Then, both
S101 + S111 and S011 + S001 must be odd, where S101 denotes the number of (1 0 1)-rows (S111,
S011, etc. are similarly defined). Due to B = 2, whenever there are two rows of the same type, we
can remove them from consideration since putting them consecutively in the permutation achieves
their maximum possible number of bandpasses. Therefore, we have the reduced instance in which
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one of S101 and S111 is 0, and the other is 1; similarly, one of S011 and S001 is 0, and the other
is 1. Consider one case in which S101 = 0, S111 = 1, S011 = 0, and S001 = 1. If S100 = 0, then
S110 = 1 and S010 = 0, and the row stacking obtained by swapping columns 1 and 3 is optimal.
Otherwise, S100 = 1, and subsequently S110 = 0 and S010 = 1. This presents a scenario in which
there is one (1 0 0)-row, one (0 1 0)-row, one (0 0 1)-row, and one (1 1 1)-row. It follows that the
current solution is optimal, since there can’t be a row permutation to generate three bandpasses.
The other three cases can be similarly examined. The conclusion is, when B = 2, one of the six
row stackings obtained from six column permutations of the matrix is optimal. These prove the
following two theorems.

Theorem 2 The Bandpass problem with n = 3 can be solved almost exactly in polynomial time, to
obtain a row permutation generating either the maximum number of, or one less, bandpasses.

Theorem 3 The Bandpass problem with n = 3 and bandpass number B = 2 can be solved exactly
in polynomial time.

One instance of the Bandpass problem with n = 3 from [2] is listed in Figure 2(a). The stacking
of the eight (for this instance, only six non-empty) types of rows is illustrated in Figure 2(b). We
may also swap the first two columns to obtain another stacking (Figure 2(c)), which is optimal
since in each column all 1’s are placed consecutively. We conjecture that for any fixed bandpass
number B > 2, by enumerating all possible 6 column permutations, one of the six row stackings of
the corresponding eight types of rows would be an optimal solution.

1 2 3 1 2 3 2 1 3
1 0 1 0 5 1 0 0 1 1 0 0
2 0 0 1 6 1 0 0 10 1 0 0
3 0 0 0 7 1 0 0 11 1 0 0
4 0 0 1 13 1 0 1 12 1 0 0
5 1 0 0 8 1 1 0 8 1 1 0
6 1 0 0 9 1 1 0 9 1 1 0
7 1 0 0 1 0 1 0 5 0 1 0
8 1 1 0 10 0 1 0 6 0 1 0
9 1 1 0 11 0 1 0 7 0 1 0

10 0 1 0 12 0 1 0 13 0 1 1
11 0 1 0 2 0 0 1 2 0 0 1
12 0 1 0 4 0 0 1 4 0 0 1
13 1 0 1 14 0 0 1 14 0 0 1
14 0 0 1 16 0 0 1 16 0 0 1
15 0 0 0 3 0 0 0 3 0 0 0
16 0 0 1 15 0 0 0 15 0 0 0

(a) (b) (c)

Figure 2: Solving an example instance of the Bandpass problem with n = 3: (a) the original
instance, (b) the stacking of the eight types of rows, and (c) swapping columns 1 and 2 and the
subsequent stacking of the eight types of rows.
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Theorem 4 There is an O(B2)-approximation algorithm for the Bandpass problem with a fixed
bandpass number B ≥ 2.

Proof. We consider a further constrained Bandpass problem in which no two bandpasses in
different columns can share any common rows. Essentially, a solution to this restricted version
corresponds to a partition of all the m rows into chunks of exactly B rows, except the last chunk
which might contain less than B rows. Given an optimal solution S∗ to the original Bandpass
instance, we can obtain a solution S∗1 to the restricted version by cutting out the bandpasses
crossing rows 1 and 2, the bandpasses crossing rows B + 1 and B + 2, the bandpasses crossing
rows 2B + 1 and 2B + 2, and so on. In fact, we can obtain in the similar way B − 1 other
solutions, S∗2 , S∗3 , . . . , S∗B. Clearly, every bandpass in S∗ appears in exactly one of these B solutions.
Consequently, |S∗| = |S∗1 |+ |S∗2 |+ . . . + |S∗B|, where |S∗| denotes the number of bandpasses in S∗.
It follows that the optimum value of the restricted version is at least 1

B of the optimum value of
the original Bandpass problem.

Unfortunately we are not able to solve the above version of the partitioning problem exactly.
While the general partitioning problem is NP-hard [5], our version can be described as a maximum
weighted B-set packing problem [5]: An instance of the problem contains all sets of B distinct
rows, each has a weight that is equal to the number of bandpasses in these B rows. The goal is to
find a maximum weight collection of sets that are mutually disjoint. The maximum weighted B-set
packing problem can be approximated within B − 1 + ε for any ε > 0 [1] and within 2

3(B + 1) [4].
Therefore, the Bandpass problem can be approximated within O(B2). 2

Corollary 5 There is a 2-approximation algorithm for the Bandpass problem with bandpass number
B = 2.

Proof. From Theorem 1, the Bandpass problem with bandpass number B = 2 is NP-hard. The
proof of the above Theorem 4 implies a 2-approximation algorithm, since the maximum weight
bi-partitioning (equivalently, row-matching) problem can be solved in polynomial time. 2

4 Conclusions

In this paper, the Bandpass problem with any fixed bandpass number B ≥ 2 is shown NP-hard.
A previous claim on the NP-hardness for the special case n = 3 is unlikely correct, because 1) a
row stacking algorithm gives a solution generating at least one less the optimum bandpasses, and
2) it gives an optimal solution when the bandpass number B is 2. On approximation, an O(B2)-
algorithm for the general Bandpass problem is presented, which reduces to a 2-approximation
algorithm for the Bandpass problem with bandpass number B = 2.
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