
Quartet-Based Phylogeny Reconstruction with
Answer Set Programming

Gang Wu, Jia-Huai You, and Guohui Lin

Abstract—In this paper, a new representation is presented for the Maximum Quartet Consistency (MQC) problem, where solving the

MQC problem becomes searching for an ultrametric matrix that satisfies a maximum number of given quartet topologies. A number of

structural properties of the MQC problem in this new representation are characterized through formulating into answer set

programming, a recent powerful logic programming tool for modeling and solving search problems. Using these properties, a number

of optimization techniques are proposed to speed up the search process. The experimental results on a number of simulated data sets

suggest that the new representation, combined with answer set programming, presents a unique perspective to the MQC problem.

Index Terms—Phylogeny, quartet, Maximum Quartet Consistency (MQC), Answer Set Programming (ASP), ultrametric matrix.

Ç

1 INTRODUCTION

EVOLUTION is an important subarea of study in the
biological sciences, where knowledge of the evolution-

ary history, or phylogeny, of the taxa under consideration
plays a very important role in the studies. Evolution study
started with taxon-specific information such as physical
characteristics (morphological data). In the last few decades,
with the availability of a large number of molecular
sequences, the study has involved using this additional
information to provide phylogenetic biologists with more
accurate knowledge of the evolutionary history. It is now
routine for biologists to conduct evolutionary analyses of
large DNA and protein sequence data sets or even whole
genomes. It is expected that such a study would be able to
carry out more accurate phylogeny that models the course
of evolution and speciation over time for the set of taxa
under consideration.

In a phylogeny on a set of taxa, the leaves are labeled
with the given taxa and the internal nodes represent extinct
or hypothesized ancestors. There are rooted and unrooted
phylogenies. In a rooted phylogeny, an edge specifies the
parent-child relationship and the root represents a common
ancestor of all the taxa. A rooted phylogeny is called binary
or resolved if every internal node except the root has degree
exactly 3 and the root has degree 2. In an unrooted
phylogeny, there is no parent-child relationship specified
for an edge and it is called resolved if every internal node has
degree exactly 3. There are a lot of works on both rooted
and unrooted phylogeny reconstruction, depending on the
detailed biological applications. It is already known that
rooted phylogenies and unrooted phylogenies can be easily
transformed into each other [21], for example, by using an
outgroup.

In this paper, we consider the reconstruction of rooted
resolved phylogenies. We adopt the general notions from
graph theory. For example, the path from node u to node v
in the phylogeny T is a sequence of distinct nodes
u0; u1; . . . ; uk such that u0 ¼ u, uk ¼ v, and, for each
i 2 f0; 1; . . . ; k� 1g, ðui; uiþ1Þ is an edge in T . If node u is
on the path from root to node v, then u is called an ancestor
of node v and v is called a descendant of node u.

1.1 Quartet-Based Phylogeny Reconstruction

In the last two decades, quartet-based methods for
reconstructing phylogenies have received a considerable
amount of attention in the computational biology commu-
nity. Given a taxon set S, each subset of four taxa of S is
called a quartet of S. An unrooted phylogeny (or topology)
of a quartet is called its quartet topology. The quartet-based
phylogeny reconstruction is to first build a phylogeny for
every quartet and then try to infer an overall unrooted
phylogeny for the whole set of taxa. After building a
topology for every quartet, quartet-based methods all rely
on some combinatorial algorithms to construct a phylogeny
on the entire set of taxa. In the ideal case where all quartet
topologies are “correct,” namely, they agree with each
other, the task of assembling an overall phylogeny is easy
and can be done in Oðn4Þ time [8], where n ¼ jSj is the
number of taxa under consideration.

In practice, however, some quartet topologies might be
ambiguous (and, thus, missing) or even erroneous and,
thus, the given quartet topology set might be incomplete, i.e.,
it contains less than n

4

� �
quartet topologies (if there is exactly

one topology for each quartet, then the quartet topology set
is complete) and might contain conflicting quartet topologies.
This property complicates the phylogeny reconstruction
problem but also raises the computational interests. Under
the parsimony assumption, the goal is to construct a
phylogeny that respects as many quartet topologies as
possible. Such an optimization problem turns out to be hard
[16]. Exhaustive search is generally infeasible as there are
ð2n�5Þ!
ðn�3Þ!2n�3 unrooted resolved phylogenies on n leaves to
choose from [10]. A few attempts have been made to solve

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 1, JANUARY-MARCH 2007 139

. The authors are with the Department of Computing Science, University of
Alberta, Edmonton, Alberta T6G 2E8, Canada.
E-mail: {wgang, you, ghlin}@cs.ualberta.ca.

Manuscript received 26 May 2005; revised 27 Nov. 2005; accepted 16 Jan.
2006; published online 9 Jan. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-0053-0505.
Digital Object Identifier no. 10.1109/TCBB.2007.1008.

1545-5963/07/$25.00 � 2007 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

this optimization problem optimally. Ben-Dor et al. pre-
sented a dynamic programming algorithm that evaluates
the number of quartet topologies that are consistent with a
bipartition of the taxon set and thereby determines a
phylogeny that satisfies a maximum number of quartet
topologies [2]. The running time of the algorithm is Oð3nn4Þ.
The inconsistent quartet topologies with respect to a
bipartition are referred to as quartet errors (across the
bipartition), which are identified and changed in order to
be compatible to other quartet topologies. In general, those
given quartet topologies that are not respected by the
output phylogeny are referred to as quartet errors, which
need to be identified and changed. When the number of
quartet errors is known ahead of time, then the fixed
parameter algorithm proposed by Gramm and Niedermeier
[13], which, for simplicity, is referred to as the GN
algorithm in the sequel, would be able to detect and correct
them and to return an associated phylogeny. The GN
algorithm has a running time of Oð4knþ n4Þ, where k is the
number of quartet errors.

Another line of research has been carried out where
near-optimal solutions are pursued instead of the optimal
ones under some time constraint. To name a few, the
heuristics of Sattath and Tversky [22] and Bandelt and
Dress [1] combine some clustering procedures with pair-
wise similarity scores derived from the quartet topologies.
One novel variation on the scoring approach is described by
Ben-Dor et al. [2], where, instead of constructing a similarity
score for clustering, they embed the n taxa as points in the
n-dimensional euclidean space Rn using semidefinite pro-
gramming and then apply a nearest neighbor clustering
procedure to finish the task. Strimmer and von Haeseler
designed the Quartet Puzzling heuristic [25] in which the
tree building (or “puzzling”) part works by 1) ordering the
leaves arbitrarily, 2) constructing a phylogeny on the first
four leaves, and then 3) adding new leaves one at a time by
attaching it to the edge that gives the optimal quartet score.
Dekker proposed another method for constructing phylo-
genies from quartet topologies and other subphylogenies
using several quartet inference rules [7]. The Short Quartet
Method [9] constructs phylogenies using several inference
rules and greedy selection of quartet topologies. In the
special case where the set of quartet topologies is complete,
the problem of constructing a phylogeny to satisfy a
maximum number of quartet topologies has been shown
to admit a polynomial time approximation scheme (PTAS) [15].
The same group of researchers also proposed a number of
quartet cleaning algorithms [3], [4], [15] that can tolerate
varying degrees of errors presented in the quartet set. In
particular, Berry et al. formalized the quartet cleaning
algorithms into four categories: global/local edge/vertex clean-
ing, based on the type of quartet errors the algorithm trying to
correct [4]. A step further, a hypercleaning heuristic algorithm
is proposed in [3]. Instead of maximizing the number of
consistent quartet topologies, hypercleaning constructs a
new quartet distance model to measure the quartet errors and
tries to minimize this distance. These quartet cleaning
algorithms typically run in polynomial time and are well
suited for the situation where the given quartet topology set is
unweighted and almost tree-like [3], [15].

1.2 Organization

We introduce in Section 2 the detailed definitions for a
number of objects we are going to use in this paper. We
then describe the combinatorial optimization problems we
are trying to solve. In Section 3, a new representation is
given for the phylogeny reconstruction problem to satisfy a
maximum number of quartet topologies. In Section 4, we
present a brief introduction to Answer Set Programming
(ASP) and describe how the new representation of the MQC
problem can be encoded as an answer set program, which
can subsequently be run in an efficient ASP system, Smodels
[23]. In Section 5, we present a number of nice structural
properties of the new representation that can be taken
advantage of in pruning the search space effectively.
Section 6 summarizes our experimental results on a number
of simulated data sets and various comparison results.
Finally, we conclude the paper in Section 7.

2 PROBLEM DESCRIPTIONS

Given a taxon set S and a quartet fs1; s2; s3; s4g of S, there
are three possible topologies associated with the quartet, up
to symmetry. These three quartet topologies are shown in
Fig. 1. For simplicity, we use ½s1; s2js3; s4� to denote the
quartet topology in which the path connecting s1 and s2

doesn’t intersect the path connecting s3 and s4 (see Fig. 1a).
The other two quartet topologies are ½s1; s3js2; s4� and
½s1; s4js2; s3�. Given a phylogeny T on S, for every quartet,
one may trim all the other nodes (including the root if the
phylogeny is rooted) from T to obtain a topology for the
quartet. Therefore, only one of the three possible quartet
topologies can be present in the given quartet topology
set Q. Suppose Q contains the quartet topologies built in the
first step of a quartet-based phylogeny reconstruction,
which can be done by various quartet inference methods.
If there exists one phylogeny T on S such that the quartet
topology q in Q is the same as the one derived from T , then
we say T satisfies q or q is consistent with T ; if there exists one
phylogeny T satisfying all quartet topologies in Q, then we
say Q is compatible and T is the phylogeny associated with Q.

The recognition problem to determine if a given set Q of
quartet topologies on S ¼ fs1; s2; . . . ; sng is compatible or
not is called the Quartet Compatibility Problem (QCP).

INPUT: A set Q of quartet topologies on S ¼ fs1; s2; . . . ; sng.
QUESTION: Is Q compatible? Equivalently, is there a

phylogeny T on S that satisfies all the quartet topologies

in Q?

It is known that, when Q is complete, QCP can be
answered in polynomial time and, if Q is compatible, the
associated phylogeny is unique and can be constructed

140 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 1, JANUARY-MARCH 2007

Fig. 1. The three possible topologies for quartet fs1; s2; s3; s4g.

within the same time [8]. However, if Q is incomplete, then

QCP is NP-complete [24]. The more computationally

interesting problem is, when Q is not compatible, to

construct a phylogeny satisfying as many quartet topologies

as possible.

MAXIMUM QUARTET CONSISTENCY (MQC):

INPUT: A set Q of quartet topologies on S ¼ fs1; s2; . . . ; sng.
GOAL: Find a phylogeny T on S that satisfies a maximum

number of quartet topologies in Q.

The MQC problem is the target problem in this paper.

When Q is complete, MQC has been proven to be NP-

hard yet admits a PTAS [15]. When Q is incomplete,

MQC has been proven to be MAX SNP-hard [15]. In this

paper, we assume the given quartet topology set Q is

complete. In the following, we will state some equivalent

problems to MQC, one of which can be readily solved by

answer set programming.

2.1 Ultrametric Phylogeny

Given a set of taxa, S ¼ fs1; s2; . . . ; sng, and a rooted

phylogeny T on S, the least common ancestor of two leaf

nodes si and sj in T is the common ancestor of si and sj
farthest away from the root, denoted as LCAðsi; sjÞ.
LCAðsi; sjÞ can also be interpreted as the internal node that

is on the path connecting si and sj and is the closest to the root.
A labeling scheme for the rooted phylogeny T is a

mapping from the set of internal nodes in T to the set of

integers f1; 2; . . . ; n� 1g. Note that, since T is a binary tree,

there are exactly ðn� 1Þ internal nodes in T . Two internal

nodes can be labeled by the same number in the set

f1; 2; . . . ; n� 1g, that is, the mapping is not necessarily a

bijection—in fact, to speed up the search process, one of our

goals is to use a small number of labels and, thus, one label

is usually shared by multiple internal nodes. Let Mði; jÞ
denote the label of the internal node LCAðsi; sjÞ. Without

loss of generality, Mði; iÞ is set to 0 for every si. A labeling

scheme is ultrametric if, along any root to leaf path, the

labels of the internal nodes on the path are strictly

decreasing [14]. One phylogeny, together with an ultra-

metric labeling scheme, is called an ultrametric phylogeny

[14]. Note that this definition of ultrametric phylogeny

differs from the concept of “ultrametric tree,” which refers

to a rooted edge weighted tree satisfying the three point

condition.
Let M be an n� n symmetric matrix with its entry values

taken from the set f0; 1; . . . ; n� 1g. M is ultrametric if

Mði; iÞ ¼ 0 for all i, Mði; jÞ > 0 for i 6¼ j, and, for every

triplet ði; j; kÞ, there are two equal values among Mði; jÞ,
Mðj; kÞ, and Mði; kÞ and they are greater than the third

value. It is not difficult to see the following property:

Theorem 2.1. Given a set of taxa S ¼ fs1; s2; . . . ; sng and a

rooted phylogeny T on S, there exists an ultrametric labeling

scheme for T and the resultant labeling matrix M is an

ultrametric matrix.

3 PROPERTIES OF MQC AND A NEW

REPRESENTATION

Recall that our goal is to construct a phylogenyT that satisfies
a maximum number of quartet topologies in the given set Q.
In this section, we will first examine some structural proper-
ties of this optimal phylogeny T . Using these structural
properties, we will be able to transform the phylogeny
searching problem into an ultrametric matrix searching
problem. The ultrametric matrix searching problem can then
be written into an answer set program, which can be solved by
an existing efficient ASP solver Smodels [23]. We want to
remark that, nonetheless, our ultimate goal is to design a
quartet-specific ASP solver with the current set of results
being our first step toward this goal.

Theorem 3.1. A quartet topology ½si; sjjsk; sl� is consistent with
a phylogeny T if and only if any ultrametric labeling scheme
M of T satisfies:

minfMði; kÞ;Mðj; lÞg > minfMði; jÞ;Mðk; lÞg:

Proof. It should be noted that, in fact, the ultrametric
labeling scheme satisfies:

minfMði; kÞ;Mðj; lÞ;Mði; lÞ;Mðj; kÞg
> minfMði; jÞ;Mðk; lÞg:

Nonetheless, we choose the stated inequality to minimize
the number of comparisons in computation since the
complete one requires two extra comparisons, which are
unnecessary.

In phylogeny T , let T 0 denote the minimal (rooted,
resolved) subphylogeny containing leaf nodes si, sj, sk,
and sl with all the other leaf nodes removed and degree 2
internal nodes (except the root of T 0) ignored. It is clear
now that, for at least one of the two pairs ðsi; sjÞ and
ðsk; slÞ, the taxa are sibling leaves in T 0. Without loss of
generality, assume that ðsi; sjÞ is such a pair, that is, si
and sj are siblings in T 0. It follows that, for every pair of
leaf nodes among ðsi; skÞ, ðsi; slÞ, ðsj; skÞ, and ðsj; slÞ, its
least common ancestor must be an ancestor of
LCAðsi; sjÞ. Therefore, the minimum among Mði; kÞ,
Mði; lÞ, Mðj; kÞ, and Mðj; lÞ must be strictly greater than
Mði; jÞ. This proves the “only if” part. The “if” part can
be proven by a simple argument by contradiction and it
is omitted. tu

The following theorem is the inverse of Theorem 1:

Theorem 3.2 [14]. Let M be an n� n ultrametric matrix, then
there exists a unique ultrametric phylogeny with a labeling
scheme M; moreover, this phylogeny can be constructed in
Oðn2Þ time.

An n� n ultrametric matrix M satisfies a quartet
topology ½si; sjjsk; sl� or the quartet topology is consistent
with M if minfMði; kÞ;Mðj; lÞg > minfMði; jÞ;Mðk; lÞg
holds. The next two theorems we are going to introduce
say that the construction of a phylogeny that satisfies a
maximum number of quartet topologies is equivalent to the
problem of searching for an ultrametric matrix to satisfy the
same maximum number of quartet topologies.

WU ET AL.: QUARTET-BASED PHYLOGENY RECONSTRUCTION WITH ANSWER SET PROGRAMMING 141

Corollary 3.3. An n� n ultrametric matrix M satisfies a quartet

topology if and only if its associated ultrametric phylogeny

satisfies the quartet topology.

Theorem 3.4. Given a set Q of quartet topologies on a set of taxa

S ¼ fs1; s2; . . . ; sng, Q is compatible if and only if there is an

n� n ultrametric matrix M on S that satisfies all the quartet

topologies in Q.

Proof. The theorem follows easily from Theorems 2.1, 3.1,

3.2, and Corollary 3.3. tu

Similarly, the following theorem holds:

Theorem 3.5. Given a set Q of quartet topologies on a set of taxa

S ¼ fs1; s2; . . . ; sng and an ultrametric phylogeny T on S, T

satisfies k quartet topologies in Q if and only if its

corresponding ultrametric matrix M on S satisfies the same

k quartet topologies in Q.

4 FORMULATING MQC INTO ANSWER SET

PROGRAMMING

According to Theorem 3.5, the MQC problem is equivalent to

the problem of finding an ultrametric matrix that satisfies a

maximum number of quartet topologies. Finding an n� n
ultrametric matrix is to assign values from f0; 1; 2; . . . ; n� 1g
to matrix entries, which can then be formulated into an

answer set program. In this section, we briefly introduce

answer set programming (ASP) and then provide a

complete ASP formulation of the MQC problem.

4.1 Answer Set Programming

Answer set programming is a new form of logic program-

ming with strength in solving constraint problems in a

declarative way [20]. In ASP, a given problem is expressed

as a logic program and each answer set of the program

corresponds to a solution to the given problem. Declarative

knowledge representation stems from the fact that, while

the user specifies what should be satisfied, an implemented

system is responsible for efficient computation. In this

subsection, we provide a brief introduction to ASP.
In ASP, an atom is of the form pða1; a2; . . . ; anÞ, where pð�Þ is

an n-ary predicate symbol and a1; a2; . . . ; an are terms. A term

is either a constant, a variable, or a function fðt1; t2; . . . ; tmÞ,
where t1; t2; . . . ; tm are terms. An atom without variables is

called a ground atom. If pð�Þ is a 0-ary predicate, the atom then

can simply be expressed as p. A logic program in this context

(also called an answer set program or just a program) is a finite

collection of rules of the form

a b1; . . . ; bm; not c1; . . . ; not cn;

where a, bi, and ci are function-free atoms and not ci is

called a not-atom. Atoms and not-atoms are referred to as

literals. An atom has two possible truth values, true and false.

In the above rule, atom a is the head of the rule, which when

empty means false. To the right of sign “ ” is the body of

the rule, which, when empty, means the head is a fact.

Intuitively, such a rule says that, if all bis are true and all cjs

are false in a solution, then atom a must be true in the same

solution.

A program is ground if every atom in it is ground. An
answer set program is typically instantiated to a ground
program for the computation of answer sets. In the
following, we assume atoms are function-free and pro-
grams are ground. Answer sets are defined as stable models
[11]. Let S be a set of atoms and P a program. An atom a is
true if and only if it is in S and is false otherwise. A rule in
P is satisfied by S if either its head is in S or some literal in
the rule body is false. Informally, S is a stable model of P if
every rule in P is satisfied by S and, for any atom a in S,
there is a rule “a b1; . . . ; bm; not c1; . . . ; not cn” in P such
that all bis are in S and none of the cjs is in S, by a
noncircular reasoning. For example, rule “a a” cannot be
used to justify a even if a is already in S. In other words, a
stable model is a set of atoms that satisfy every rule in the
program and every atom in the stable model has a “reason”
to be there.

ASP systems have made enumeration and selection
easier with several extensions, one of which is called the
cardinality rule in the form [23]:

Lfa1; a2; . . . ; amgU body;

where body is shorthand for a conjunction of literals. This
rule says that if all the literals in the body are in an answer
set, then the rule is satisfied by the answer set only when
the number of atoms among a1; a2; . . . ; am in the answer set
is between integers L and U , inclusive. One can think of a
cardinality rule as a high-level language construct sup-
ported by the underlying language semantics.

In general, an answer set program can be translated into
a SAT instance and solved by an existing SAT solver [18]. It
can also be solved directly by an answer set solver. In this
latter category, one of the most efficient implementations is
the Smodels system [23], which theoretically can be used to
solve all NP problems.

There are a number of reasons for us to choose Smodels
in our research work. First, Smodels comes with useful tools
and is more user-friendly in comparison to SAT solvers. For
example, Smodels’ Lparse grounds a function-free program
efficiently and, thus, allows the user to write compact
programs. The grounding process embodies a number of
preprocessings in constraint handling. Second, Smodels has
both language constructs and an efficient implementation
for the support of optimization. In Smodels, one can ask for
optimal solutions, e.g., by specifying

maximize a1 ¼ w1; . . . ; an ¼ wn½ �;

where wis are integers representing the weights of the
atoms to their left. This specification forces Smodels to
generate only those stable models in which the sum of the
weights of atoms ais is maximized (Smodels does this by
branch-and-bound). When all the weights are 1 (i.e., wi ¼ 1
for all i 2 ½1::n�), Smodels computes the stable models
containing a maximum number of ais. Built-in constructs
for optimization can also be found in SAT solvers such as
Maxsat [5] and MaxSolver [26].

More importantly, Smodels is among a very few ASP/SAT
solvers that come with a full implementation of the more
powerful constraint propagation mechanism called lookahead:
At any choice point, each (unassigned) atom is assumed a

142 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 1, JANUARY-MARCH 2007

truth value and, if a contradiction is derived, the atom is
assigned with the opposite truth value. In this way, the
truth value of such an atom is obtained by constraint
propagation, not by search. Due to the high overhead, no
leading SAT solvers (such as Sato [28], zChaff [19], etc.)
employ this mechanism. Nevertheless, we found in our
experiments that lookahead is particularly effective in
solving the MQC problem under our formulation. This
was verified by running our programs in Smodels, with
lookahead turned off, on the data sets used in our
experiments. Typically, the average running time without
lookahead on the data sets of 15 taxa is 20 minutes, while
the same problem instances can be solved within seconds.
Theoretically, without lookahead, the constraint propaga-
tion in Smodels is similar to unit propagation in SAT solvers.
The computational results showed that lookahead in
Smodels prunes a significant amount of search space and,
as a result, can make search hundreds of times faster. In
fact, we believe this is one of the main factors that makes
our programs outperform the other approaches. In this
regard, one of the contributions of this paper is the
identification of a practical constraint program for which
the high overhead of lookahead pays off.

Constraint satisfaction is another formalism for solving
constraint problems. The MQC problem under the ultra-
metric matrix representation can also be formulated as a
constraint satisfaction problem (CSP) and solved by a CSP
solver. Popular CSP solvers are currently almost all based on
Constraint Logic Programming (CLP), where the user has to
carefully exercise the “control” of a program. In comparison,
the ASP and SAT users only need to express the logic correctly
and let the solver search for solutions. With regard to search
efficiency, all CSP solvers employ the constraint propagation
mechanism that enforces arc-consistency during search,

which requires that any instantiation of one variable can
be consistently extended to any of the unassigned variables.
It is known that lookahead (as implemented in Smodels) is
more powerful than arc-consistency in pruning the search
space [27]. A more general notion of consistency is called
k-consistency, which, roughly speaking, requires that any
k� 1 consistent instantiation can be extended to all kth
variables. In the literature, higher-level consistencies are
usually considered too expensive. For the constraint
propagation mechanism (known as singleton arc-consis-
tency) that has the same pruning power as lookahead, while
the former is considered too expensive, the latter has been a
key to our success.

4.2 Problem Formulation

Based on Theorem 3.5, the MQC problem can be described
as shown in Table 1 (note that all the values are integers). In
the following, we will show how this problem description
can be presented to Smodels so that the answer sets
computed by Smodels correspond to the solutions to the
MQC problem.

We now give explanations on the ultrametric constraints
and quartet consistency constraints and then write them
into ASP rules. By definition, for every triplet ði; j; kÞ, where
i; j; k are distinct and satisfy 1 � i; j; k � n, among Mði; jÞ,
Mðj; kÞ, and Mði; kÞ, there are two equal values that must be
greater than the third value. We denote the ultrametric
constraint involving these three indices as ultraði; j; kÞ. It is
easy to verify that an ultrametric constraint ultraði; j; kÞ is
satisfied if and only if one of the following three constraints
is satisfied:

. Mði; jÞ ¼Mði; kÞ > Mðj; kÞ,

. Mði; jÞ ¼Mðj; kÞ > Mði; kÞ, or

. Mðj; kÞ ¼Mði; kÞ > Mði; jÞ.

WU ET AL.: QUARTET-BASED PHYLOGENY RECONSTRUCTION WITH ANSWER SET PROGRAMMING 143

TABLE 1
Formulating the MQC Problem into a Constraint Programming Problem

In the answer set program, we use atom mði; j; kÞ to denote
the fact that Mði; jÞ ¼ k. The following cardinality rule
expresses that Mði; jÞ has exactly one solution:

1fmði; j; kÞ j k ¼ 1; 2; . . . ; n� 1g1:

Similarly, we use atom equalði; j; k; ‘Þ to denote the fact that
Mði; jÞ ¼Mðk; ‘Þ:

equalði; j; k; ‘Þ mði; j; 1Þ;mðk; ‘; 1Þ
equalði; j; k; ‘Þ mði; j; 2Þ;mðk; ‘; 2Þ
.
equalði; j; k; ‘Þ mði; j; n� 1Þ;mðk; ‘; n� 1Þ

and atom gterði; j; k; ‘Þ to denote the fact that
Mði; jÞ > Mðk; ‘Þ:

gterði; j; k; ‘Þ mði; j; 2Þ;mðk; ‘; 1Þ
gterði; j; k; ‘Þ mði; j; 3Þ;mðk; ‘; 1Þ
gterði; j; k; ‘Þ mði; j; 3Þ;mðk; ‘; 2Þ
gterði; j; k; ‘Þ mði; j; 4Þ;mðk; ‘; 1Þ
.
gterði; j; k; ‘Þ mði; j; n� 1Þ;mðk; ‘; n� 2Þ:

It follows that an ultrametric constraint ultraði; j; kÞ can be
written as:

ultraði; j; kÞ equalði; j; i; kÞ; gterði; j; j; kÞ
ultraði; j; kÞ equalði; j; j; kÞ; gterði; j; i; kÞ
ultraði; j; kÞ equalði; k; j; kÞ; gterði; k; j; kÞ:

According to Corollary 3.3, one quartet topology
½si; sjjsk; s‘� is satisfied if and only if at least one of the
following two constraints is satisfied:

. Mði; kÞ > Mði; jÞ and Mðj; ‘Þ > Mði; jÞ;

. Mði; kÞ > Mðk; ‘Þ and Mðj; ‘Þ > Mðk; lÞ.
Such a quartet consistency constraint quarði; k; j; ‘Þ can be
written as:

quarði; j; k; ‘Þ gterði; k; i; jÞ; gterðj; ‘; i; jÞ
quarði; j; k; ‘Þ gterði; k; k; ‘Þ; gterðj; ‘; k; ‘Þ:

Finally, we can use a maximize rule to find a stable
model that contains a maximum number of quartet
consistency atoms quarði; j; k; ‘Þ:

maximize quarði; j; k; ‘Þ ¼ 1 j ½si; sj j sk; s‘� 2 Q
� �

:

In the supplementary materials (http://www.cs.ualberta.
ca/~ghlin/src/WebTools/quartet.php), we have made
available a complete answer set program formulated for a
small instance of the MQC problem. The instance was
constructed out of a pairwise distance matrix on 10 taxa,
where the quartet topologies were inferred using the four-
point method [8]. The solution to the answer set program by
Smodels is also included, from which a phylogeny was
written and can be readily fed to TreeView (http://
taxonomy.zoology.gla.ac.uk/rod/treeview.html).

5 STRATEGIES TO SPEED UP THE COMPUTATION

We present three speedup strategies specific to our answer
set program in the following three subsections, each of
which takes advantage of some structural properties of the

optimal phylogeny. Most of these strategies should be
implemented prior to writing the actual answer set
program, while being considered as preprocessing to
produce extra constraints for the writing. Our experimental
results show that they all help reduce the running time
significantly.

5.1 Breaking the Symmetry

Symmetry breaking might not be quartet specific but, rather,
ultrametric matrix specific. The observation is that an
ultrametric matrix M is symmetric and, therefore, instead of
putting the symmetry as constraints, we would rather use it to
reduce the number of atoms in the answer set program. To
this purpose, only Mði; jÞ with 1 � i < j � n becomes a
variable, which gives only 1

2 ðn2 � nÞ variables at the end.
Consequently, we remove all symmetry constraints from the
constraint set. Similarly, we would only consider ultrametric
constraints ultraði; j; kÞ such that 1 � i < j < k � n and
quartet consistency constraints quarði; j; k; ‘Þ such that
1 � i < j � n, 1 � k < ‘ � n, and 1 � i < k � n.

5.2 Reducing the Domain Sizes

We define the height of an internal node v in a rooted
phylogeny to be the maximum number of internal nodes
along any path from v to a leaf node in the subtree rooted at
v, including v. For any rooted phylogeny T , one natural
ultrametric labeling scheme is to label each internal node by
its height. Therefore, the domain of variables Mði; jÞ for the
target ultrametric matrix can be represented as f1; 2; . . . ; hg,
where h denotes the height of the root. What complicates
the search of the target ultrametric matrix is that we do not
know the exact value for h in advance and have to set h to
be ðn� 1Þ, which is the largest possible number of internal
nodes for a rooted phylogeny on n taxa. Observe that the
quartet consistencies with respect to a rooted phylogeny
will not change when the root of the phylogeny is changed.
We can take advantage of this property to move the root to
a proper place so that the height of the root becomes less
than ðn� 1Þ.
Theorem 5.1. Given a set Q of quartet topologies on taxon set
S ¼ fs1; s2; . . . ; sng, there exists a rooted phylogeny T that
satisfies a maximum number of quartet topologies in Q and the
height of the root is at most dn2e.

Proof. The proof is done by rerooting phylogeny T , if the
height of its root is greater than dn2e. We first discard the
root of T to get an unrooted phylogeny denoted as T 0.
Then, we root T 0 on the edge that is in the middle of a
longest path in T 0. In such a way, we obtain a new rooted
phylogeny T 0 that satisfies the same number of quartet
topologies as T and every path from the root to a leaf
node contains at most dn2e internal nodes. tu

From Theorem 5.1, we conclude that, in the search for a
target ultrametric matrix, we can limit the domain of each
matrix variable Mði; jÞ to f1; 2; . . . ; dn2eg. Furthermore, since
setting the matrix variable Mði; jÞ to be the height of
LCAðsi; sjÞ is an ultrametric labeling, we can further reduce
the domain of Mði; jÞ if we have knowledge of the height of
LCAðsi; sjÞ. For instance, if the height of LCAðsi; sjÞ is
greater than k1 (k1 � 1) and less than k2 (k2 � n

2) in an

144 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 1, JANUARY-MARCH 2007

optimal phylogeny, we can set the domain for Mði; jÞ to be
fk1 þ 1; k1 þ 2; . . . ; k2 � 1g. The rest of this section is
devoted to obtaining better k1 and k2 to narrow down the
search space.

For this purpose, we need to introduce some definitions.
Note that, before we move on to the writing of the answer
set program, we may take advantage of some existing fast
quartet-based phylogeny construction heuristics (such as
hypercleaning [3]) to get a near-optimal phylogeny on the
input set Q. The number of quartet topologies in Q

conflicting with this near-optimal phylogeny is an upper
bound on the number of quartet errors for the MQC
problem. In other words, suppose the near-optimal phylo-
geny dissatisfies Eapx quartet topologies in Q, then any
optimal phylogeny will dissatisfy at most Eapx quartet
topologies in Q. Based on the value of Eapx, we can calculate
an upper bound on the number of quartet errors involving
taxon si or sj.

A local conflict [13] is a set of three incompatible quartet
topologies on a subset of exactly five taxa. For example,
f½sa; sbjsc; sd�; ½sa; scjsb; se�; ½sa; scjsd; se�g is a local conflict. If
we change the quartet topology on fsa; sb; sc; sdg from
½sa; sbjsc; sd� to ½sa; scjsb; sd� in Q, then the above local conflict
is resolved. One may check that there are multiple ways to
resolve a local conflict and our search goal can be rephrased
as to change a minimum number of quartet topologies to
resolve all local conflicts.

Given Q, we generate the list of all local conflicts on Q

and let C denote the number of local conflicts involving
none of si and sj. From Lemma 6 in [13], we need to change
at least C

6ðn�4Þ quartet topologies to resolve these C local
conflicts. Therefore, an upper bound on the number of
quartet errors on ðsi; sjÞ is Ui;j ¼ Eapx � C

6ðn�4Þ . In other
words, to get an optimal phylogeny, we need to change at
most Ui;j quartet topologies involving si or sj or both.

For a pair of taxa ðsi; sjÞ and a quartet topology q

involving both of them (and two other taxa), q conflicts with
pair ðsi; sjÞ if q is not in the form of ½si; sjj�; ��. For pair
ðsi; sjÞ, “ignoring the difference of si and sj” means we treat
si and sj as a common taxon. For two quartet topologies on
fsi; sa; sb; scg and fsj; sa; sb; scg, respectively, if ignoring the
difference of si and sj gives rise to one unique quartet
topology, then these two quartet topologies are exchangeable
on pair ðsi; sjÞ; otherwise, they are nonexchangeable on pair
ðsi; sjÞ. Let p1 denote the number of quartet topologies not
conflicting with ðsi; sjÞ, p2 denote the number of quartet
topologies conflicting with ðsi; sjÞ, p3 denote the number of
exchangeable pairs on ðsi; sjÞ, and p4 denote the number of
nonexchangeable pairs on ðsi; sjÞ. We need the following
lemma to bound these p-values:

Lemma 5.2. Given a complete quartet topology set Q on taxon set
S ¼ fs1; s2; . . . ; sng and a phylogeny T on S rooted as in the
proof of Theorem 5.1, if the height of LCAðsi; sjÞ in T is k,
then the number of taxa in the subtree rooted at LCAðsi; sjÞ is
at least kþ 1 but at most minfn� k; 2kg.

Proof. We exclude the case where LCAðsi; sjÞ is the root.
Since the height of LCAðsi; sjÞ is k and the subtree rooted
at LCAðsi; sjÞ is binary, there are at least kþ 1 but at most
2k taxa in the subtree.

Since phylogeny T is rooted at the middle of its
longest path, there is at least one internal node outside of
the subtree and its height is at least k� 1. It follows that
there are at least k taxa outside of the subtree. In other
words, there are at most n� k taxa in the subtree. This
proves the lemma. tu

Theorem 5.3. Given a complete quartet topology set Q on taxon

set S ¼ fs1; s2; . . . ; sng and a phylogeny T on S rooted as in

the proof of Theorem 5.1, if the height of LCAðsi; sjÞ in T is k

(1 < k � dn2e), then the following inequalities hold:

. n�k
2

� �
� p1 � k�1

2

� �
þ n�k�1

2

� �
;

. ðk� 1Þðn� k� 1Þ � p2 � k�2
2

� �
þ ðk� 2Þðn� kÞ;

. p3 � n�k
3

� �
;

. p4 � k�2
3

� �
þ k�2

2

� �
ðn� kÞ,

where k ¼ minfn� k; 2kg.
Proof. Since the height of LCAðsi; sjÞ in T is k, there are at

least n� k taxa outside of the subtree Tij rooted at

LCAðsi; sjÞ. Therefore,

n� k
2

� 	
� p1 and p3 �

n� k
3

� 	
:

Let Sij denote the taxon set in Tij and let m ¼ jSijj � 2.

For each quartet fsi; sj; sa; sbg, if one of sa and sb is in Sij

and another one is in S � Sij, then the quartet topology

for fsi; sj; sa; sbg must conflict on ðsi; sjÞ. Therefore, if the

quartet topology for fsi; sj; sa; sbg does not conflict on

ðsi; sjÞ, then sa and sb should be both in Sij or both in

S � Sij. In other words,

p1 �
m

2

� �
þ n� 2�m

2

� 	

¼ 2m2 � ð2n� 4Þmþ ðn� 2Þðn� 3Þ
2

:

Since k� 1 � m � k� 2 � n� k� 2, one can check that

the right-hand side of the above inequality gets its

maximum when m ¼ k� 1 and, subsequently,

p1 �
k� 1

2

� 	
þ n� k� 1

2

� 	
:

This proves the first and the third items.
For the same reason, we conclude that

m

2

� �
þmðn� 2�mÞ � p2 � mðn� 2�mÞ;

the right-hand side gets its minimum ðk� 1Þðn� k� 1Þ
when m ¼ k� 1, and the left-hand side gets its

maximum k�2
2

� �
þ ðk� 2Þðn� kÞ when m ¼ k� 2. This

proves the second item.
Given two quartet topologies on fsi; sa; sb; scg and

fsj; sa; sb; scg, respectively, if they are nonexchangeable,
then one of the following two cases happens: 1) All three
taxa sa; sb; sc are in Sij or 2) two taxa of sa; sb; sc are in Sij
and the third one is in S � Sij. Therefore,

WU ET AL.: QUARTET-BASED PHYLOGENY RECONSTRUCTION WITH ANSWER SET PROGRAMMING 145

p4 �
m

3

� �
þ m

2

� �
ðn� 2�mÞ

¼ mðm� 1Þð�2mþ 3n� 8Þ
6

;

where the right-hand side gets its maximum when

m ¼ k� 2. In other words,

p4 �
k� 2

3

� 	
þ k� 2

2

� 	
ðn� kÞ:

This proves the fourth item. tu
With the upper bound Ui;j on the number of quartet

errors on pair ðsi; sjÞ computed, we can calculate an upper

bound k2 and a lower bound k1 according to Theorem 5.3

for the height of LCAðsi; sjÞ or, equivalently, the domain of

ultrametric variable Mði; jÞ can be narrowed down to ½k1; k2�
(from the trivial one ½1; dn2e� by Theorem 5.1).

5.3 Reducing the Number of Taxa

Given a taxon set S, a bipartition is a pair of nonempty

subsets ðX;Y Þ such that X [Y ¼ S and X \ Y ¼ ;. For a

phylogeny T on S, removing one edge e from T gives rise to

two subtrees, of which the taxon sets Xe and Ye form a

bipartition ðXe; YeÞ. In this sense, we do not distinguish the

edge e and the bipartition ðXe; YeÞ. Reducing the number of

taxa is done through proving that some bipartition ðX;Y Þ is

in an optimal phylogeny. Consequently, one may turn to

constructing optimal phylogenies on X [y and x [Y ,

respectively, where x and y are the supertaxa to replace X

and Y , and then combine them into an optimal phylogeny

on S (through overlapping x with y). We note that we are

interested in nontrivial cases where jXj � 2 and jY j � 2 (a

dynamic programming based on a similar idea can be

found in [2]). We also remark that the extent of success of

this optimization strategy depends on the quality of the

quartet topology set Q. In what follows, we first give a

general definition of exchangeability, then provide a

theorem with which we can detect bipartitions (or,

equivalently, edges) in an optimal phylogeny.
Given a bipartition ðX;Y Þ of the taxon set S with

jXj ¼ ‘ � 2 and jY j ¼ n� ‘ � 2, define QðX;Y Þ to be the set

of quartet topologies in the form of ½x; x0jy; y0�, where

x; x0 2 X and y; y0 2 Y . If the quartet topology q 2 Q for

fx; x0; y; y0g is not in the form of ½x; x0jy; y0�, then q is a

quartet error across the bipartition ðX;Y Þ (or across the

edge) [4]. Let p1 ¼ jQðX;Y Þ �Qj, which is the number of

quartet errors across ðX;Y Þ. Fixing three taxa from Y , the

subset of ‘ quartet topologies from Q, where each quartet

topology contains these three taxa and another taxon fromX

is called an ‘-subset with respect to ðX;Y Þ. Clearly, there are,

in total, n�‘
3

� �
such ‘-subsets. For an ‘-subset, if ignoring the

difference of the taxa fromX gives rise to one unique quartet

topology, then this ‘-subset is exchangeable onX; otherwise, it

is nonexchangeable on X. Let p2 and p3 denote the number of

nonexchangeable ‘-subsets on X and the number of non-

exchangeable ðn� ‘Þ-subsets on Y , respectively.

Lemma 5.4. Given n ðn > 1Þ positive integers a1; a2; . . . ; an
such that

Pn
i¼1 ai ¼ m, then

P
1�i<j�n aiaj �

ðn�1Þð2m�nÞ
2 and

the equality holds if and only if ai ¼ m� ðn� 1Þ for some i.

Proof. Note that, since ais are all positive and
Pn

i¼1 ai ¼ m,
there must be m � n. We prove the lemma by induction
on n. When n ¼ 2, a1a2 ¼ �a2

1 þma1 � m� 1 and the
equality holds if and only if a1 ¼ m� 1 or a2 ¼ m� 1.

Assume
P

1�i<j�k aiaj �
ðk�1Þð2m�kÞ

2 and the equality
holds if and only if ai ¼ m� ðk� 1Þ for some i. We have

X
1�i<j�kþ1

aiaj

¼
X

1�i<j�k
aiaj þ akþ1

X
1�i�k

ai

�ðk� 1Þ½2ðm� akþ1Þ � k�
2

þ akþ1ðm� akþ1Þ

¼ � a2
kþ1 þ ðm� kþ 1Þakþ1 þmðk� 1Þ � kðk� 1Þ

2

�ðm� 1Þk� kðk� 1Þ
2

¼ k½2m� ðkþ 1Þ�
2

:

Also note that the equality holds if and only if akþ1 ¼ 1
(second inequality becomes equality) and ai ¼ m� k for
some 1 � i � k (first inequality becomes equality) or
akþ1 ¼ m� k (second inequality becomes equality and it
forces ai ¼ 1 for all other i). This proves the lemma. tu

Theorem 5.5. Let Q be a complete set of quartet topologies
on an n-taxon set S. For a bipartition ðX;Y Þ of S,
where jXj ¼ ‘ � 2 and jY j ¼ n� ‘ � 2, let p1 be the
number of quartet errors in Q across ðX;Y Þ, p2 be the
number of nonexchangeable ‘-subsets on X, and p3 be the
number of nonexchangeable ðn� ‘Þ-subsets on Y . If
2p1 þ ð‘� 1Þp2 þ ðn� ‘� 1Þp3 � ð‘� 1Þðn� ‘� 1Þ, then
bipartition ðX;Y Þ must be in an optimal phylogeny.

Proof. With respect to ðX;Y Þ, we divide set Q into five
disjoint parts:

. Part 1: Every quartet topology is on four taxa in Y .

. Part 2: Every quartet is on one taxon in X and
three taxa in Y .

. Part 3: Every quartet is on two taxa in X and two
taxa in Y .

. Part 4: Every quartet is on three taxa in X and one
taxon in Y .

. Part 5: Every quartet is on four taxa in X.

Furthermore, the quartet topologies in Part 2 are
grouped into a list of ‘-subsets on X; the quartet
topologies in Part 4 are grouped into a list of ðn�
‘Þ-subsets on Y . In the following, we will prove that, for
any phylogeny T1 on S which does not contain edge
ðX;Y Þ, we can construct a new phylogeny T2 on S out of
T1 that contains edge ðX;Y Þ and satisfies at least as many
quartet topologies as T1 satisfies.

Let TX and TY denote phylogenies on X and Y ,
respectively. We define an operation to join TX and TY
to produce a phylogeny on S as follows: Pick one
edge e in TX and create a degree-2 node ve at the
middle of the edge; pick one edge f in TY and create a
degree-2 node vf at the middle of the edge as well;
connect ve and vf via an edge. Such an operation joins

146 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 1, JANUARY-MARCH 2007

tree TX to tree TY at edge f using edge e. Fig. 2 shows
an example of construction T2 out of T1, where X ¼
fs1; s2; s3g and Y ¼ fs4; s5; s6; s7; s8g. From T1, trimming
all the leaf nodes in Y , we get a phylogeny T1X on X
(Fig. 2b); similarly, we get a phylogeny T1Y on Y as
shown in Fig. 2c. Through joining T1X to T1Y at the edge
incident at s4 using the edge incident at s3, we get
another phylogeny T2.

We will be constructing a new phylogeny T2 out of T1

following the way described in the last paragraph. It

follows that, for each exchangeable ‘-subset in Part 2, if

T1 satisfies all its quartet topologies, then T2 also satisfies

all of them, no matter which edge in T1X is used for

joining to T1Y . Conversely, if T1 satisfies none of them, T2

satisfies none of them either. However, if T1 satisfies ‘0 of

them for some ‘0 such that 0 < ‘0 < ‘, then T2 satisfies

either all (‘) of them or none of them, depending on
which edge in T1X is used for joining to T1Y . Therefore,

we can always find an edge in T1X for joining to T1Y such

that T2 satisfies at least as many quartet topologies in

exchangeable ‘-subsets in Part 2 as T1 satisfies. Similarly,

we can always find an edge in T1Y for joining to T1X such

that T2 satisfies at least as many quartet topologies in

exchangeable ðn� ‘Þ-subsets in Part 4 as T1 satisfies.

Another obvious fact according to the way we construct
T2 is that T1 and T2 satisfy the same number of quartet

topologies in Part 1 and Part 5.

For each nonexchangeable ‘-subset in Part 2, from the

way T2 is constructed, at least one of the ‘ quartet

topologies is satisfied by T2; similarly, for each non-

exchangeable ðn� ‘Þ-subset in Part 4, at least one of the

ðn� ‘Þ quartet topologies is satisfied by T2. It follows

that, among the quartet topologies in the nonexchange-

able ‘-subsets in Part 2, T1 can satisfy at most ð‘� 1Þp2

more quartet topologies than T2; among the quartet
topologies in the nonexchangeable ðn� ‘Þ-subsets in

Part 4, T1 can satisfy at most ðn� ‘� 1Þp3 more quartet

topologies than T2.

Now, we look from another angle to compare the
number of quartet topologies in Part 3 that are satisfied
by T1 and T2. Let us review the configuration of
phylogeny T1X in T1. First of all, T1X is on ‘ taxa and,
thus, contains exactly 2‘� 3 edges. Second, in T1, taxa in
Y are connected as (maximal) subtrees whose roots are
connected to edges in T1X . Suppose there are ‘0 such
subtrees and the numbers of taxa in them are
m1;m2; . . . ;m‘0 , respectively (see Fig. 3a). These values
have the following properties:

. ‘0 > 1 since, otherwise, T1 would contain edge
ðX;Y Þ.

. mi > 0, for every i: 1 � i � ‘0.

. m1 þm2 þ . . .þm‘0 ¼ n� ‘.
Consider the ith subtree and the jth subtree with their

taxon sets Si and Sj. If their roots are connected to a

common edge in T1X , then the number of quartet errors

in T1 across ðX;Y Þ, each of which involves one taxon in

Si and one taxon in Sj, is at least mimjð‘� 1Þ; if their

roots are connected to separated edges in T1X , then the

number of quartet errors in T1 across ðX;Y Þ, each of

which involves one taxon in Si and one taxon in Sj, is at

least mimjðn1n2 þ n1n3 þ . . .þ ns�1nsÞ, where nx denotes

the size of the taxon set of the xth (maximal) subtree

whose root is connected to the path connecting the roots

of the ith subtree and the jth subtree (see Fig. 3b).

Exactly the same argument says:

. s > 1.

. nx > 0, for every x: 1 � x � s.

. n1 þ n2 þ . . .þ ns ¼ ‘.
Therefore, by Lemma 2,

n1n2 þ n1n3 þ . . .þ ns�1ns �
ðs� 1Þð2‘� sÞ

2
� ‘� 1:

Consequently, the total number of quartet errors in T1

across ðX;Y Þ is at least

ð‘� 1Þ
X

1�i<j�ðn�‘Þ
mimj � ð‘� 1Þ ð‘

0 � 1Þð2ðn� ‘Þ � ‘0Þ
2

� ð‘� 1Þðn� ‘� 1Þ:

Since there are p1 quartet errors in Q across ðX;Y Þ, at

least ð‘� 1Þðn� ‘� 1Þ � p1 quartet topologies in Part 3 of

Q are not satisfied by T1. In other words, among the

WU ET AL.: QUARTET-BASED PHYLOGENY RECONSTRUCTION WITH ANSWER SET PROGRAMMING 147

Fig. 2. Construction of a new phylogeny T2 from T1. (a) T1. (b) T1X. (c) T1Y . (d) T2.

Fig. 3. (a) The maximal subtrees on taxa in Y whose roots are

connected to edges in T1X . (b) The maximal subtrees on taxa in X

whose roots are connected to the path connecting the roots of the ith
and the jth subtrees.

quartet topologies in Part 3, T2 can satisfy at least ð‘�
1Þðn� ‘� 1Þ � 2p1 more quartet topologies than T1.

In summary, as long as

ð‘� 1Þðn� ‘� 1Þ � 2p1 � ð‘� 1Þp2 þ ðn� ‘� 1Þp3;

the constructed T2 satisfies at least the same number of
quartet topologies in Q as T1 satisfies. This proves the
theorem. tu
When jXj ¼ 2 and ðX;Y Þ is in a phylogeny T , we call

those two taxa in X siblings in T . In this special case, p3 ¼ 0
and we have the following corollary:

Corollary 5.6. Let Q be a complete set of quartet topologies on an
n-taxon set S. For a pair of taxa si and sj, let p1 denote the
number of quartet errors in Q across bipartition ðfsi; sjg; S �
fsi; sjgÞ and p2 denote the number of nonexchangeable
2-subsets on fsi; sjg. If 2p1 þ p2 � n� 3, then si and sj
must be siblings in an optimal phylogeny.

6 COMPUTATIONAL RESULTS

To investigate how well the proposed ASP method works in
practice, we ran it on several synthetic data sets to examine
the strength of the speedup strategies and to make
comparisons to three other exact algorithms for the MQC
problem in the literature and to one of the currently best
heuristics for the MQC problem. Note that we did not
examine the quality of the solution of the MQC problem in
the biological context, though experiments on real data sets
could be set up for this purpose. The reported experimental
results were done on a computer with an AMD 2.2 GHz
Opteron processor and 2.5 GB main memory.

6.1 Synthetic Data Set Generation

For a set of n taxa, we generated a phylogeny by recursively
joining randomly selected subtrees (again, through one
edge in each subtree). The subtrees were selected from a set
that initially contained only the one-node subtrees, each
corresponding to a given taxon. When two subtrees were
joined, we replaced them in the set by the newly generated
subtree. This procedure yielded a phylogeny on n taxa and
we derived the set of quartet topologies from the
phylogeny. We then arbitrarily picked p percent of the n

4

� �
quartet topologies and altered the topologies to make them

potential quartet errors. We remark that this process only
guarantees that the number of quartet errors in the data set is
upper bounded by p

100
n
4

� �
, but not necessarily equal to since

some combinations of quartet topology alterations might give
rise to a new compatible set of quartet topologies. We
generated data sets defined by a pair ðn; pÞ. We used quartet
error percentage p ¼ 1%; 5%; 10%; 15%; 20%; 25%; 30%. For
every pair ðn; pÞ, we generated 10 data sets. The following
reported results are the average performance over them.

6.2 Experiments on the Speedup Strategies

The following experiments were intended to find out how
much the speedup strategies proposed in Section 5
contribute to the efficiency of our method. The symmetry
breaking strategy obviously can reduce the running time
significantly since they can eliminate many variables. Fig. 4
shows the average domain sizes of variables Mði; jÞ with
respect to the size of input taxon set after we applied
Theorems 5.1 and 5.3. From this figure, we can see that the
smaller the quartet error rate was, the smaller domains that
we were able to generate were.

Given a taxon set S and a bipartition type ðk; n� kÞ, there
are n

k

� �
possible bipartitions of the type. Therefore, testing

all the possible bipartitions is essentially infeasible. We only
tested all possible bipartitions with k ¼ 2, i.e., all possible
sibling pairs. For bipartitions with k > 2, we used the
hypercleaning algorithm [3] to generate a set of candidate
bipartitions first and used Theorem 5.5 on those biparti-
tions. For a data set of 20 taxa, hypercleaning finished in
less than 2 minutes, which is short compared to the running
time of our ASP method. Fig. 5 shows the computational
results on the 10 data sets of 20 taxa with and without the
application of edge detection strategy (Corollary 5.6,
hypercleaning plus Theorem 5.5). Intuitively, the smaller
the quartet error rate is, the more bipartitions could be
discovered. In our experiments, we found that, when the
quartet error rate is less than 1 percent, we could find all the
sibling pairs in the optimal phylogeny.

6.3 Comparisons among Exact Algorithms

A fundamental idea in constraint programming systems
like Smodels is that of constraint propagation during
search, which, given some atoms whose truth values are
already determined, quickly forces some of the remaining

148 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 1, JANUARY-MARCH 2007

Fig. 4. Average domain lengths after domain reduction (n is the number

of taxa).

Fig. 5. The performance of Theorem 5.5 and Corollary 5.6 on data sets

of 20 taxa.

atoms to commit truth values. In this way, the search space
could be pruned significantly. In Smodels, a powerful
mechanism of lookahead is also employed, which assigns an
atom a truth value without search if assuming the opposite
truth value for the atom leads to a contradiction.

It is clear that the main search mechanisms in answer set
programming systems like Smodels are distinguished from
the existing exact algorithms for the MQC problem. There-
fore, it is interesting to do an experimental comparison
among the exact algorithms proposed previously for the
MQC problem, including the dynamic programming algo-
rithm by Ben-Dor et al. [2] (denoted as DP), the fixed-
parameter algorithm by Gramm and Niedermeier [13]
(denoted as GN), and our answer set program (denoted as
ASP). For the GN algorithm, we used k ¼ p

100�
n
4

� �
as the

first upper bound on the number of quartet errors.
When n � 10, all three algorithms could solve the MQC

problem within several minutes. Fig. 6 gives the compar-
isons of running times on a logarithmic scale for data sets of
15 and 20 taxa, which shows that our ASP method
outperformed the other two algorithms in all data sets.
The computational time of the DP algorithm is independent
of the quartet error rate. However, the performance of our
ASP method and the GN algorithm is affected by quartet
error rate. Fig. 6b shows that the running time of the
GN algorithm grows too fast to be feasible, whereas our
ASP method has a much slower running time growth with
respect to quartet error rate and can solve the MQC
problem more efficiently when the error rate is less than
10 percent.

When n > 20, the DP algorithm could not generate an
optimal phylogeny within 7 days. GN could generate an
optimal phylogeny if the number of quartet errors was very
small compared to the total number of input quartet
topologies. In [13], computational results on data sets of
up to 50 taxa with up to 150 quartet errors are reported.
Fig. 7 compares the running times of the GN algorithm and
our ASP method on the data sets of 20 to 80 taxa with
100 quartet errors. It also gives the computational times of
our ASP method when the quartet error percentage is
1 percent. We note that our ASP method is similar to the

GN algorithm in that, for fixed values of quartet error
number, it requires a shorter computational time on data
sets on a larger number of taxa. This is mainly due to the
practical speedup strategies proposed in Section 5, which
become more effective when the quartet error rate is small.
In our experiments, when n > 30, the GN algorithm could
not finish the computation in 7 days even when the quartet
error rate was only 1 percent, whereas our method could
produce optimal phylogenies quickly and the computa-
tional time was almost in polynomial scale. These results
show that some of the hard instances that were not reported
to be solved by the GN and DP algorithms can now be
solved by our method.

6.4 Experiments on the Use of Hypercleaning

The heuristic hypercleaning developed by Berry et al. [3] is

an extension of the quartet cleaning methods. Given a

bipartition (edge) ðX;Y Þ of the taxon set S, we define QðX;Y Þ
to be the set of quartet topologies in the form of ½x; x0jy; y0�,
where x; x0 2 X and y; y0 2 Y . The normalized distance from

Q to ðX;Y Þ is defined as �ðQ; ðX;Y ÞÞ ¼ 4jQðX;Y Þ�Qj
jXjðjXj�1ÞjY jðjY j�1Þ ,

which basically measures the extent of disagreement of Q if

edge ðX;Y Þ is included in the output phylogeny. The

WU ET AL.: QUARTET-BASED PHYLOGENY RECONSTRUCTION WITH ANSWER SET PROGRAMMING 149

Fig. 6. The running times of three exact algorithms for the MQC problem. (a) Running times for data sets of 15 taxa. (b) Running times for data sets

of 20 taxa.

Fig. 7. The running times (in a logarithmic scale) of GN and ASP on data

sets with small numbers of quartet errors.

hypercleaning algorithm computes the following sets of

edges in order:

BestðQ;mÞ ¼ ðX;Y Þj�ðQ; ðX;Y ÞÞ � 2m

jXjjY j

 �
;

m ¼ 0; 1; 2; . . . :

Note that the edges in BestðQ; 0Þ are also in BestðQ; 1Þ
based on their definitions. It has been shown that edges in

BestðQ; 0Þ and BestðQ; 1Þ are always compatible with each

other, while edges from BestðQ;mÞwith greater values of m

might not be compatible with edges in BestðQ; 0Þ and

BestðQ; 1Þ. The hypercleaning uses edges in BestðQ; 0Þ and

BestðQ; 1Þ to form a base set of edges in the final phylogeny

and tries to add edges in BestðQ; 2Þ to it greedily to grow

the phylogeny and, if the phylogeny is not resolved yet,

then tries to add edges in BestðQ; 3Þ to it greedily to grow

the phylogeny, and so on, until a resolved phylogeny is

formed. The overall running time of the hypercleaning

algorithm is Oðn5fð2mÞ þ n7fðmÞÞ, where fðmÞ ¼ 4m2ð1þ
2mÞ4m and m denotes the greatest value to which the set

BestðQ;mÞ has to be computed in the execution.
Although, in theory, the edges in BestðQ; 0Þ may not be

in the optimal phylogeny for the MQC problem, we show

that they have a high probability of being included in the

optimal phylogeny. Suppose an edge ðX;Y Þ (jXj � jY j) in

BestðQ; 0Þ is not in the optimal phylogeny, where the

optimal edge should be ðX0; Y 0Þ. Then, the taxon set ðX �
X0Þ [ðY � Y 0Þ contains at least two distinct taxa, si and sj,
where si 2 X and sj 2 Y . For three taxa, si, sj and another one
sk 2 X, there are at least n=2 quartets, namely, fsi; sj; sk; slg
for all sl 2 Y , that would make the same wrong prediction for
the topologies of fsi; sj; sk; slg, i.e., ½si; skjsj; sl�. This is very
unlikely in the quartet inference on real data, even in our
synthetic data set. For example, the probability of uniformly
randomly choosing those n=2 quartet topologies to change is
less than 1

n3 as we are working on a complete set of quartet
topologies. For each quartet topology, the probability of
changing to the specified topology is 1=2 as we have two
alternatives. Then, the overall probability of making ðX;Y Þbe
not included in the optimal phylogeny is less than 1

n3 � ð12Þ
n
2,

which is very small.
Table 2 collects average numbers of edges in BestðQ; 0Þ

and BestðQ; 1Þ found in different test data sets. Experiments
on small instances, e.g., up to 20 taxa, showed that all the
edges in BestðQ; 0Þ and BestðQ; 1Þ were included in the
optimal phylogenies. However, the number of edges in
BestðQ; 0Þ and BestðQ; 1Þ is greatly affected by the quartet
error rate. When the quartet error rate exceeds 5 percent, we
could rarely get an edge in BestðQ; 1Þ. Fig. 8 compares the
running times of our answer set program on data sets with
1 percent quartet errors, with and without using hyper-
cleaning as a preprocessing. It can be seen that, through
including the edges in BestðQ; 1Þ, the computational time of
our answer set program is dramatically reduced, i.e., at a
logarithmic scale.

7 CONCLUSIONS AND FUTURE WORK

We have proposed a new equivalent formulation of the
MQC problem in answer set programming and a number of
optimization strategies for this new formulation. The
formulation, together with our speedup strategies, might
lead us to a new perspective of the problem as our
experiments on a number of simulated data sets showed
that the proposed method outperformed previously pro-
posed exact algorithms for the MQC problem. Although, in
the worst case, our program still takes exponential time, it
allows the incorporation of the domain knowledge into the
search process, where the search space can be significantly

150 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 1, JANUARY-MARCH 2007

TABLE 2
The Average Numbers of Edges in BestðQ; 0Þ and BestðQ; 1Þ

Fig. 8. The running times of ASP on data sets of 1 percent quartet error

rate, with and without using hypercleaning as a preprocessing.

reduced by constraint propagation in ASP. In the ideal case,
we might be able to encode the target matrix variables such
that the exponential behavior becomes a rare occurrence
and the average behavior is acceptable for practical use.

We note that there are a few existing works on
phylogeny construction using ASP, however, in which the
phylogeny construction problems considered are not
quartet-based. For example, Brooks et al. encoded the
Maximum Compatibility problem by an answer set program.
In the Maximum Compatibility problem, a set of characters
of taxa are given and the goal is to construct a phylogeny
with a maximum number of compatible characters [6]. The
encoded answer set program is run by Cmodels [17], which
in turn calls the SAT solver zChaff [19] for the computation
of answer sets. Gent et al. encoded another phylogeny
construction problem by an answer set program, where the
problem is, given a set of rooted triples of taxa, to compute a
rooted phylogeny such that a maximum number of them
are satisfied [12]. A rooted triple is of form ðði; jÞ; kÞ that
says, in the output rooted phylogeny, LCAðsi; sjÞ must be a
descendant of LCAðsi; skÞ. It should be noted that, although
this encoding gives an interesting perspective of the
phylogeny construction problem, the problem is known to
be solved in polynomial time [12]. In both [6] and [12], the
constructed phylogenies are rooted binary trees and, in the
encoding, they are ultrametric too.

One of the most important future works we want to
pursue is to improve our encoding scheme to further speed
up the computation. Our goal is set for solving harder
instances containing 80 taxa within a day and, thus, to
provide another fast way to optimal phylogeny construc-
tion. The ultimate goal is to fully explore the structured
properties of the MQC problem and to design a quartet-
specific constraint programming solver.

8 SUPPLEMENTAL MATERIALS

The complete set of synthetic data sets that were used in our
experiments are available on the Web at http://
www.cs.ualberta.ca/~ghlin/src/WebTools/quartet.php.
From the same Web page, readers may download our
source code (and a link to the Smodels). Also available is a
sample answer set program formulated for a small instance
of the MQC problem. The instance was constructed out of a
pairwise distance matrix on 10 taxa, where the quartet
topologies were inferred using the four-point method. The
solution to the answer set program by Smodels is also
included, from which a phylogeny was written and can be
readily fed to TreeView.

ACKNOWLEDGMENTS

Gang Wu’s research was partially supported by NSERC and
CFI. Jia-Huai You’s research was partially supported by
NSERC and a grant from NSFC under project 60573009.
Guohui Lin’s research was partially supported by NSERC
and CFI.

REFERENCES

[1] H. Bandelt and A. Dress, “Reconstructing the Shape of a Tree from
Observed Dissimilarity Data,” Advances in Applied Math., vol. 7,
pp. 309-343, 1986.

[2] A. Ben-Dor, B. Chor, D. Graur, R. Ophir, and D. Pelleg, “From
Four-Taxon Trees to Phylogenies: The Case of Mammalian
Evolution,” Proc. Fourth Ann. Int’l Computing and Combinatorics
Conf. (RECOMB), pp. 9-19, 1998.

[3] V. Berry, D. Bryant, T. Jiang, P. Kearney, M. Li, T. Wareham, and
H. Zhang, “A Practical Algorithm for Recovering the Best
Supported Edges of an Evolutionary Tree,” Proc. 11th Ann.
ACM-SIAM Symp. Discrete Algorithms (SODA), pp. 287-296, Jan.
2000.

[4] V. Berry, T. Jiang, P.E. Kearney, M. Li, and H.T. Wareham,
“Quartet Cleaning: Improved Algorithms and Simulations,” Proc.
Seventh Ann. European Symp. Algorithms (ESA ’99), pp. 313-324,
1999.

[5] B. Borchers and J. Furman, “A Two-Phase Exact Algorithm for
MAX-SAT and Weighted MAX-SAT Problems,” J. Combinatorial
Optimization, vol. 2, pp. 299-306, 1999.

[6] D.R. Brooks, E. Erdem, J.W. Minett, and D. Ringe, “Character-
Based Cladistics and Answer Set Programming,” Proc. Seventh
Int’l Symp. Practical Aspects of Declarative Languages (PADL ’05),
pp. 37-51, 2005.

[7] M.C.H. Dekker, “Reconstruction Methods for Derivation Trees,”
master’s thesis, Vrije Univ., Amsterdam, 1986.

[8] P. Erdos, M. Steel, L. Szekely, and T. Warnow, “A Few Logs
Suffice to Build (Almost) All Trees (Part 1),” Random Structures and
Algorithms, vol. 14, pp. 153-184, 1999.

[9] P.L. Erdos, M.A. Steel, L.A. Szekely, and T.J. Warnow, “Inferring
Big Trees from Short Sequences,” Proc. Int’l Congress on Automata,
Languages, and Programming, pp. 827-837, 1997.

[10] J. Felsenstein, “The Number of Evolutionary Trees,” Systematic
Zoology, vol. 27, pp. 27-33, 1978.

[11] M. Gelfond and V. Lifschitz, “The Stable Model Semantics for
Logic Programming,” Proc. Fifth Int’l Conf. Logic Programming,
pp. 1070-1080, 1988.

[12] I.P. Gent, P. Prosser, B.M. Smith, and W. Wei, “Supertree
Construction with Answer Set Programming,” Proc. Ninth Int’l
Conf. Principles and Practice of Constraint Programming (CP ’03),
pp. 837-841, 2003.

[13] J. Gramm and R. Niedermeier, “A Fixed-Parameter Algorithm for
Minimum Quartet Inconsistency,” J. Computer and System Sciences,
vol. 67, pp. 723-741, 2003.

[14] D. Gusfield, Algorithms on Strings, Trees, and Sequences. Cambridge,
1997.

[15] T. Jiang, P.E. Kearney, and M. Li, “Orchestrating Quartets:
Approximation and Data Correction,” Proc. 39th Symp. Foundations
of Computer Science, pp. 416-425, 1998.

[16] T. Jiang, P.E. Kearney, and M. Li, “Some Open Problems in
Computational Molecular Biology,” J. Algorithms, vol. 34, pp. 194-
201, 2000.

[17] Y. Lierler and M. Maratea, “Cmodels-2: SAT-Based Answer Set
Solver Enhanced to Non-Tight Programs,” Proc. Seventh Int’l Conf.
Logic Programming and Nonmonotonic Reasoning (LPNMR ’04),
pp. 346-350, 2004.

[18] F. Lin and Y. Zhao, “ASSAT: Computing Answer Sets of a Logic
Program by SAT Solvers,” Artificial Intelligence, vol. 157, pp. 115-
137, 2004.

[19] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an Efficient SAT Solver,” Proc. 38th Design
Automation Conf. (DAC ’01), pp. 530-535, 2001.

[20] I. Niemelä, “Logic Programs with Stable Model Semantics as a
Constraint Programming Paradigm,” Annals of Math. and Artificial
Intelligence, vol. 25, pp. 241-273, 1999.

[21] D. Pelleg, “Algorithms for Constructing Phylogenies from
Quartets,” master’s thesis, Israel Inst. of Technology, 1998.

[22] S. Sattath and A. Tversky, “Additive Similarity Trees,” Psychome-
trika, vol. 42, pp. 319-345, 1977.

[23] P. Simons, “Smodels: An Implementation of the Stable Model
Semantics for Logic Programs,” http://www.tcs.hut.fi/Software
/smodels/, 2000.

[24] M. Steel, “The Complexity of Reconstructing Trees from Qualita-
tive Characters and Subtrees,” J. Classification, vol. 9, pp. 91-116,
1992.

[25] K. Strimmer and A. von Haeseler, “Quartet Puzzling: A Quartet
Maximum-Likelihood Method for Reconstructing Tree Topolo-
gies,” Molecular Biology and Evolution, vol. 13, pp. 964-969, 1996.

[26] Z. Xing and W. Zhang, “MaxSolver: An Efficient Exact Algorithm
for (Weighted) Maximum Satisfiability,” Artificial Intelligence,
vol. 164, pp. 47-60, 2005.

WU ET AL.: QUARTET-BASED PHYLOGENY RECONSTRUCTION WITH ANSWER SET PROGRAMMING 151

[27] J. You, G. Liu, L. Yuan, and C. Onuczko, “Lookahead in Smodels
Compared to Local Consistencies in CSP,” Proc. Eighth Int’l Conf.
Logic Programming and Nonmonotonic Reasoning (LPNMR ’05),
pp. 266-278, 2005.

[28] H. Zhang, “SATO: An Efficient Propositional Prover,” Proc. Int’l
Conf. Automated Deduction, pp. 272-275, 1997.

Gang Wu received the MSc degree from the
Information Communication Institute of Singa-
pore, Nanyang Technological University, in
2002. He is a PhD student of computing science
at the University of Alberta. His research
interests include phylogeny construction, an-
swer set programming, and constraint program-
ming. He is a student member of the IEEE
Computer Society.

Jia-Huai You received the PhD degree from the
University of Utah in 1985. He is a professor in
the Department of computing science at the
University of Alberta and has worked in a faculty
position at Rice University. His main research
interests are in logic-based programming para-
digms, including answer set programming, pro-
positional satisfiability, and various approaches
to constraint programming.

Guohui Lin received the PhD degree in
theoretical computer science from the Chinese
Academy of Sciences in 1998. He joined the
University of Alberta as an assistant professor of
computing science in July 2001. His research
interests include bioinformatics, computational
biology, and algorithm design and analysis, and
his recent work focuses on algorithmic develop-
ments for protein structure determination and
comparison, whole genome phylogenetic analy-

sis, RNA structure prediction and comparison, and putative gene finding.
He is a member of the ACM and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

152 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 1, JANUARY-MARCH 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

