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Abstract—A nearly complete sequential resonance assignment is a key factor leading to successful protein structure determination

via NMR spectroscopy. Assuming the availability of a set of NMR spectral peak lists, most of the existing assignment algorithms first

use the differences between chemical shift values for common nuclei across multiple spectra to provide the evidence that some pairs

of peaks should be assigned to sequentially adjacent amino acid residues in the target protein. They then use these connectivities as

constraints to produce a sequential assignment. At various levels of success, these algorithms typically generate a large number of

potential connectivity constraints and it grows exponentially as the quality of spectral data decreases. A key observation used in our

sequential assignment program, CISA, is that chemical shift residual signature information can be used to improve the connectivity

determination and, thus, dramatically decrease the number of predicted connectivity constraints. Fewer connectivity constraints lead to

fewer ambiguities in the sequential assignment. Extensive simulation studies on several large test data sets demonstrated that CISA is

efficient and effective compared to the three most recently proposed sequential resonance assignment programs, RANDOM, PACES,

and MARS.

Index Terms—NMR sequential resonance assignment, spin system, spin system sequential connectivity, spin system residual

signature, spin system assignment.

Ç

1 INTRODUCTION

PROTEIN functions are largely determined by the three-
dimensional structure that the protein folds into.

Besides computer-aided structure prediction through
homology modeling and threading, Nuclear Magnetic
Resonance (NMR) spectroscopy and X-ray crystallography
are the key experimental technologies for structure deter-
mination. Within NMR spectroscopy, a nearly complete
sequential assignment of resonance peaks is crucial to
successful structure determination and structure dynamics
study because minor errors in the assignment might lead to
huge structural gaps. The sequential resonance assignment
for small proteins can be easy, but becomes complicated
and time-consuming for large proteins. Despite many great
efforts in the development of automated sequential assign-
ment methods [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], the assignment remains unsatisfactory in
general. Even worse, most of these methods typically fail to
output a structurally meaningful assignment when the
quality of the protein spectral data is low. Nonetheless, key
observations accumulated throughout these development
efforts have been mostly agreed upon by NMR spectro-
scopists and should be taken advantage of in the next
generation of automated assignment program develop-
ment. Our current work could be regarded as one such

further effort. In this work, we propose combining the
chemical shift residual signature information into connec-
tivity determination to improve the sequential resonance
assignment.

Assuming familiarity with protein NMR spectroscopy
[15], we briefly describe the sequential resonance assign-
ment problem from a computational point of view. The
input data for the assignment are the target protein
sequence and a set of NMR spectral resonance peak lists,
each of which is identified from an NMR spectrum. One
resonance peak is essentially a vector of chemical shifts that
records a nuclear magnetic interaction among (normally
two or three) nuclei separated by a small number of
covalent bonds in the target protein. For example, an HSQC
peak list contains 2D peaks, each of which is a pair of
chemical shifts for an amide proton and the directly
attached nitrogen; an HNCA peak list contains 3D peaks,
each of which is a triple of chemical shifts for a nitrogen, the
directly adjacent amide proton, and a carbon alpha from the
same or the preceding amino acid residue. For ease of
presentation, an HNCA peak containing a chemical shift of
the intraresidue carbon alpha is referred to as an intraresidue
peak; otherwise, it is referred to as an interresidue peak. The
goal of sequential resonance assignment is to map all of
these resonance peaks to their corresponding nuclei. By this
mapping, the nuclei in the target protein will be labeled
with chemical shift values which enable the local structural
restraint extraction for the three-dimensional structure
calculation.

The underlying principle for the sequential resonance
assignment is that the chemical shift values for any specific
nucleus are the same across multiple spectra. However,

336 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 3, JULY-SEPTEMBER 2007

. The authors are with the Department of Computing Science, University of
Alberta, Edmonton, Alberta T6G 2E8, Canada.
E-mail: {xiangwan, ghlin}@cs.ualberta.ca.

Manuscript received 14 Dec. 2005; revised 8 May 2006; accepted 6 Nov. 2006;
published online 22 Jan. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-0144-1205.
Digital Object Identifier no. 10.1109/TCBB.2007.1047.

1545-5963/07/$25.00 � 2007 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM



taking the experimental errors into consideration, these
values are typically not the same but only fall in a very
narrow range (in other words, within some tolerance
threshold). Therefore, for every observed chemical shift
value, identifying its corresponding nucleus in the target
protein is nontrivial. Fortunately, with the availability of a
large amount of spectral data for proteins of known
3D structures, such as the BioMagResBank (http://
www.bmrb.wisc.edu), the chemical shift distribution for
each nucleus (referenced by the atom and the amino acid
residue type) can be statistically collected. Subsequently, for
the observed chemical shift value, the likelihood that its
corresponding nucleus resides in a certain type of amino
acid residue can be estimated. Such a likelihood is referred
to as the residual signature information of the chemical
shift. For a resonance peak, its residual signature informa-
tion is defined as the sum of the residual signature
information of individual chemical shifts therein. Further-
more, since several resonance peaks share their chemical
shifts for the amide proton and the directly adjacent
nitrogen, they can be grouped together to form a super-
vector of chemical shifts, which is referred to as a spin
system. Similarly, a spin system has its residual signature
information defined as the sum of the residual signature
information of all individual chemical shifts therein. One of
the most recent efforts on effectively quantifying spin
system residual signature information to produce a scoring
scheme for assigning spin systems to amino acid residues
was presented in [16] and is employed in this work.

A perfect scoring scheme is expected to always assign a
highest probability of each spin system mapping to its
corresponding amino acid residue, while significantly
lowering probabilities of mapping to other residues in the
target protein. In practice, however, scoring schemes have
limited strength due to a number of facts. For example,
Phenylalanine and Tyrosine residues always have very
close chemical shift values for amide proton, nitrogen,
carbon alpha, carbon beta, hydrogen alpha, and carbonyl
nuclei. The scoring schemes based solely on chemical shifts
would not be able to quantify all differences perfectly.
Besides this, multiple copies of one type of amino acid
residue in the target protein also complicate the assignment
process by producing a large number of “equivalent”
assignments achieving the objective optimum. This occurs
because scoring schemes usually can only differentiate
amino acid residue types, but not the residual sequential
positions in the target protein. Therefore, to achieve nearly
complete assignments, more knowledge is needed.

The second piece of information that enables the success
of sequential resonance assignment is the connectivity
between spin systems, to be detailed in the following.
Recall that interresidue peaks contain chemical shifts for an
amide proton and the directly adjacent nitrogen and the
carbon alpha in the preceding residue. In other words, the
carbon alpha (and the carbon beta in our experiments)
chemical shifts appear as intraresidue in one spin system
and appear as interresidue in another spin system. This
observation tells us that, if these two spin systems are
correctly identified, we would be able to draw the
conclusion that they must be assigned to two sequentially

adjacent amino acid residues in the target protein. Such a
two-spin system is called a connectivity pair. In the literature,
there are many proposals on how to take advantage of the
connectivity information in the sequential resonance assign-
ment, such as [1], [17], [4], [18], [7], [19], [9], [10], [13], [14],
and many others.

Among the existing sequential resonance assignment
programs that use connectivity information, some of them
assume deterministic connectivity information [1], [17], [4],
[7], [19]. That is, in these programs, connectivities are used
as hard constraints on the feasible assignments and,
consequently, every spin system can start at most one
connectivity pair and end at most one connectivity pair.
Spin systems that are chained together through connectivity
pairs form into a (directed) path and a maximal path of this
type is referred to as a string of spin systems. Essentially,
this deterministic connectivity information gives rise to a set
of disjoint strings and some isolated spin systems (referred
to as singletons, which might be regarded as strings of
length 1). Subsequently, the sequential assignment seeks an
optimal mapping of the strings to their corresponding
peptide segments in the target protein. Note that the
mapped peptide segments in the target protein must be
nonoverlapping and the optimum is with respect to the spin
system residual signature information. A mathematical
model, the Constrained Bipartite Matching (CBM), which
describes such a global optimization problem, is presented
in [8]. Note that, in CBM, when all connectivities are
identified, all spin systems will be chained into a single
string for which the sequential assignment becomes trivial.
In practice, connectivity identification is nontrivial and the
general CBM problem is NP-hard [8]. A number of
computational methods, such as simulated annealing [17],
generic algorithm [1], branch and bound [19], deterministic
search [7], and heuristic search [20], have been adopted to
tackle this optimization problem.

There are other models proposed for the sequential
assignment [18], [9], [10], [12], [14], [13] in which the
connectivity information is determined along the way to
assignment, typically by using the differences between
chemical shift values for common nuclei. As a result, mostly
due to the noise and chemical shift degeneracy, connectivity
is no longer a binary decision but is probabilistic and one
spin system could start more than one connectivity pair
(many in general) and could end more than one connectiv-
ity pair. This method of connectivity determination essen-
tially gives rise to a spin system connectivity graph in which
vertices represent spin systems, directed edges represent
connectivity pairs, and edge weights represent the prob-
abilities associated with the connectivities. The three most
recent representatives are PACES [9], MARS [14], and a
random-graph theoretic framework (which we abbreviate
as RANDOM) [13]. They all examine how connectivity can
be identified from spin systems and then used to both
greatly speed up the assignment process and to improve the
assignment accuracy at the same time. Essentially, after the
connectivity graph is constructed, PACES enumerates all of
the paths in the graph, RANDOM generates multiple
Hamiltonian paths in a randomized way using edge
probabilities proportional to their weights, and MARS
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examines all paths of a fixed length. A final set of
nonconflicting paths is picked as identified connectivities.
All three of these programs are run for many iterations to
output the best assignment. It is known that, because of
data degeneracy, the probability estimation for a connec-
tivity using chemical shift differences might not be accurate.
PACES, RANDOM, and MARS all employ tolerance thresh-
olds to cut off unlikely connectivities from the connectivity
graph. This process not only narrows down the search
space of connectivity, but also simplifies the connectivity
graph to make path enumeration/generation feasible. It is
worth pointing out that both PACES and MARS enumerate
all paths in the connectivity graph without using the edge
weights and the enumeration might not be feasible if the
graph is not sparse enough (see Section 3 for more
information). RANDOM avoids exhaustive enumeration
through multiple calls to Hamiltonian path/cycle genera-
tion in a randomized way, where the probability of
including an edge is set proportional to the edge weight.
RANDOM could recover the correct connectivities with a
high probability, theoretically, but the correct connectivities
are not necessarily all present in one Hamiltonian path
unless an extremely large number of paths is generated
(this, however, could be even more expensive than
exhaustive enumeration). PACES returns the identified
connectivities together with the assignment using the
TATAPRO residue typing scheme [6]; RANDOM calls to
Mapper [7] to return an assignment; MARS returns the
identified connectivities together with the assignment using
its own z-score-based scoring scheme.

In this paper, we propose performing the Connectivity
Information determination and Sequential Assignment
simultaneously (acronym CISA, pronounced as “kiss-a”)
by combining the chemical shift (or spin system) residual
signature information into the connectivity determination.
The main distinction between CISA and the existing
programs PACES, RANDOM, and MARS is the use of spin
system residual signature information to progressively
grow and validate the paths in the connectivity graph. In
this way, a large number of connectivities are filtered out
and, thus, would not be examined due to the low quality of
their resulting assignments. Consequently, the paths found
by CISA might not necessarily be maximal paths in the
connectivity graph, but they all have outstanding mapping
positions in the target protein. The advantages of this
growing-and-assignment proposal, in terms of both effi-
ciency and effectiveness, are demonstrated in the rest of the
paper. In Section 2, we present in detail the steps of
operations in CISA. Section 3 presents our extensive
experimental results. In Section 4, we further discuss our
experimental results, as well as the advantages and
potential disadvantages of CISA.

2 METHODS

2.1 Input and Preprocessing

The inputs to CISA are the target protein sequence and a set
of its NMR peak lists. CISA does not require any specific
NMR spectra as long as they are sufficient for the sequential
assignment purpose. For ease of exposition and to make a

fair comparison with PACES, RANDOM, and MARS, we
assume the availability of spectral peaks containing
chemical shifts for carbon alpha, carbon beta, and carbonyl,
besides the HSQC peak list. In the first step, peaks from
multiple spectra are anchored at their HSQC peaks to form
spin systems, using user-defined chemical shift tolerance
thresholds for the amide proton and the directly adjacent
nitrogen chemical shifts. The default values for these two
thresholds are 0.025 ppm and 0.35 ppm [4], respectively.
However, the users may adjust them according to the
quality of the given spectral data. One guideline for setting
the thresholds is to ensure that the correct combinations of
peaks for a particular spin system are always generated, even
in the case of severe amide degeneracy. The output of this step
is a set of spin systems. Note that the number of spin systems
might not be equal to, and is usually less than, the number of
residues in the target protein since spin systems for some
amino acid residues, for example, Proline, might not be
observed (missing spin systems). A typical resultant spin
system is in the form of a multidimensional vector of chemical
shifts (HN

i , Ni, C�
i , C�

i , Ci, C�
i�1, C�

i�1, Ci�1) in which the indices
indicate that, if this spin system is mapped to the ith residue
in the target protein, then the last three chemical shifts
correspond to the nuclei in its preceding residue. Note that
some of the entries might be missing.

In the second step, a scoring scheme is employed to
weight the mapping between each spin system and every
amino acid residue in the target protein. In the current
implementation, the naive Bayesian scoring scheme devel-
oped in [16] is adopted, where PsiPred [21] is applied to
predict the secondary structure for the residue. Roughly
speaking, for each chemical shift in the spin system, the
chemical shift values for the corresponding nucleus in the
residue are retrieved from the BioMagResBank (http://
www.bmrb.wisc.edu) and used as a prior distribution to
estimate the probability that the observed chemical shift is
associated with the residue residing in the predicted
secondary structure. More precisely, there is an error
window � and, for the observed chemical shift value cs, we
count the number of chemical shift values in the BioMa-
gResBank that fall in the range ðcs� �; csþ �Þ for this
combination of residue type aa and secondary structure
type ss. Denote this number as Nðcs j aa; ssÞ. The prob-
ability is computed as P ðcs j aa; ssÞ ¼ Nðcs j aa;ssÞ

Nðaa;ssÞ , where
Nðaa; ssÞ is the total number of the chemical shift values
collected in the BioMagResBank. It then takes the absolute
logarithm of the probability as the residual signature
information. Summing up the individual intraresidue
chemical shift residual signature gives the weight for the
mapping between the spin system and the amino acid
residue in the target protein. Before moving on to the next
stage of connectivity determination, each spin system is
treated as a singleton.

2.2 Connectivity Graph

The connectivity relationships between spin systems are
formulated into an edge-weighted directed graph, referred
to as a connectivity graph. For every spin system, there is a
vertex in the graph (in the rest of the paper, vertex and spin
system are used interchangeably). Here, we describe the use
of C� and C� chemical shift differences to determine the
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connectivities between spin systems. In our experiments,
we have used another combination which contains C�, C�,
and C chemical shift differences. Besides these two, other
combinations of chemical shifts are also possible and their
connectivity graphs can be similarly built. For two spin
systems

vi ¼ ðHN
i ;Ni;C

�
i ;C

�
i ;C

�
i�1;C

�
i�1Þ

and

vj ¼ ðHN
j ;Nj;C

�
j ;C

�
j ;C

�
j�1;C

�
j�1Þ;

if both jC�
i � C�

j�1j � �� and jC�
i � C�

j�1j � �� hold, then vi
can map to the preceding residue to the one vj maps to and,
therefore, there is an edge from vi to vj with its weight
calculated as

1

2

jC�
i � C�

j�1j
��

þ
jC�

i � C�
j�1j

��

 !
: ð1Þ

Similarly, if both jC�
j � C�

i�1j � �� and jC�
j � C�

i�1j � �� hold,
then there is an edge from vj to vi with its weight calculated as

1

2

jC�
j � C�

i�1j
��

þ
jC�

j � C�
i�1j

��

 !
:

Here, both �� and �� are predetermined chemical shift
tolerance thresholds, which are typically set to 0.2 ppm and
0.4 ppm [9], [13], [14], though minor adjustments are
sometimes necessary to ensure a sufficient number of
connectivities. If neither case occurs, then there is no
connectivity between vi and vj. We note that (1) is not
necessarily the only weighting function. In fact, some other
functions on the chemical shift differences could be adopted
to weight the edges, for example, the one as suggested in
RANDOM.

In the other combination that contains C�, C�, and
C chemical shift differences, it is required that at least two
out of the following three conditions hold: jC�

i � C�
j�1j � ��,

jC�
i � C�

j�1j � ��, and jCi � Cj�1j � �, and the weight of the
edge from vi to vj is evaluated analogously as in (1).

After all pairs of vertices (spin systems) have been
examined, we finish the construction of the connectivity
graph. It is worth pointing out that some correct connectiv-
ities might not be present in the connectivity graph (false
negatives), while some wrong ones might be present (false
positives). We use #CE to denote the number of correct edges
in the connectivity graph and #WE to denote the number of
wrong edges. Both of these quantities tell, to some extent,
how good the tolerance thresholds are. In the perfect case,
#CE is one less than the number of spin systems subtracted
by the number of strings and #WE is 0. For every vertex in
the connectivity graph, the number of edges coming out is
called its out-degree. The average out-degree of the con-
nectivity graph, denoted as Ave.OD, captures the complex-
ity (or the density) of the connectivity graph.

2.3 String Growing

With the connectivity graph constructed, PACES, RANDOM,
and MARS all proceed to enumerate the paths in the graph,
with or without using the edge weights. These paths are

then evaluated by examining their mapping positions in the
target protein. We choose a different approach to determine
the connectivities and perform the assignment, that is, to
grow a path only when the path has a good mapping
position in the target protein, which is evaluated by the
naive Bayesian scoring scheme: For the path under
consideration, all edges coming out of the ending spin
system are sorted in a nonincreasing order of their weights.
For the edge at the head of the order, the temporary
extended path (called a child path) is formed and its best
mapping position on the target protein can be found (via a
linear search). The mapping score of this child path, defined
as the average mapping score of all the spin systems in the
path, is calculated and compared with the mapping scores
of all existing paths (including the parent path) to decide
whether to accept the extension or not. It is observed that a
sufficiently long path is able to detect its succeeding spin
system by taking advantage of the discerning power of the
naive Bayesian scoring scheme [16]. Therefore, it is expected
that using mapping scores to filter the path extensions
would give rise to much fewer potential paths for further
consideration and eventually avoid exhaustive search, such
as is done in PACES and MARS. On the other hand, such
path growing accompanied by mapping position verifica-
tion would also help avoid the blind search such as is done
in RANDOM, where the quality of a Hamiltonian path is
assessed only toward the end (through a call to Mapper).

In more detail, CISA constructs in every iteration one
most reliable string out of the connectivity graph through
the five steps described below (cf., the high-level descrip-
tion of the steps of operations in CISA in Fig. 1). CISA
terminates when the connectivity graph becomes empty
and returns the constructed strings, together with their
mapping positions in the target protein. In each iteration,
CISA starts with an Open List (OL) of paths and seeks to
expand the one with the best mapping score. The OL can
allocate a maximum of S paths (in our experiments, S ¼ 60)
and, thus, lower quality paths are unlikely to be included.
The detailed value set for S (and the value for L defined in
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the following OL Initialization stage) depends on the
computer memory size. In our case, the experiments were
done on a typical desktop with 1 Gbyte RAM. We found
that S can be chosen from a value in the range [40, 80] (L
can be chosen from a value in the range [4, 8]) without
affecting the performance significantly. We chose to go with
the median value of 60 (6 for L, respectively). The
subsequently generated child paths are appended to OL if
their mapping scores are high enough and there is room in
OL or if their mapping scores are higher than that of some
existing path in OL. Another list, the Complete List (CL), is
kept in CISA to save those paths that cannot be expanded
further. At the time when OL becomes empty, high quality
paths with their mapping positions are extracted out of CL,
where the conflicts are resolved in a greedy fashion, to be
detailed in the following.

OL Initialization. Let G denote the connectivity graph.
The vertices with in-degree 0 are referred to as root vertices.
Starting from a root vertex, a breadth first search (BFS) is
applied to find all simple paths with a predefined length L
(in our experiments, L ¼ 6). Back edges associated with the
BFS tree are not included in any path. As a result, some
found paths might be shorter than L. For every path, the
algorithm finds its best mapping position in the target
protein and calculates its mapping score. If there is room in
OL or its mapping score is higher than that of some path
already stored in OL, then it is added (and, in the latter case,
the path with the lowest mapping score is removed from
OL). The search is done for all root vertices in G. The paths
stored in OL are sorted in the nonincreasing order of their
mapping scores.

Path Growing. In this step, CISA tries to grow the top
ranked path stored in OL. Denote this path as P and
remove it from OL. Denote the ending spin system in P as s.
Sort the edges coming out of s in G in the nonincreasing
order of their weights. Note that these edges should not be
back edges with respect to the BFS tree associated with
path P . Consider the first edge in the order, say, ðs; tÞ, that
indicates a possible extension of path P to t. For this
potential child path, CISA finds its best mapping position in
the target protein and calculates the mapping score. If the
mapping score is greater than 90 percent of the score of
path P , the child path is considered as an extension. If there
is room in OL or its mapping score is higher than that of
some path already stored in OL, then the child path is
added to OL (and, in the latter case, the path with the least
mapping score is removed from OL). Edge ðs; tÞ is removed
from the order and CISA continues to consider the edge at
the head of the order. If the mapping score is less than
90 percent of the score of path P , there is no more extension
for path P to be considered even though there are still edges
in the order or even if there is room in OL. Finally, if there is
no child path of P that has been added to OL, P is
nonexpandable and is added to CL. CISA proceeds to
consider the top ranked path in OL iteratively and the
growing process is done when OL becomes empty.

CL Filtering. Let P denote the path of the highest
mapping score (the tie is broken to the longest path) in CL.
Other paths in CL with both length and score less than
90 percent of the length and score of path P are discarded

from further consideration. The remaining paths are
considered to contain reliable connectivities and will be
examined further.

Connectivity Filtering. The paths in CL might not
necessarily be compatible with each other. Note that two
long correct paths are very unlikely to be chained together
by a wrong edge to form a longer path since, in any case, at
least one of them must be incorrectly mapped to a position
in the target protein and such a mapping would bring down
the mapping score significantly. Therefore, one naive
conclusion could be made that incorrect connectivities
would predominantly be close to the ends of the path,
while internal connectivities of the paths are largely correct.
Our extensive simulation study confirmed this conclusion,
which leads to a corollary that correct connectivities must
occur on the paths much more frequently than the wrong
connectivities. It follows that only those edges occurring in
at least 90 percent of the paths in CL are chosen as reliable
connectivities and that the other edges are removed from
further consideration. These removed edges are returned to
the connectivity graph for the next iteration consideration.
We remark that the occurrence frequency threshold can be
adjusted by users, but we found 90 percent to be the most
appropriate throughout our experiments.

The Most Reliable String Finding. At this last stage, the
paths in CL are regarded to contain only reliable connectiv-
ities. The longest one of them is the string found in this
iteration. Denote this path as P . The best mapping position
for path P on the target protein is also known. If this
mapping conflicts with the mappings of strings determined
in the previous iterations, then P has to be broken down by
cutting off those conflicting spin systems. Only the longest
nonconflicting portion of P , again denoted as P , becomes
the string found in this iteration. The spin systems on P are
removed from the connectivity graph G, as well as the
edges incident to/from them. Note that if there is no spin
system from P assigned, then P is discarded from G. If the
remaining connectivity graph is still nonempty, CISA
proceeds to the next iteration. Otherwise, it terminates
and reports the assignment, i.e., the strings it found and
their mapping positions in the target protein.

2.4 Implementation

All components of CISA are written in the C/C++
programming language and can be compiled on both Linux
and Windows systems. They can be obtained separately or
as a whole package through the corresponding author.

3 EXPERIMENTAL RESULTS

We have designed four experiments to test CISA and to
compare it with RANDOM and MARS. These four experi-
ments are designed so as to reflect different aspects of CISA
and to make fair comparisons. Note that we originally
included PACES in our comparison, but, due to the fact that
manual adjustments are required in PACES in every
iteration in order to obtain the final assignment [9] and
we were not able to conduct such manual adjustments to
push PACES to the maximal performance, we chose not to
report PACES results by us in this paper.
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The first experiment is on 12 protein data sets, each of
which was simulated from real protein NMR data depos-
ited in the BioMagResBank (http://www.bmrb.wisc.edu).
These 12 proteins do not have solved structures and, thus,
would not bias the chemical shift signature information [8],
[16]. In these data sets, chemical shifts for amide proton HN,
the directly attached nitrogen N, carbon alpha C�, and
carbon beta C� are included. The use of this typical
combination of chemical shifts is to make fair comparisons
with RANDOM, which is designed to use the same
combination of chemical shifts (in fact, the combination is
used by Mapper [7] and RANDOM calls Mapper for the
final assignment). MARS was also run on the data sets for
extra comparison. Note that MARS does not specify any
preference on the chemical shift combinations.

The second experiment is on 10 out of the 12 protein data
sets used in the first experiment, where two were left out
because they do not have carbonyl C chemical shifts. That
is, in these 10 protein data sets, carbonyl C chemical shifts
are included in addition to the four types of chemical shifts
used in the first experiment. The purpose of this considera-
tion is to make comparisons with MARS on the use of
carbonyl C chemical shifts. Both CISA and MARS are
expected to perform better on this combination of five types
of chemical shifts.

The protein data sets used in the first two experiments
are from our previous study on the CBM problem. The third
experiment includes 22 proteins tested by PACES [9] and
one real data set, Zdom, that we obtained from the example
data sets provided by the AutoAssign [4] package. Un-
fortunately, we were not able to obtain for each protein the
exact simulated data set tested by PACES in [9]. Instead, the
included data sets were simulated from the corresponding
protein entries in the BioMagResBank according to the exact
simulation procedure described in [9] with exactly the same
parameter setting. All of these data sets are used to make
fair comparison with MARS again, but we included the
performance of multirun PACES on the simulated data sets
in [9] for reference. One should note that there are several
more data sets tested by PACES in [9] which do not require
simulations and subsequently were excluded from the third
experiment (note again that we do not have access to these
nonsimulated data sets). Note also that most of the included
proteins have been tested by MARS.

The fourth experiment is to demonstrate the computa-
tional speed of CISA and its overall performance. For this
purpose, all eligible protein entries deposited in the
BioMagResBank, which must have chemical shifts for HN,
N, C�, and C� for most of the residues, were simulated and
tested. We have collected a total of 360 such protein data
sets and note that, since it was essentially impossible to run
PACES, RANDOM, and MARS on them, only the perfor-
mance of CISA was collected.

Note that both RANDOM and MARS were run for
several iterations on each protein data set in their original
papers. In our experiments, they were run for the default
numbers of iterations as stated in their original papers,
respectively. MARS returns an assignment in which each
mapping between a spin system and a residue is associated
with either high, medium, or low reliability. We treated all

of them as reliable and, thus, the reported performance of
MARS could be an overestimation since, in general, only
high and medium reliability mappings by MARS are
considered confident.

We measure the performance of an assignment
program using precision and recall. The precision is defined
as the percentage of correctly assigned amino acids
among all of the assigned amino acids and the recall is
defined as the percentage of correctly assigned amino
acids among the amino acids that should be assigned
spin systems, respectively.

3.1 Experiment 1

In [8], 14 proteins were carefully chosen to form data sets
for simulation study on the proposed CBM model for
sequential assignments with deterministic adjacencies.
These proteins do not have solved atomic structures and
were not used to derive the naive Bayesian scoring scheme
adopted in our experiments. Among these proteins,
bmr4309 and bmr4393 data entries in the BioMagResBank
do not contain carbon beta chemical shifts and, thus, cannot
be used for our simulation purposes. As a result, only 12 of
them were included in our data sets, whose lengths range
from 66 to 215.

The data set construction is detailed as follows: For
each of these 12 proteins, we extracted its data entry from
BioMagResBank to obtain all the chemical shift values for
all HN, N, C�, and C�. For each amino acid residue,
except for Proline and Glycine, the corresponding four
chemical shifts together with C� and C� chemical shifts
from the preceding residue formed the initial spin
system. We excluded Proline residues in the simulation
because, in the real NMR data, there would not be spin
systems for Prolines since they do not have a HN atom.
Next, for each initial spin system, chemical shifts for
intraresidue C� and C� were perturbed by adding to them
randomized errors that follow independent normal dis-
tributions with 0 means and constant standard deviations.
We adopted the widely accepted tolerance thresholds for
C� and C� chemical shifts, which were �� ¼ 0:2ppm and
�� ¼ 0:4ppm, respectively [4], [9], [13], [14]. Subsequently,
the standard deviations of the normal distributions were set
to 0:2=2:5 ¼ 0:08ppm and 0:4=2:5 ¼ 0:16ppm, respectively.
These thus perturbed spin systems are the final spin
systems that form the data set. The 12 instances, with suffix
1, are summarized in Table 1. In order to test the robustness
of all four programs, we generated another set of 12
instances through doubling the tolerance thresholds (that is,
�� ¼ 0:4ppm and �� ¼ 0:8ppm). They, having suffix 2, are
also summarized in Table 1. Obviously, instances in the
second set are expected to be harder than the corresponding
ones in the first set, for example, indicated by the average
out-degrees of the vertices in their connectivity graphs.

All three programs—RANDOM, MARS, and CISA—-
were called to run on both sets of instances. Note that, in
order to run CISA, the intraresidue chemical shift values in
a final spin system were used to set up a score for mapping
the spin system to every amino acid residue in the target
protein, according to the naive Bayesian scoring scheme
[16]. The detailed assignment precision and recall by
RANDOM, MARS, and CISA are collected in Table 2, and
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plotted in Fig. 2. In summary, RANDOM achieved, on

average, 50 percent and 40 percent assignment precision

and recall on the first and the second sets of data sets,

respectively, where we followed the exact way of testing as

described in [13], in which 1,000 iterations for each instance

have been run. This performance of RANDOM matches

what is claimed in the original paper [13]. We treated all

output mappings by MARS as confident, not just those of

high and medium reliability. Therefore, the reported

performance of MARS could be an overestimation. Never-

theless, one can still see that CISA performed a little bit

better than MARS, though not on every protein data set
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TABLE 1
Twenty-Four Instances for the First Experiment

“Length” denotes the length of a protein, measured by the number of amino acid residues therein, “#CE” records the number of correct edges in the
connectivity graph, which ideally should be equal to the number of available spin systems subtracted by the number of strings, and “#WE” records
the number of wrong edges, respectively, “Avg.OD” records the average out-degree of the connectivity graph.

TABLE 2
Assignment Precision and Recall of RANDOM, MARS, and CISA in the First Experiment

The numbers in the parentheses record the wrong assignments by RANDOM, MARS, and CISA, respectively.



(Table 2). We have also run PACES on all of these data sets,
each for one iteration. The performance of this one-iteration
run was worse than both MARS and CISA. But, since
PACES was designed to take in spectral data, including
carbonyl C chemical shifts, and we were not able to
manually adjust the intermediate assignments for several
iterations, one-iteration run of PACES would certainly
underestimate the performance of multirun PACES and,
therefore, we chose not to report the detailed performance.

3.2 Experiment 2

The instances used in the second experiment are the same
set of proteins used in the first experiment, excluding
bmr4391 and bmr4316 because their data entries do not
have carbonyl C chemical shifts. We use this experiment to
compare MARS and CISA. For each residue, five chemical
shifts, HN, N, C�, C�, and carbonyl C, were included.
Similarly to the data set generation in the first experiment, a
spin system here additionally includes the chemical shifts
for the intraresidue carbonyl C and for the carbonyl C in the
preceding residue. C�, C�, and carbonyl C chemical shift
values were used to infer the connectivities. The tolerance

threshold for carbonyl C chemical shift was set at � ¼
0:15ppm and, subsequently, the standard deviation in the

error distribution was set at 0:15=2:5 ¼ 0:06ppm. For the

same reason as in the first experiment, we also generated

another set of more difficult instances to test the robustness

of all programs through doubling the tolerance thresholds.

These two sets of 20 instances are summarized in Table 3.
The detailed assignment precision and recall of MARS

and CISA on both sets of instances are collected in Table 4

and plotted in Fig. 3. Again, the reported performance of

MARS could be an overestimation since we treated all

output mappings by MARS as confident. Nevertheless, one

can still see that CISA performed a little bit better than

MARS, though not on every protein data set (Table 4). We

have also run PACES on all of these data sets, each for one

iteration, and we have observed the same tendencies as in

the first experiment.

3.3 Experiment 3

Our third experiment was specifically for the fair compar-
ison with MARS and additionally with PACES. This time
we chose to use the data sets tested in [9], most of which
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Fig. 2. Plots of assignment precision and recall for RANDOM, MARS, and CISA on two sets of instances with different tolerance thresholds, using C�

and C� chemical shifts for connectivity inference. (a) Assignment precision and recall on the first set of 12 instances in the first experiment.

(b) Assignment precision and recall on the second set of 12 instances in the first experiment.



have also been tested by MARS. We followed the exact
simulation procedure that uses three interresidue chemical
shifts C�, C�, and carbonyl C for connectivity graph
construction (tolerance thresholds were �� ¼ 0:2ppm,
�� ¼ 0:4ppm, and � ¼ 0:15ppm). However, note that we
did our own simulation because of the unavailability of the
simulated data sets from [9]. Our simulated data sets were
very close to the corresponding data sets in [9] in terms of
the number of missing spin systems. Overall, in these data
sets, the percentage of missing spin systems (false nega-
tives) ranged from 3 percent to 39 percent. We note that the
existence of missing spin systems challenged the robustness
of CISA in many ways. Note also that there was one real
instance Zdom included in this experiment, which we
obtained from AutoAssign package, and it does not need
simulation. Again, the detailed assignment accuracies of
MARS and CISA on these 23 instances are collected in
Table 5, and plotted in Fig. 4. In addition to these, we also
collected the performance of PACES on the corresponding
simulated instances included in [9] for reference (PACES
was run on Zdom for a single run and its performance was
much inferior compared with that on the other instances).
In summary, CISA performed slightly better than MARS;
PACES with multiple iterations on the simulated data sets
included in [9] were the best among the three, typically on
precision. That is, PACES didn’t make wrong assignments
when multiple runs were executed. We have also tested a
single run of PACES on our simulated data sets. Again due
to the fact that we did not know how to manually adjust to

execute multiple iterations to push PACES to the maximal
performance, the one-iteration run performance was often
much inferior to both MARS and CISA (the overall
precision was 83.5 percent and the overall recall was
73.6 percent). Nonetheless, we expect that, with the
expertise in manual adjustment, PACES should perform
equally well on our simulated data sets. We also expect that,
with similar manual adjustments, CISA could perform at
least as well as PACES as CISA also accepts manual
adjustments. The performance of PACES, MARS, and CISA
on the last data set Zdom might show some such hint.
Additionally, on the third group of the most difficult data
sets, CISA performed noticeably better than MARS (preci-
sion 83.0 percent versus 77.3 percent, recall 72.7 percent
versus 61.8 percent).

3.4 Experiment 4

The fourth experiment was designed to show the computa-
tional efficiency of CISA and its overall performance in
terms of assignment precision. To this purpose, we
simulated all eligible protein entries deposited in the
BioMagResBank using the default tolerance thresholds.
We chose to use the chemical shift combination (HN, N, C�,
C�) and, consequently, the eligible proteins are those that
contain all four of these types of chemical shifts (though
they might be obtained from different combinations of
NMR spectra). The default tolerance thresholds for C� and
C� are 0.2 ppm and 0.4 ppm, respectively. To screen out
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TABLE 3
Two Sets of 20 Instances for the Second Experiment

TABLE 4
Assignment Precision and Recall of MARS and CISA in the Second Experiment

The numbers in parentheses record the wrong assignments by RANDOM, MARS, and CISA, respectively.



some highly degenerate protein entries, we set up a

5 minute time limit for CISA on each protein. That is, if

CISA could not terminate the assignment for one protein in

5 minutes, then the protein entry was discarded. We remark

that 5 minutes was long enough since, for most of the

proteins on which CISA terminated, it terminated within

seconds. One interesting discovery is that we found that

some proteins have significant resolution differences within

their spectral profiles, for example, bmr4402 (cf., Experi-

ment 3) has one half of high resolution but the other half of

very low resolution. Through setting up the time limit,

CISA was able to detect the low resolution proteins of about

20 kDa in size.
In summary, CISA was able to finish the assignments for

360 proteins in total. The length of these proteins ranges from

58 to 198, and the assignment precision from 0.62 to 1.00. The

average assignment precision is 0.903, which is fairly

consistent with the results in the first three experiments. For

these 360 proteins, the assignment precision versus the length

of the protein is plotted in Fig. 5, where each diamond

represents an instance. From the plot, we would be able to

claim that CISA is insensitive to the size of proteins.

4 CONCLUSIONS AND DISCUSSION

On a normal desktop with a 1.6 GHz AMD-2000 processor
and a 1 Gbyte RAM, for the instances in the first two
experiments, the overall running time of CISA ranges from
a few seconds to 4 hours (and most of them were done in
less than 20 minutes). For the instances in the third
experiment, the overall running time of CISA never exceeds
30 minutes. Across all of the experiments, we found that
CISA spent a large portion (about 50 percent) of the time in
finding the first string. We also observed that, for all
instances, after three to four iterations, CISA found the best
string in a straightforward way. In other words, CISA
running time was mostly consumed in its first three to four
iterations. One possible way to speed up CISA in the first
string finding could be to use only high probability edges in
the connectivity graph. This is currently under investiga-
tion. On the other hand, so far, only the average mapping
score is used in CISA for the purpose of search space
pruning. Some other measurements or their combinations
could be incorporated for both efficiency and quality
considerations.

CISA uses a number of parameters that have been tuned
ahead of time through extensive simulation study (and to
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Fig. 3. Plots of assignment precision and recall for MARS and CISA on two sets of instances with different tolerance thresholds, using C�, C�, and

carbonyl C chemical shifts for connectivity inference. (a) Assignment precision and recall on the first set of 10 instances in the second experiment.

(b) Assignment precision and recall on the first set of 10 instances in the second experiment.



map to the computer specifications). It would certainly be

better if CISA had an automatic mechanism to detect the

complexity of the connectivity graph and thus to use

different parameter settings for instances at different

complexity levels. We are currently adding this feature
into CISA and testing the reliability.

Through CISA, we seem to have successfully combined
the spin system residual signature information into the path
growing in the connectivity graph, which prunes the search
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TABLE 5
Assignment Precision and Recall of MARS and CISA in the Third Experiment on Simulated Data Sets for Proteins from [9],

Using the Exact Data Set Generation Method as Described in [9] and a Real Data Set Zdom Obtained from the
AutoAssign Package [4], and the Assignment Precision and Recall of PACES on the Corresponding Simulated Data Sets

Included in [9], where the Number of Iterations for PACES Ranged from 1 to 5 and, on Average, Was 2.5

Tolerance thresholds are �� ¼ 0:2ppm, �� ¼ 0:4ppm, and � ¼ 0:15ppm. #SpinSystems records the number of available spin systems for an instance.
The data sets are partitioned into three groups. In the first group, data sets all have C�, C�, and carbonyl C chemical shifts of high quality. In the second
group, data sets all have C�, C�, and carbonyl C chemical shifts, but of low quality. In the third group, data sets have only C� and C� chemical shifts of
various quality. The numbers in the parentheses record the wrong assignments by RANDOM, MARS, and CISA, respectively.

Fig. 4. Plots of assignment precision and recall for MARS and CISA on the simulated data sets for proteins from [9], using the exact data set

generation method as described in [9] and a real data set Zdom obtained from the AutoAssign package [4], and the plots of assignment precision and

recall for PACES on the corresponding simulated data sets included in [9].



space more effectively compared to PACES and MARS.
However, in the current version of CISA, the weights of
edges are only used to order the child paths. Taking the
idea in RANDOM that uses edge weights as edge selection
probabilities, we believe that some better usage of edge
weights into the mapping score evaluation for a growing
path would help to more effectively quantify the quality of
the growing path. We have tried some simple linear
functions on the edge weights and the mapping scores of
paths that turned out not to serve satisfactorily. We are
currently investigating more combinations.

Our last comment on the possible disadvantage of the
current version of CISA is very similar to that of RANDOM,
where wrong edges included during the OL initialization
might continue to stay in and, thus, would lead to
erroneous final assignments. Although this is very unlikely
to happen according to our extensive simulation study, we
feel that some mechanism might need to be set up to shuffle
low mapping score paths to be considered once every few
iterations during the path growing step.
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