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The success in backbone resonance sequential assignment is fundamental to three dimen-
sional protein structure determination via Nuclear Magnetic Resonance (NMR) spec-13
troscopy. Such a sequential assignment can roughly be partitioned into three separate
steps: grouping resonance peaks in multiple spectra into spin systems, chaining the15
resultant spin systems into strings, and assigning these strings to non-overlapping con-
secutive amino acid residues in the target protein. Separately dealing with these three17
steps has been adopted in many existing assignment programs, and it works well on
protein NMR data with close-to-ideal quality, while only moderately or even poorly on19
most real protein datasets, where noises as well as data degeneracies occur frequently.
We propose in this work to partition the sequential assignment not by physical steps,21
but only virtual steps, and use their outputs to cross validate each other. The novelty
lies in the places, where the ambiguities at the grouping step will be resolved in finding23
the highly confident strings at the chaining step, and the ambiguities at the chaining
step will be resolved by examining the mappings of strings at the assignment step. In25
this way, all ambiguities at the sequential assignment will be resolved globally and opti-
mally. The resultant assignment program is called Graph-based Approach for Sequential27
Assignment (GASA), which has been compared to several recent similar developments
including PACES, RANDOM, MARS, and RIBRA. The performance comparisons with29
these works demonstrated that GASA is more promising for practical use.

Keywords: Protein NMR backbone resonance sequential assignment; chemical shift; spin31
system; connectivity graph.

1. Introduction33

Nuclear Magnetic Resonance (NMR) spectroscopy has been increasingly used for
three dimensional (3D) protein structure determination. Although it has not been35

able to achieve the same accuracy as X-ray crystallography, enormous technological
advances have brought NMR to the forefront of structural biology1 since the pub-37

lication of the first complete solution structure of a protein (bull seminal trypsin
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inhibitor) determined by NMR in 1985.2 The underlined mathematical principle for1

protein NMR structure determination is to employ NMR spectroscopy to obtain
local structural restraints such as the distances between hydrogen atoms and the3

ranges of dihedral angles, and then to calculate the 3D structure. Local structural
restraint extraction is mostly guided by the backbone resonance sequential assign-5

ment, which therefore is crucial to the accurate 3D structure calculation. The reso-
nance sequential assignment is to map the identified resonance peaks from multiple7

NMR spectra to their corresponding nuclei in the target protein, where every peak
captures a nuclear magnetic interaction among a set of nuclei and its coordinates9

are the chemical shift values of the interacting nuclei. Normally, such an assignment
procedure is roughly partitioned into three main steps:11

(1) grouping resonance peaks from multiple spectra into spin systems,
(2) chaining the resultant spins systems into strings, and13

(3) assigning the strings of spin systems to non-overlapping consecutive amino acid
residues in the target protein, as illustrated in Fig. 1, where the scoring scheme15

quantifies the residual signature information of the peaks and spin systems.

Separately dealing with these three steps has been adopted in many existing17
assignment programs.3–14 Furthermore, depending on the NMR spectra data avail-
ability, different programs may have different starting points. To name a few auto-19
mated assignment programs, CBM6 accepts the strings of spin systems and returns
an optimal assignment of them to the non-overlapping peptides in the target pro-21
tein; A random graph approach10 (we abbreviate it as RANDOM in the rest of the
paper), MARS11 and GANA12 assume the availability of spin systems and focus on23
chaining the spin systems into strings and their subsequent assignment; typically,
RANDOM avoids exhaustive enumeration through multiple calls to Hamiltonian25
path/cycle generation in a randomized way, to fish for high probability strings of
spin systems; MARS first searches for all possible strings of length 5 and then uses27
their mapping positions to identify the correct strings; GANA applies a genetic
algorithm to search for an assignment. Other programs, AutoAssign,4 PACES,829
CASA,13 and RIBRA,14 accept input in spectral peak lists and apply some sim-
ple rules to group the peaks into spin systems first. Starting from the formed spin31
systems, AutoAssign uses a best-first search algorithm with constraint propagation
to look for assignments; CASA applies a depth-first ordered tree search algorithm33

peak lists

Scoring Scheme

Grouping Chaining Assignment candidates� � � �
� � �

Fig. 1. The flow chart of the NMR resonance sequential assignment.
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through defining a set of scores that try to resolve the ambiguities; PACES uses an1

exhaustive search algorithm to enumerate all possible strings that can be formed
and then performs the string assignment; RIBRA applies a weighted maximum3

independent set algorithm to search for assignments.
The above mentioned sequential assignment programs all work well on high5

quality NMR data, but most of them remain unsatisfactory in practice and even
fail when the spectral data is of low resolution. Through a thorough investigation,7

we have identified that the bottleneck of automated sequential assignment is reso-
nance peak grouping. Essentially, a good grouping output gives well organized high9

quality spin systems, for which the adjacencies between them can be fairly easily
determined and the subsequent string assignment also becomes easy. In AutoAssign,11

PACES, CASA, and RIBRA, the grouping is done through a binary decision model
that considers the HSQC peaks as anchor peaks and subsequently maps the peaks13

from other spectra to these anchor peaks.4,8,13,14 For such a mapping, the HN and
N chemical shift values in the other peaks are required to fall within the pre-specified15

HN and N chemical shift tolerance thresholds of the anchor peaks. However, this
binary-decision model in the peak grouping inevitably suffers from its sensitivity to17

the tolerance thresholds. In practice, from one protein dataset to another, chemical
shift thresholds vary due to the experimental conditions and the structure com-19

plexity. Large tolerance thresholds could create too many ambiguities in resultant
spin systems and consequently in the later chaining and assignment steps, leading21

to a dramatic decreased assignment accuracy; on the other hand, small tolerance
thresholds could produce too few spin systems when the spectral data resolution is23

low, leading to a hardly useful assignment.
Secondly, we found that in the traditional three-step procedure, which is the25

basis of many automated sequential assignment programs, each step is separately
executed, without consideration of inter-step effects. Basically, the input to each27

step is assumed to contain sufficient information to produce a meaningful output.
However, for low resolution spectral data, the ambiguities appearing in the input29

of one step are very difficult to be resolved internally. Though it is possible to
generate multiple outputs for manual adjustment, the inherent uncertainties in the31

input might cause more ambiguities in the outputs, which are taken as inputs to
the downstream steps. Consequently, the whole process would fail to produce a33

meaningful resonance sequential assignment. However, one meaningful assignment
might be possible if the outputs of downstream steps are used to validate the input35

to the current step.
In this paper, we propose a two-phase Graph-based Approach for Sequential37

Assignment (GASA) that uses the spin system chaining results to validate the
peak grouping and uses the string assignment results to validate the spin system39

chaining. Therefore, GASA not only addresses the chemical shift tolerance threshold
issue at the grouping step but also presents a new model to automate the sequential41

assignment. In more details, we propose a two-way nearest neighbor search approach
in the first phase to eliminate the requirement of user-specified HN and N chemical43
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shift tolerance thresholds. The output of the first phase consists of two lists of1

spin systems. One list contains the perfect spin systems, which are regarded as
of high quality, and the other contains the imperfect spin systems, in which some3

ambiguities need to be resolved to produce legal spin systems. In the second phase,
the spin system chaining is performed to resolve the ambiguities contained in the5

imperfect spin systems and the string assignment step is included as a subroutine to
identify the confident strings. In other words, the ambiguities in the imperfect spin7

systems are resolved through finding the highly confident strings at the chaining
step, and the ambiguities in the chaining step are resolved through examining the9

mappings of the resulting strings at the assignment step. Therefore, in this sense,
GASA does not separate the sequential assignment into physical steps but only11

virtual steps, and all ambiguities in the whole assignment process are resolved
globally and optimally.13

The rest of the paper is organized as follows: In Sec. 2, we introduce the detailed
steps of operations in GASA. Section 3 presents our experimental results and dis-15

cussion. We conclude the paper in Sec. 4.

2. The GASA Algorithm17

The input data to GASA could be a set of peak lists or, assuming the grouping
has been done, a list of spin systems. In the case of a given set of peak lists,19

GASA first conducts a bidirectional nearest neighbor search to generate the perfect
spin systems and the imperfect spin systems with ambiguities. It then invokes the21

second phase, which applies a heuristic search guided by the quality of the string
mapping to the target protein, to perform the chaining and the assignment for23

resolving the ambiguities in the imperfect spin systems and meanwhile completing
the assignment. If the input is a list of spin systems, GASA skips the first phase25

and directly invokes the second phase to conduct the spin system chaining and the
assignment.27

2.1. Phase 1: Peak filtering and grouping

For ease of exposition and fair comparison with PACES, RANDOM, MARS, and29

RIBRA, we assume the availability of spectral peaks containing chemical shifts for
Cα and Cβ, and the HSQC peak list. One typical example would be the well-known31

triple spectra containing HSQC, CBCA(CO)NH, and HNCACB spectra. Never-
theless, we point out that GASA can also accept other combinations of spectra.33

An HSQC spectrum contains two dimensional (2D) peaks each corresponds to a
pair of chemical shifts for an amide proton and the directly attached nitrogen;35

An HNCACB spectrum contains 3D peaks each is a triple of chemical shifts for
a nitrogen, the directly adjacent amide proton, and a carbon alpha/beta from the37

same or the preceding amino acid residue; A CBCA(CO)NH spectrum contains 3D
peaks each is a triple of chemical shifts for a nitrogen, the directly adjacent amide39

proton, and a carbon alpha/beta from the preceding amino acid residue. For ease
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of presentation, a 3D peak containing a chemical shift of the intra-residue carbon1

is referred to as an intra-residue peak; otherwise an inter-residue peak. The goal of
peak filtering and grouping is to identify all perfect spin systems without asking3

for the chemical shift tolerance thresholds. Note that the best of our knowledge,
all existing peak grouping models require manually defined chemical shift tolerance5

thresholds in order to decide whether two resonance peaks should be grouped into
the same spin system or not. Consequently, different tolerance thresholds clearly7

produce different sets of possible spin systems, and for the low resolution spec-
tral data, a minor change of tolerance thresholds would lead to huge difference9

in the formed spin systems and subsequently the final sequential assignment. In
fact, the proper tolerance thresholds are normally dataset dependent and how to11

choose them is a very challenging issue in the automated resonance assignment. We
propose to use the nearest neighbor approach, detailed in the following using the13

triple spectra as an example. Because of the high quality of the HSQC spectrum,
the peaks in HSQC are considered as centers, and every peak in CBCA(CO)NH15

and HNCACB is distributed to the closest center using the normalized Euclidean
distance on the 2D HN and N chemical shift plane. Given a center C = (HNC , NC)17

and a peak P = (HNP , NP , Cα/β
P ), the normalized Euclidean distance between them

is defined as19

D =

√(
HNP − HNC

σHN

)2

+
(

NP − NC

σN

)2

,

where σHN and σN are the standard deviations of HN and N chemical shifts that21

are collected from BioMagResBank (http://www.bmrb.wisc.edu).
In the ideal case, each center should have six peaks distributed to it in total: four23

from the HNCACB spectrum and two from the CBCA(CO)NH spectrum. However,
due to the chemical shift degeneracy, some centers may have less than 6 or even 025

peaks. The reasons for this is that the peaks should be associated with one center
might turn out to be closer to the other centers. Therefore, using a set of common27

chemical shift tolerance thresholds for all centers would result in more troublesome
centers.29

Figure 2 illustrates a simple scenario where three centers present, but using the
common tolerance thresholds C1 has only four peaks associated with while C2 has31

eight. In Fig. 2, using the common tolerance thresholds, only one perfect spin system
with center C3 is formed, because the two peaks that should belong to center C1 are33

closer to center C2, which create ambiguities in both spin systems. Nevertheless, a
closer look at center C1 reveals that the two peaks that should belong to it but are35

closer to center C2 are among the six closest peaks to center C1, but they are the
7th and the 8th closest to center C2. That is, by using the center specific tolerance37

thresholds, the spin system with center C1 can be formed by adding these two
peaks [see Fig. 2(b)]; similarly, using the center specific tolerance thresholds, the39

spin system with center C2 becomes another perfect spin system.
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C C

C C
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(a) Using the common tolerance
thresholds, only one perfect spin
system is formed.

(b) Using the center specific tol-
erance thresholds, three perfect
spin systems are formed.

Fig. 2. A sample scenario in the peak filtering and grouping: (a) There are three HSQC peaks
as three centers C1, C2, C3. Every peak is distributed to the closest center, measured by the
normalized Euclidean distance. Using the common tolerance thresholds, only C3 forms a perfect
spin system (with exactly six associated peaks). (b) Using center specific tolerance thresholds, all
three centers find their 6 closest peaks to form perfect spin systems, respectively.

We designed a bidirectional nearest neighbor model, which essentially applies1

the center specific tolerance thresholds, to have two steps of operations: residing
and inviting. In the residing step, we associated each peak in the CBCA(CO)NH3

and HNCACB spectra to their respective closest HSQC peaks. If the HSQC peak
and its associated peaks in the CBCA(CO)NH and HNCACB spectra form a per-5

fect spin system (in this case, exactly six peaks), then the resultant spin system is
inserted into the list of perfect spin systems. These already associated peaks are7

then removed from the nearest neighbor model for further consideration. In the
inviting step, each remaining peak in the HSQC spectrum looks for the k closest9

peaks in the CBCA(CO)NH and HNCACB spectra, and if a perfect spin system
can be formed using some of these k peaks, then the spin system is formed and the11

associated peaks are removed. The parameter k is related to the number of peaks
contained in a perfect spin system, which is known ahead of resonance assign-13

ment. A typical value of k is set as 1.5 times the number of peaks in a perfect
spin system. In our case of triple spectra, HSQC, HNCACB, and CBCA(CO)NH,15

the number of peaks in a perfect spin system is six and consequently k = 9.
The aforementioned two steps will be iteratively executed until no more perfect17

spin systems can be found and two lists of spin systems, perfect and imperfect,
are constructed. It should be note that this bidirectional nearest neighbor model19

essentially applies the center specific tolerance thresholds, and thus it does not
require any chemical shift tolerance thresholds. Nonetheless, users could specify21

maximal HN and N chemical shift tolerance thresholds to speed up the process,
though we have noticed that the minor differences in these maximal chemical shift23

tolerance thresholds would not really affect the performance of this bidirectional
search.25
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2.2. Phase 2: Ambiguity resolving, adjacency determination, and1

string assignment

The goal of resolving is to identify the true peaks contained in the imperfect spin3

systems and then to conduct the spin system chaining and the string assignment.
In general, it is very difficult to distinguish the true peaks from the fake peaks when5

every imperfect spin system is examined individually. During our development, we
have found that in most cases, those spin systems containing true peaks enable more7

confident string findings than those containing fake peaks. With this observation,
we propose to extract true peaks from the imperfect spin systems through the spin9

system chaining and the resultant string assignment, namely, to only accept the
peaks that result in spin systems having highly confident mapping positions in the11

target protein.
The relationships between spin systems are formulated into a connectivity13

graph, similar to what we have proposed in another sequential assignment pro-
gram CISA.15 In the connectivity graph, one vertex corresponds to a spin system.15

Given two perfect spin systems vi = (HNi, Ni, Cα
i , Cβ

i , Cα
i−1, Cβ

i−1) and vj = (HNj ,
Nj , Cα

j , Cβ
j , Cα

j−1, Cβ
j−1), if both |Cα

i − Cα
j−1| ≤ δα and |Cβ

i − Cβ
j−1| ≤ δβ hold,17

then there is an edge from vi to vj with its weight calculated as

1
2

(
|Cα

i − Cα
j−1|

δα
+

|Cβ
i − Cβ

j−1|
δβ

)
. (1)

19

In Eq. (1), both δα and δβ are pre-determined chemical shift tolerance thresh-
olds, which are typically set to 0.2 ppm and 0.4 ppm, respectively, though minor21

adjustments are sometimes necessary to ensure a sufficient number of connectivi-
ties. Given one perfect spin system vi = (HNi, Ni, Cα

i , Cβ
i , Cα

i−1, Cβ
i−1) and one23

imperfect spin system vj = (HNj , Nj , Cα
j1, Cα

j2, . . . , C
α
jm, Cβ

j1, Cβ
j2, . . . , C

β
jn), we

check each legal combination v′j = (HNj , Nj , Cα
jl, Cβ

jk, Cα
jp, Cβ

jq), where l, p ∈ [1, m]25

and k, q ∈ [1, n]. Those carbon chemical shifts with subscription l, k represent the
intra-residue chemical shifts and those with subscription p, q represent the inter-27

residue chemical shifts. Subsequently, if both |Cα
i − Cα

jp| ≤ δα and |Cβ
i − Cβ

jq| ≤ δβ

hold, then there is an edge from vi to v′j with its weight calculated as29

1
2

(
|Cα

i − Cα
jp|

δα
+

|Cβ
i − Cβ

jq|
δβ

)
. (2)

If both |Cα
jl − Cα

i−1| ≤ δα and |Cβ
jk − Cβ

i−1| ≤ δβ hold, then there is an edge from31

v′j to vi with its weight calculated as

1
2

(
|Cα

jl − Cα
i−1|

δα
+

|Cβ
jk − Cβ

i−1|
δβ

)
.

33

Note that it is possible that there are multiple edges between one perfect spin
system and one imperfect spin system, but at most one of them could be true. In35

GASA, no connection is allowed between two imperfect spin systems.
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Once the connectivity graph has been constructed, GASA proceeds essentially1

the same as CISA15 to apply a local heuristic search algorithm, guided by the
mapping quality of the generated string of spin systems in the target protein. Given3

a string, its mapping quality in the target protein, or mapping score, is measured
by the average likelihood of spin systems at the best mapping position for the5

string, where the likelihood of a spin system at a position is estimated by the
histogram-based scoring scheme developed in Wan et al.16 This scoring scheme is7

essentially a naive Bayesian scheme, which uses the chemical shift values collected in
BioMagResBank (http://www.bmrb.wisc.edu) as prior distributions and estimates9

for every observed chemical shift value the probability that it is associated with an
amino acid residue residing in certain secondary structure. More precisely, for every11

type of chemical shift, there is a tolerance window of length ε. For an observed
chemical shift value cs, the number of chemical shift values in BioMagResBank13

that fall in the range (cs − ε, cs + ε), denoted as N(cs | aa, ss), is counted for
every combination of amino acid type aa and secondary structure type ss. The15

probability is then computed as P (cs | aa, ss) = N(cs | aa, ss)/N(aa, ss), where
N(aa, ss) is the total number of the same kind of chemical shift values collected17

in BioMagResBank. The scoring scheme then takes the absolute logarithm of the
probability as the mapping score. Summing up the individual mapping scores of19

all intra-residue chemical shifts in a spin system gives the spin system its mapping
score to every amino acid residue in the target protein.21

The edges in the connectivity graph are weighted by Eqs. (1) and (2), and they
are used to order the edges coming out of the ending spin system in the current23

string to provide the candidate spin systems for the current string to grow to. It has
been observed that a sufficiently long string itself is able to detect the succeeding25

spin system by taking advantage of the discerning power of the scoring scheme.
In each iteration of GASA, the search algorithm starts with an Open List (OL)27

of strings and seeks to expand the string with the best mapping score. Another
list, Complete List (CL), is used in the algorithm to save those completed strings,29

which are not further expandable. In the following, we briefly describe the GASA
algorithm for resolving the ambiguities in imperfect spin systems through the spin31

system chaining into strings and the subsequent string assignment.

2.2.1. OL initialization33

Let G denote the constructed connectivity graph. GASA first searches for all unam-
biguous edges in G, which are the edges in G whose starting vertex has out-degree35

1 and the ending vertex has in-degree 1. We note that such a process is similar to
RANDOM and CASA. It then expands these edges into simple paths with a pre-37

defined length L by both tracing their starting vertices backward and their ending
vertices forward. The tracing process stops when either of the following conditions39

is satisfied: (1) The newly reached vertices are already in the paths; (2) The length
of each path reaches L. All these paths stored in OL are sorted in the non-increasing41
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order of their mapping scores. The size of OL is fixed at S, that is, only the top S1

paths are kept in OL. Note that both L (= 6) and S (= 60) are set in the way to
obtain the best trade-off between computing time and performance.3

2.2.2. Path growing

In this step, GASA tries to bidirectionally expand the top ranked path stored in5

OL, a process similar to MARS, which enumerates all paths with length 5 and
then expands each path in two directions. Note that PACES simply enumerates7

all possible paths from root vertices (i.e. in-degree 0) without such an expanding
process; CASA has a path growing process very similar to ours but its path ranking9

is done using the number of mapping positions (not the mapping score) for the path.
Denote this top ranked path as P , the starting vertex in P as h and the ending vertex11

in P as t. All the directed edges incident to h and incident from t are considered
as candidate edges to potentially (bidirectionally) expand P , and the resultant13

expanded paths are called the child paths of P . For every child path, GASA finds
its best mapping position in the target protein and calculates its mapping score.15

If the mapping score is higher than that of some path already stored in OL, then
this child path makes into OL (and accordingly the path with the least mapping17

score is removed from OL, if there is no space for it). If none of the child paths of P

can make into OL, or P is not expandable in either direction (i.e. there is no edge19

incident to h, neither edge incident from t), path P is closed for further expanding
and subsequently is moved into CL. GASA proceeds to consider the top ranked21

path in OL iteratively and this growing process is terminated when OL becomes
empty.23

2.2.3. CL finalizing

Let P denote the path of the highest mapping score in CL (tie is broken to the25

longest path, and further tie is broken arbitrarily). GASA performs the following
filtering: Firstly, all paths in CL with both their lengths and their mapping scores27

less than 90% of the length and the score of path P are considered as of low
quality compared to path P and thus discarded from further consideration. The29

remaining paths in CL are considered to be reliable strings. Secondly, only those
edges occurring in at least 90% of the paths in CL are regarded as reliable edges.31

The other edges in the paths in CL are therefore removed, which might break the
paths in CL into shorter ones. These resultant paths are final candidate paths to33

be processed in the next step.

2.2.4. Ambiguities resolving35

GASA scans through the paths in CL for the longest one, which is taken as the
confident string built in the current iteration. Nevertheless, it could be the case37

that the mapping position of this path in the target protein conflicts the string
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mappings achieved in previous iterations. In this case, GASA respects previous1

string mappings and this current string/path has to be broken down by removing
the spin systems that have the conflicting mapping positions. In the extreme case3

where every spin system in the path has a conflicting mapping position, the path
is removed from the connectivity graph (for otherwise, the program would enter an5

infinite loop). In the other case, consequently, the spin systems that are assigned
with mapping positions in this iteration might not necessarily form into a single7

string, but several shorter ones. Regardless, these assigned spin systems are then
removed from the connectivity graph G, as well as those edges incident to and from9

them. Additionally, for the imperfect spin systems that are assigned in the current
iteration, those peaks used to build the spin systems and edges are considered as11

true peaks, while the others are considered as fake peaks, which are subsequently
removed. If the remaining connectivity graph G is still non-empty, GASA proceeds13

to the next iteration. When GASA terminates, all the assigned spin systems and
their mapping positions are reported as the output assignment.15

2.3. Implementation

All components in GASA are written in the C/C++ programming language and can17

be compiled on both Linux and Windows systems. They can be obtained separately
or as a whole package through the corresponding author.19

3. Experimental Results

We evaluated the performance of GASA through three experiments to com-21

pare with several recent works, including PACES (downloaded through http://
152.16.14.71/paces/), RANDOM (source code obtained through its correspon-23

dence author), MARS (downloaded through http://www.spincore.com/nmrinfo/
MARS.html), and RIBRA (web server http://bio-cluster.iis.sinica.edu.tw/ribra/25

index.htm). The first experiment is to compare the second phase of GASA, the
ambiguity resolving phase, with PACES, RANDOM and MARS only. They all work27

well when assuming the availability of spin systems and their original design focuses
are on chaining the spin systems into strings and the subsequent string assignment29

(though PACES can accept input as a set of peak lists). Such a comparison is inter-
esting since the experimental results will show the validity of combining the spin31

system chaining with the resultant string assignment in order to resolve the ambigu-
ities in the adjacencies between spin systems. The second experiment is to compare33

with RIBRA only by using the simulated datasets in RIBRA, among which each
dataset corresponds to one type of spectral data noise/error. The last experiment35

is used for comparison with RIBRA again, but on simulated datasets that contain
all types of data noises and thus are closer to real data. This experiment serves to37

justify the values of combining the peak grouping, the spin system chaining, and
the string assignment all together.39
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Regarding the performance measurements, RIBRA explicitly defines two crite-1

ria, namely precision and recall. In particular, precision is defined as the percentage
of correctly assigned amino acids among all the assigned amino acids, and recall is3

defined as the percentage of correctly assigned amino acids among the amino acids
that should be assigned spin systems, respectively.14 In this paper, we use the same5

criteria to facilitate the comparison.

3.1. Experiment 17

The dataset in Experiment 1 is simulated on the basis of 12 proteins studied in
Xu et al.,6 whose lengths range from 66 to 215. The dataset construction is detailed9

as follows. For each of these 12 proteins, we extracted its data entry from BioMa-
gResBank (http://www.bmrb.wisc.edu) to obtain all the chemical shift values for11

the amide proton HN, the directly attached nitrogen N, the carbon alpha Cα, and
the carbon beta Cβ . For each amino acid residue, except Proline, its four chemi-13

cal shifts (for Glycine, which has no Cβ atom, only three) together with Cα and
Cβ chemical shifts from the preceding residue formed an initial spin system. We15

excluded Proline residues in the simulation because in the real NMR data, there
wouldn’t be spin systems for Prolines since they do not have HN atoms. Next,17

for each initial spin system, chemical shifts for intra-residue Cα and Cβ were per-
turbed by adding random errors that follow independent normal distributions with 019

means and constant standard deviations. We adopted the widely accepted tolerance
thresholds for Cα and Cβ chemical shifts, which are δα = 0.2 ppm and δβ = 0.4 ppm,21

respectively.4,8,10,11 Subsequently, the standard deviations of the random error nor-
mal distributions were set to 0.2/2.5 = 0.08ppm and 0.4/2.5 = 0.16ppm, respec-23

tively. The achieved spin system is called a final spin system. These 12 instances,
with suffix 1, are summarized in Table 1 (the left half). In order to test the robust-25

ness of all four programs, we generated another set of 12 instances through doubling
the Cα and Cβ tolerance thresholds (that is, δα = 0.4 ppm and δβ = 0.8 ppm). They27

are also summarized in Table 1 (the right half, having suffix 2). Obviously, Table
1 shows that instances in the second set are much harder than the corresponding29

ones in the first set, where the complexity of an instance can be measured by the
average out-degree of the vertices in the connectivity graph.31

All four programs — RANDOM, PACES, MARS, and GASA — were called
to run on both sets of instances. The performance results of RANDOM, PACES,33

MARS, and GASA on the both sets of instances are collected in Table 2. Their
assignment precision and recall on the two sets are also plotted in Figures 3 and 4. In35

summary, RANDOM achieved on average 50% assignment precision and recall. (We
followed the exact way of determining precision and recall as described in Bailey-37

Kellogg et al.,10 where 1000 iterations for each instance have been run.), which is
roughly the same as that claimed in its original paper.10 PACES performed better39

than RANDOM, but it failed on seven instances where the connectivity graphs
were too complex (computer memory ran out). The collected results for PACES41
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Table 1. Two sets of instances, each having 12 ones, in the first experiment: “L” denotes
the length of a protein, measured by the number of amino acid residues therein; “#CE”
records the number of correct edges in the connectivity graph, which ideally should be
equal to (L− 1), and “#WE” records the number of wrong edges, respectively; “Avg.
OD” records the average out-degree of the connectivity graph.

δα = 0.2 ppm, δβ = 0.4 ppm δα = 0.4ppm, δβ = 0.8 ppm

L InstanceID #CE #WE Avg.OD InstanceID #CE #WE Avg.OD

66 bmr4391.1 63 20 1.30 bmr4391.2 63 46 1.72
68 bmr4752.1 65 43 1.64 bmr4752.2 65 120 2.80
78 bmr4144.1 71 20 1.26 bmr4144.2 71 77 2.06
86 bmr4579.1 82 81 1.96 bmr4579.2 82 219 3.58
89 bmr4316.1 84 118 2.61 bmr4316.2 84 309 4.62

105 bmr4288.1 93 25 1.26 bmr4288.2 93 89 1.94
112 bmr4670.1 101 24 1.12 bmr4670.2 101 100 1.79
114 bmr4929.1 109 34 1.30 bmr4929.2 109 117 2.05
115 bmr4302.1 107 18 1.16 bmr4302.2 107 87 1.80

116 bmr4353.1 97 30 1.30 bmr4353.2 97 106 2.07
158 bmr4027.1 147 71 1.48 bmr4027.2 147 252 2.70
215 bmr4318.1 190 157 1.82 bmr4318.2 190 553 3.90

on these seven instances were obtained through manually reducing the tolerance1

thresholds to remove a significant portion of edges from the connectivity graphs.
We implemented the scheme that if PACES did not finish an instance in 8 h, then3

the tolerance thresholds would be reduced by 25%, for example, from δα = 0.2 ppm
to δα = 0.15ppm. We remark that the performance of PACES in this experiment5

is a bit lower than that is claimed in its original paper.8 There are at least three
possible reasons for this: (1) The datasets tested in Coggins and Zhou8 are different7

from ours (which, unfortunately, were unavailable to us). We have done a test on
re-simulating the datasets in Coggins and Zhou,8 according to its description, to9

compare PACES, RANDOM and MARS with CISA,15 a predecessor of GASA, and
the result tendency is very much the same as what we have seen here. (2) PACES11

is only semi-automated, in the sense that it needs manual adjustment after each
iteration to iteratively improve the assignment. In this experiment, PACES was13

taken as fully automated and it was run for only one iteration. One could run it
several iterations with manual adjustment for improved assignment. However, in15

the current work we were unable to do this fairly and subsequently we decided not
to do so. (3) PACES is designed to take in better quality spin systems that contain17

in addition the carbonyl CO chemical shifts. On the current combination without
the CO chemical shifts, PACES was expected to perform a bit lower, since the19

extra CO chemical shifts will provide extra information for resolving the adjacency
ambiguities. Again, we have done a similar test on using the combination with the21

CO chemical shifts to compare RANDOM, PACES, and MARS with CISA,15 and
the result tendency is very much the same as what we have seen here. MARS and23

GASA performed equally very well. They both outperformed PACES and RAN-
DOM in all instances, and even more significantly on the second set of more difficult25
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Table 2. Assignment precision (PR) and recall (RE) of RANDOM, PACES,
MARS and GASA in the first experiment.

RANDOM PACES MARS GASA

L InstanceID PR RE PR RE PR RE PR RE

δα = 0.2 ppm, δβ = 0.4 ppm
66 bmr4391.1 0.67 0.63 0.84 0.72 0.91 0.87 0.97 0.97
68 bmr4752.1 0.40 0.35 0.91 0.79 0.98 0.97 0.96 0.94
78 bmr4144.1 0.36 0.33 0.63 0.53 1.00 0.97 1.00 0.99
86 bmr4579.1 0.54 0.51 0.71∗ 0.62∗ 0.97 0.91 0.98 0.98
89 bmr4316.1 0.42 0.36 0.64∗ 0.40∗ 0.97 0.96 1.00 0.99

105 bmr4288.1 0.62 0.55 0.75 0.71 0.97 0.95 0.98 0.98
112 bmr4670.1 0.67 0.62 0.86 0.77 0.94 0.88 0.96 0.95
114 bmr4929.1 0.68 0.63 0.91 0.86 0.99 0.97 0.93 0.91

115 bmr4302.1 0.66 0.64 0.90 0.73 0.95 0.92 0.96 0.95
116 bmr4353.1 0.48 0.43 0.86 0.79 0.91 0.85 0.96 0.95
158 bmr4027.1 0.43 0.32 0.94 0.82 0.96 0.93 1.00 0.99
215 bmr4318.1 0.40 0.38 0.78∗ 0.54∗ 0.88 0.81 0.87 0.84

Avg. 0.53 0.48 0.81 0.69 0.95 0.90 0.96 0.95

δα = 0.4 ppm, δβ = 0.8 ppm
66 bmr4391.2 0.58 0.55 0.82 0.69 0.86 0.85 0.91 0.91
68 bmr4752.2 0.36 0.30 0.86‡ 0.74‡ 0.91 0.90 0.90 0.88
78 bmr4144.2 0.33 0.31 0.45 0.38 1.00 0.97 1.00 0.99
86 bmr4579.2 0.34 0.32 0.51‡ 0.43‡ 0.79 0.75 0.80 0.80
89 bmr4316.2 0.35 0.30 0.29‡ 0.18† 0.95 0.92 0.83 0.83

105 bmr4288.2 0.42 0.38 0.58 0.53 0.95 0.93 0.91 0.91

112 bmr4670.2 0.43 0.39 0.63 0.57 0.83 0.81 0.88 0.87
114 bmr4929.2 0.46 0.43 0.81 0.77 0.99 0.97 0.96 0.94
115 bmr4302.2 0.47 0.45 0.63 0.49 0.82 0.80 0.91 0.91
116 bmr4353.2 0.47 0.43 0.64 0.61 0.83 0.80 0.90 0.90
158 bmr4027.2 0.40 0.30 0.38 0.32 0.82 0.81 0.88 0.85
215 bmr4318.2 0.25 0.22 0.76‡ 0.45‡ 0.84 0.75 0.74 0.70

Avg. 0.41 0.37 0.61 0.51 0.88 0.85 0.88 0.87

∗PACES performance on these 3 datasets were obtained by reducing tolerance
thresholds to δα = 0.15 ppm and δβ = 0.3 ppm (75%).
†PACES performance on this dataset was obtained by reducing tolerance thresh-
olds to δα = 0.3 ppm and δβ = 0.6 ppm (75%).
‡PACES performance on these 3 datasets were obtained by reducing tolerance
thresholds to δα = 0.2 ppm and δβ = 0.4 ppm (50%).

instances, which indicated that combining the spin system chaining and assignment1

together does more effectively resolve the adjacency ambiguities and make better
assignments. Regarding the running time, RANDOM, MARS, and GASA all fin-3

ished within 20 minutes (on a P4 1.8GHz desktop) on each instance, and PACES
finished within an hour on most instances but could take hours on several hard5

instances.
On the first set of 12 instances, the analysis of variance (ANOVA) test showed7

that, with p = 1.1 × 10−4 for precision and p = 2.6 × 10−6 for recall, GASA per-
formed significantly better than PACES; with p = 8.2 × 10−11 for precision and9
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(a) Assignment precision on the 1st set of instances.
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(b) Assignment recall on the 1st set of instances.

Fig. 3. Plots of assignment precision and recall for RANDOM, PACES, MARS, and GASA on
the first set of instances with normal tolerance thresholds, using Cα and Cβ chemical shifts for
connectivity inference.
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(a) Assignment precision on the 2nd set of instances.
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(b) Assignment recall on the 2nd set of instances.

Fig. 4. Plots of assignment precision and recall for RANDOM, PACES, MARS, and GASA on the
second set of instances with doubled tolerance thresholds, using Cα and Cβ chemical shifts for
connectivity inference.
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p = 4.5 × 10−11 for recall, GASA performed significantly better than RANDOM1

too; On the second set of instances, with p = 7.7 × 10−5 for precision and
p = 1.4 × 10−6 for recall, GASA performed significantly better than PACES as3

well; with p = 4.6 × 10−13 for precision and p = 4.3 × 10−13 for recall, GASA also
performed significantly better than RANDOM.5

3.2. Experiment 2

In RIBRA, five different datasets were simulated from the data entries deposited in7

BioMagResBank. Among them, one is perfect dataset, which is simulated from
BioMagResBank without adding any data errors, and the other four datasets9

contain four different types of spectral data errors respectively. The false posi-
tive dataset is generated by respectively, adding 5% fake peaks into the perfect11

CBCA(CO)NH and HNCACB peak lists. The false negative dataset is generated
by randomly removing a small portion of inter-residue peaks from the perfect13

CBCA(CO)NH and HNCACB peak lists. The grouping error dataset is generated
by adding HN, N, Cα and Cβ perturbations into peaks in the perfect CBCA(CO)NH15

peak list. The linking error dataset is generated by adding Cα and Cβ perturbations
into inter-residue peaks in the perfect HNCACB peak list. Note that each of these17

four datasets contains only one type of spectral data error/noise. The chemical shift
perturbations are done in the same way as we did in Experiment 1, by adding to the19

original chemical shifts random errors that follow independent normal distributions
with 0 means and constant standard deviations (σHN = 0.06/2.5 = 0.0024ppm,21

σN = 0.8/2.5 = 0.32ppm, σα = 0.2/2.5 = 0.08ppm, and σβ = 0.4/2.5 = 0.16ppm).
Table 3 collects the average performance precision and recall of RIBRA and23

GASA on these five datasets. As shown, there is no significant difference among
the performances on the perfect, false positive and linking error datasets. GASA25
shows more robustness on the dataset with missing data while RIBRA performs
better on the grouping error dataset. Through the detailed study, we found that all27
these five simulated datasets by RIBRA contain the inter-residue and intra-residue
peaks with 0 Cβ chemical shifts, simulated for Glycine residues. That is, in the29

Table 3. Comparison results for RIBRA and GASA in Experiment 2. Percentages in paren-
theses were obtained on 14 randomly chosen proteins with Cβ peaks for Glycine removed.

RIBRA GASA

Dataset PR RE PR RE

Perfect 98.28% 92.33% 98.24% 93.44%
False positive 98.28% 92.35% 97.33% 92.24%
False negative 95.61% 77.36% 96.34% 89.0%
Grouping error 98.16% 88.57% 91.12% 81.27%

(87.7%) (72.7%) (88.5%) (79.4%)
Linking error 96.28% 89.15% 96.17% 89.74%

Average 97.33% 87.95% 95.84% 89.14%
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RIBRA simulation, Glycine residues would have two inter-residue peaks and two1

intra-residue peaks in the HNCACB spectrum and the amino acid residues right
after Glycine residues would have two inter-residue peaks in the CBCA(CO)NH3

spectrum. However, this is impossible in the real NMR spectral data. In real NMR
spectral data, a huge amount of ambiguity in the sequential assignment results5

from Glycine residues because they correspond to various legal combinations in
grouping stage which make the identification of perfect spin systems more difficult.7

For example, the spin systems containing 3, 4, and 5 peaks have the same chance to
be perfect spin systems as those containing 6 peaks and meanwhile they could be9

the spin systems with missing peaks. In the RIBRA simulation, therefore, grouping
is considerably easier on the datasets with the “aid” of simulated 0 chemical shift11

values for the artificial Cβ atom in Glycine residues. Since GASA is designed to
deal with the real spectral data, in which there are no peaks with 0 carbon chemical13

shifts, the performance of GASA on the grouping error dataset was not as good
as RIBRA. To verify our conjecture, we randomly selected 14 instances from the15

RIBRA grouping error dataset, with length ranging from 69 to 186, and removed
all the peaks of 0 carbon chemical shift. Both RIBRA and GASA were tested on17

these revised instances. RIBRA achieved 87.7% precision and 72.7% recall, and
GASA achieved 88.5% precision and 79.4% recall, slightly better than RIBRA. It is19

noticed that in the construction of grouping error dataset, RIBRA kept the perfect
HSQC and HNCACB peak lists untouched and only added some perturbations to21

the inter-residue peaks in the CBCA(CO)NH peak list, that is, no other type of data
error/noise. We believe that to simulate a real NMR spectral dataset, perturbing23

chemical shifts in all simulated peaks is necessary and would be closer to the reality
because the chemical shifts deposited in BioMagResBank (http://bmrb.wisc.edu/)25

have been manually adjusted across multiple spectra. Even though HSQC is a very
reliable experiment, the deposited HN and N chemical shifts in BioMagResBank27

are still slightly different from the measured values in the real HSQC spectra. In the
next Experiment 3, we chose not to simulate Cβ peaks for Glycine and to perturb29

every piece of chemical shift in the original data.

3.3. Experiment 331

The purpose of Experiment 3 is to provide more convincing comparison results
between GASA and RIBRA, based on the data simulation scheme closer to the real33

NMR data. For this purpose, we used the same 12 proteins in Experiment 1 and
the simulation is detailed as follows. For each of these 12 proteins, we extracted35

its data entry from BioMagResBank to obtain all the chemical shift values for HN,
N, Cα, and Cβ. For each amino acid residue in the protein, except Proline, its37

HN and N chemical shifts formed a peak in the HSQC peak list; its HN and N
chemical shifts with Cα and Cβ chemical shifts from the preceding residue formed39

two inter-residue peaks respectively in the CBCA(CO)NH peak list; and its HN
and N chemical shifts with its own Cα and Cβ chemical shifts and with Cα and41
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Cβ chemical shifts from the preceding residue formed two intra-residue peaks and1

two inter-residue peaks respectively in the HNCACB peak list. Note that there is
no Cβ peak for Glycine in either the CBCA(CO)NH or the HNCACB peak list.3

Next, for each peak in the HSQC, CBCA(CO)NH, and HNCACB peak lists, the
contained HN, N, Cα or Cβ chemical shifts were perturbed by adding random errors5

that follow independent normal distributions with 0 means and constant standard
deviations. We chose the same tolerance thresholds as those were used in RIBRA,7

which were δHN = 0.06 ppm, δN = 0.8ppm, δα = 0.2 ppm, and δβ = 0.4ppm,
respectively. Subsequently, the standard deviations of the normal distributions were9

set to σHN = 0.06/2.5 = 0.0024ppm, σN = 0.8/2.5 = 0.32 ppm, σα = 0.2/2.5 =
0.08 ppm, and σβ = 0.4/2.5 = 0.16 ppm, respectively.11

Partial information of and the performances of RIBRA and GASA on these 12
proteins are summarized in Table 4. The detailed dataset is available through the13
link http://www.cs.ualberta.ca/ ghlin/src/WebTools/gasa.php. From the table, we
can see that GASA formed many more spin systems than RIBRA did on every15
instance, and from the high assignment precision we can conclude that most of
these spin systems are true spin systems. On average, GASA performed significantly17
better than RIBRA (precision 86.72% versus 65.23%, ANOVA p = 3.0 × 10−4;
recall 74.18% versus 42.10%, ANOVA p = 3.1 × 10−7). The detailed precision19
and recall are also plotted in Figure 5. In summary, GASA outperformed RIBRA
in all instances and RIBRA failed to solve three instances, which are bmr4316,21
bmr4288 and bmr4929. As shown in Table 4, RIBRA achieved 65.23% precision
and 42.1% recall on average, which are noticeably worse than what it is claimed23

Table 4. Partial information of and the performance precision (PR) and recall (RE) of
RIBRA and GASA on the 12 protein NMR datasets in experiment 3. “L” denotes the
length of a protein, measured by the number of amino acid residues therein; “M” records
the number of true spin systems that are not simulated in the dataset, including those for
Prolines; “G” records the number of spin systems that were actually formed by RIBRA
and GASA, respectively.

RIBRA GASA
BMRB
Entry L M G PR RE G PR RE

bmr4391 66 7 44 65.12% 48.54% 52 92.32% 81.41%
bmr4752 68 2 44 63.12% 42.33% 54 90.71% 74.22%
bmr4144 78 10 42 64.25% 39.68% 63 84.12% 77.93%
bmr4579 86 3 54 66.34% 43.22% 70 82.92% 69.93%
bmr4316 89 4 N/A N/A N/A 67 79.11% 62.37%
bmr4288 105 9 N/A N/A N/A 84 82.91% 72.32%
bmr4670 112 10 47 76.23% 35.35% 83 90.44% 73.65%
bmr4929 114 4 N/A N/A N/A 89 95.51% 77.32%
bmr4302 115 8 70 71.35% 46.67% 97 84.52% 76.61%
bmr4353 116 18 72 55.24% 40.75% 89 96.62% 87.38%
bmr4027 158 10 96 65.23% 42.15% 123 82.64% 68.92%
bmr4318 215 24 127 60.22% 40.17% 165 78.81% 68.13%

Average 65.23% 42.1% 86.72% 74.18%
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Fig. 5. Plots of detailed assignment (a) precision and (b) recall on each of the 12 protein datasets
in Experiment 3 by RIBRA and GASA.

in Wu et al.14 The possible explanations for RIBRA not doing well on these 121

instances are: (1) The simulation procedure in Experiment 3 did not generate Cβ

peaks with 0 chemical shift for Glycines, which causes more ambiguities in the3

peak grouping, and the subsequent spin system chaining. (2) In the 12 simulated
instances in Experiment 3, the chemical shifts in every peak in all HSQC, HNCACB,5

and CBCA(CO)NH peak lists were perturbed with random reading errors, which
generated more uncertainties in every step of operation in the sequential assignment.7

Regarding the running time, GASA finished within minutes on each instances, while
the RIBRA web server generally returned an assignment in an hour, and it could9

take several hours on hard instances.
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4. Conclusions1

In this paper, we proposed a novel two-stage graph-based algorithm called GASA
for protein NMR backbone resonance sequential assignment. The input to GASA3

can be raw spectral peak lists or already formed spin systems. GASA is based on
an assignment model that separates the whole assignment process only into virtual5

steps and uses the outputs from these virtual steps to cross validate each other. The
novelty of GASA lies in the places where all ambiguities in the assignment process7

are resolved globally and optimally. The extensive comparison experiments with
several recent works including PACES, RANDOM, MARS, and RIBRA showed9

that GASA was more effective in dealing with the NMR spectral data degeneracy
and thereby provides a more promising solution to automated resonance sequential11

assignment.
As a byproduct, we have also proposed a spectral dataset simulation scheme that13

generates datasets closer to the reality. One of our future works is to formalize this
simulation scheme to produce a large number of protein NMR instances for common15

comparative study purposes. One of the reasons for doing this is that, though BioMa-
gResBank as a repository has collected all known protein NMR data, somehow there17

is no benchmark testing dataset in the literature that can be used for comparative
studies of assignment programs from different laboratories. As a preliminary effort,19

these 12 simulated protein NMR instances in Experiment 3, in the form of the well-
known triple spectra HSQC, HNCACB and CBCA(CO)NH, are available through21

the link http://www.cs.ualberta.ca/ ghlin/src/WebTools/gasa.php.
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