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ABSTRACT

Motivation: The availability of the whole genomic sequences of

HIV-1 viruses provides an excellent resource for studying the HIV-1

phylogenies using all the genetic materials. However, such huge

volumes of data create computational challenges in both memory

consumption and CPU usage.

Results: We propose the complete composition vector

representation for an HIV-1 strain, and a string scoring method to

extract the nucleotide composition strings that contain the richest

evolutionary information for phylogenetic analysis. In this way, a

large-scale whole genome phylogenetic analysis for thousands

of strains can be done both efficiently and effectively. By using

42 carefully curated strains as references, we apply our method

to subtype 1156 HIV-1 strains (10.5 million nucleotides in total), which

include 825 pure subtype strains and 331 recombinants. Our results

show that our nucleotide composition string selection scheme is

computationally efficient, and is able to define both pure subtypes

and recombinant forms for HIV-1 strains using the 5000 top ranked

nucleotide strings.

Availability: The Java executable and the HIV-1 datasets are

accessible through ‘http://www.cs.ualberta.ca/ ~ghlin/src/WebTools/

hiv.php

Contact: ghlin@cs.ualberta.ca

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The increased volume of available genomic data has made

possible phylogenetic analysis for large sets of organisms at the

whole genome scale. However, given that most

genomes contain millions to billions of nucleotides, traditional

molecular phylogenetic analysis approaches based on multiple

sequence alignments, such as maximum parsimony and

maximum likelihood, become impractical due to their high

computational complexity. Moreover, different genes have

different evolutionary rates; it has been shown that phyloge-

netic analyses using different (sets of) genes may give

inconsistent results. For instance, for the human immunodefi-

ciency virus (HIV-1), the envelope gene is known to evolve

much faster than other genes (Leitner et al., 2005); and for the

Ecdysozoa clade of animals, the accepted reliability of 18S

rRNA as a phylogenetic marker has been questioned (Dopazo

et al., 2004). Consequently, it is believed that sophisticated

analyses on the whole genome sequences are required to

provide a detailed and accurate picture of evolutionary

relationships. However, the huge size of these whole genome

sequences generally creates computational challenges including

memory consumption and CPU usage.
There exist several attempts to address phylogenetic ques-

tions from a whole genome perspective, based on efficient

information representation of the whole genomes while

bypassing the high computational complexity stage of multiple

sequence alignments (Chen et al., 2000; Grumbach and Tahi,

1994; Hao and Qi, 2003; Herniou et al., 2001; Karlin and Burge

1995; Milosavljevic, 1993; Rivals et al., 1996; Snel et al., 1999;

Stauart and Berry, 2003; Stuart et al., 2002a, b, 2004). All of

these approaches are intended to extract the hidden evolu-

tionary information from the whole genomes, but from

different angles. For example, gene content based methods

(Herniou et al., 2001; House and Fitz-Gibbon, 2002; Snel et al.,

1999, 2000) mainly concentrate on a portion of homologous

genes shared by multiple genomes, and then define an

evolutionary distance between two genomes based on their

gene sharing percentage. Alternatively, the compression based

methods (Chen et al., 2000; Grumbach and Tahi,1994;

Milosavljevie,1993) generally regard the whole genomes as

plain text, and define the similarity between two genomes as the

relative compression ratio. The disadvantages of the above two

approaches are first, that the former requires prior knowledge

on homologous genes and second, the latter suffers from

aggregate errors arising from compression.
The third class of methods in the whole genome phylogenetic

analysis attempt to extend single nucleotide or single amino

acid composition to study string composition for whole

genomes where a string is a consecutive segment of nucleotides

or amino acids (Hao and Qi, 2003; Karlin and Burge, 1995;

Li et al., 2002; Qi et al., 2004; Stuart and Berry, 2003; Stuart

et al., 2002a, b, 2004). Recent proposals in this category include

Karlin and Burge (1995), who analyzed the systematic*To whom correspondence should be addressed.

� 2007 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.cs.ualberta.ca/
http://creativecommons.org/licenses/


differences in dinucleotide frequencies within and between
species, and obtained a biologically plausible phylogenetic tree
for mitochondrial genomes, Hao and Qi, (2003); Li et al.,

(2002); Qi et al., (2004), who analyzed asymmetries in length-k
word distribution, then extracted phylogenetic properties from
genome-wide statistical observables for prokaryotes, and Stuart

and Berry , (2003); Stuart et al., (2002a, b, 2004), who used
singular value decomposition (SVD) to analyze short peptide
frequencies (of length 3–5), then built species phylogenies.

In the reported experimental results, all of the above
mentioned methods in the third category managed only strings
of length 7 or less for amino acid sequences and of length 12 or

less for nucleotide sequences into computation, because of
memory demands. Theoretically, one may increase the max-
imum string length to have finer composition for the whole

genomes in order to obtain more accurate pair-wise evolu-
tionary distances. However, increasing string length requires
too much memory to be practical as well as increased CPU

usage. For example, computing length-7 peptide composition
for a whole genome (which is regarded as the union of its
encoding proteins) already requires gigabytes of storage,

regardless of the size of the genome. Consequently, in practice,
the maximum string lengths have been set to relatively small
values such as 5 and 6.

Nevertheless, it has also been observed that not every
composition string contributes equally to the evolutionary
distance calculation. In fact, some strings appear to have

more discriminatory power than others. Stuart and Berry,
(2003); Stuart et al., (2002a, b, 2004) proposed to employ
SVD on the peptide-to-genome frequency matrix, to extract

a reduced number of string linear combinations, and then
use their pseudo frequencies to represent the genomes.
However, such a decomposition does not address the

memory issue, i.e. the peptide-to-genome frequency matrix
must still be computed, and that can only be done when the
maximum string length is a small value. In addition, the

string linear combinations created by SVD are difficult to
explain biologically.
Based on the above two major observations, we propose a

string scoring method to extract explicit composition strings
that heuristically identify the richest evolutionary informa-
tion, and then to use only these selected strings in the

evolutionary distance calculations. These selected composi-
tion strings can be regarded as the most important features
with respect to the whole genomic sequences. In our

method, the number of selected strings is a parameter that
can be tuned depending on the available computing
resources. In particular, the memory requirement in the

selection process is proportional to the number of selected
strings, and selecting thousands of strings can be processed
on a normal desktop, while examining candidate strings of

an arbitrarily large length.
We applied our method on a dataset of 867 pure subtype

HIV-1 strains and 331 various recombinants, to predict their

subtypes or recombinant forms. Among the 867 pure subtype
strains, 42 were used as references. By setting the number of
selected strings at 500 and the maximum string length at 21, we

achieved 100% leave-one-out subtyping accuracy on the
reference dataset of 42 pure subtype strains. Using these 500

strings, we also achieved 100% subtyping accuracy on the
independent testing dataset of the other 825 pure subtype

strains. These 867 pure subtype strains were also used in blind
comparison to three most recently proposed HIV-1 subtyping

programs (Myers et al., 2005; Oliveira et al., 2005; Rozanov
et al., 2004) which achieved 96.4, 99.2, and 99.5% accuracy,

respectively. More detailed analysis revealed these 500 top
scoring strings to be signature strings associated with

certain subtypes. Subsequently, we present a method to
remove 2–50% consecutive nucleotides from each of the 331

recombinant strains and then to predict the subtype informa-
tion for the remaining sequence. The non-trivial percentage

(e.g. 3%) of predicted subtypes match well with the known
recombinant forms, with some exceptions strongly suggesting

the need for further human re-curation. All these results

demonstrate that our proposal is promising in terms of both the
biological significance of the selected nucleotide composition

strings and the quality of the recovered phylogenetic
relationships.
The rest of the article is organized as follows: in the next

section, we briefly introduce the Complete Composition Vector
(CCV) representation for a whole genome. We will then present

a selection scheme to extract the most informative nucleotide

composition strings. Using these selected strings, we can obtain
a much lower dimensional composition vector for each genome.

We then define the evolutionary distance between two genomes
based on their composition vectors. In Sections 3 and 4, we

report and discuss the computational results on the HIV-1
subtyping, respectively. Section 5 presents the recombinant

form prediction and the preliminary experimental results. We
conclude the article in Section 6.

2 METHODS

2.1 Complete composition vector

We use whole genomic sequences to introduce the concept of CCV. For

a genome represented as the union of its encoding protein sequences, its

CCV can be analogously defined. First, a length-k string is a sequence

of k consecutive nucleotides. Given a whole genomic sequence G of

length L, the number of appearances of a length-k string � ¼ a1a2 . . . ak
in G is f(�), where every ai is a nucleotide. Since there are L� kþ 1

(overlapping) length-k strings in G in total, the probability of

appearance of string � in sequence G is pð�Þ ¼ fð�Þ=ðL� kþ 1Þ.

Similarly, we can define the probability of appearance p(�) for string

� in a whole genome containing multiple chromosomes, where the

dividend becomes the number of appearances across all the chromo-

somes and the divisor becomes the total number of (overlapping)

length-k strings in all the chromosomes.

Based on all the string appearance probabilities, we can

define the composition value �ð�Þ for string �. In this

article, we adopt a second order Markov model similar to Hao

and Qi (2003). In such a model, we first calculate the expec-

ted appearance probability of string � ¼ a1a2 . . . ak as

qða1a2 . . . akÞ ¼ ðpða1a2 . . . ak�1Þ � pða2a3 . . . akÞÞ=pða2a3 . . . ak�1Þ, and

then define the composition value �ð�Þ ¼ ðpð�Þ � qð�ÞÞ=qð�Þ. All the

composition values are stored in a sequential order to form a vector

VkðGÞ ¼ h�1,�2, . . . ,�mi that represents the whole genome G, where k is

the string length and m denotes the total number of strings under

consideration. In Hao and Qi (2003) and Qi et al. (2004), the (amino

acid) string length k was fixed at a single very small value (�6). In one

of our previous research (Wu et al., 2006), we conducted a systematic
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study and concluded that using strings with multiple lengths, in a range

½1,K� for some K, is more effective. Particularly, the phylogenetic

analysis and the resultant phylogeny in Wu et al. (2006) showed

improvements over using only one fixed length. In this article, we

continue to use strings of length range ½1,K�, and the vector definition

by all these composition values of strings, i.e. the concatenation of

V1,V2, . . . ,VK, is referred to as the CCV of the whole genome.

Certainly, a larger value of K gives a vector containing finer

evolutionary information.

A CCV is thus an m-dimensional vector (for instance, m could be

as large as 4þ 42 þ 43 þ . . .þ 415 ¼ 1431, 721, 300, when K ¼ 15).

Note that m could be a very large number, and it implies one

major disadvantage of CCV for acquiring too much memory to be

computationally efficient. In the preliminary experiments, we set

target to examine strings of length up to 100, and therefore the

memory issue needed to be addressed. First, observe that there are

strings, especially when they are long, which do not occur at all in

any whole genome in the dataset. We thus do not compute their

composition values. Subsequently, the CCV for a whole genome has

a much lower dimension, in which every entry is associated with a

string that occurs in at least one genome. Second, notice that not

all strings contribute to the phylogenetic analysis equally. Therefore,

we propose to extract only a small number of strings, which contain

the richest evolutionary information, and use only them in the

phylogenetic analysis. The proposed string extraction scheme is

based on the measurement of relative entropy, which has been

constantly employed in the general feature selection in the statistical

learning literature. The most important parameter in this framework

is the number of extracted strings, which is likely dataset dependent

and, on the HIV-1 subtyping, is set at 500 through extensive

preliminary/training experiments. Such a setting is to maintain the

overall quality of the recovered HIV-1 phylogenetic relationships.

Under this string extraction scheme, we were able to examine much

longer strings (in our experiments, up to 100) without causing any

memory problems, and as a result we discovered that those

composition strings with the richest evolutionary information in

HIV-1 subtyping have length mostly in the range ½5, 9�. Such a

discovery confirms partially the idea that we can skip long

strings in the whole genome phylogenetic analysis. The reported

HIV-1 subtyping results are on strings of length 1–21. It also

confirms that using a single length is not sufficient (Wu et al.,

2006), and thus the CCV representation is in general more effective

than the representation proposed in Hao and Qi (2003) and

Qi et al. (2004).

2.2 String selection and phylogenetic relationships

In this section, we first introduce a scoring scheme to estimate how

important a nucleotide composition string is, and then, by selecting

top ranked 500 strings, we obtain a 500-dimensional composition

vector for each whole genome. Two other scoring schemes that have

also been tested and the empirical determination of the string

number 500 are included in Discussion section. On the HIV-1

dataset of 42 reference strains, we note that 500 is much smaller

than the total number of examined strings (of length 1–21), which is

2 260 957, and these 500-dimensional vectors can be computed

without causing any memory problem. Note also that, disregarding

the memory issue, the string selection is done in almost the same

amount of time for computing the CCV representation, except a

negligible amount of time for computing relative entropies. These

vectors are then used to define a pair-wise evolutionary distance

between every pair of whole genomes, and then the achieved

distance matrix is used to construct a Neighbor-Joining (Saitou and

Nei, 1987) phylogeny, and in subtyping. The quality of the

recovered phylogenetic relationships, represented in subtyping

accuracy, demonstrates the success of our method and the quality

of the selected composition strings.

2.3 String scoring scheme: relative entropy

Basically, the scoring scheme is set up to evaluate the information

content associated with the composition strings, and to assign a higher

score to a string if its information content is richer. Note that each

string is evaluated independently. To begin, we concatenate all the given

whole genomes in the dataset and regard the result as a super-genome.

We then compute the composition value �ð�, iÞ for string � in genome i,

for each i ¼ 1, 2, . . . , n (here n is the number of whole genomes in the

dataset), and the composition value �ð�Þ for string � in the super-

genome.

The absolute composition values j�ð�, iÞj for string � in all the

given genomes may be regarded as an unnormalized probability

distribution of string �, where the index i is regarded as a

variable. We use relative entropy (or Kullback–Leibler distance) to

assign a score to string � to measure the distance between this

distribution and the unnormalized background probability represented

as �ð�Þ. Namely,

sð�Þ ¼
Xn
i¼1

j�ð�, iÞj ln
�ð�, iÞ

�ð�Þ

����
����,

where lnð Þ is the natural logarithm. Note that relative entropy is

used to estimate the distance between two probability distributions.

Therefore, sð Þ defined in the above is close to 0 if the actual distribution

is close to the background one. In other words, the larger the absolute

relative entropy, the more informative string � is.

2.4 Selected string composition vector

We maintain a buffer of size 500 to store the nucleotide composition

strings that have been examined, and have the highest scores using the

above relative entropy-based scoring scheme. We examine the strings in

increasing length and, for each length, in lexicographical order. For

each string under consideration, if there is a room in the buffer

(i.e. among the first 500 strings), it is appended; otherwise, its score is

compared with the minimum score of the strings stored in the buffer,

and if larger, it replaces the string with the minimum score. By only

saving these 500 highest scored strings, the potential memory issue is

resolved and the maximum string length to be examined can be set to an

arbitrarily large value. For example, we have examined strings of length

100 in our preliminary experiments on a normal desktop of 1GB

memory. After all strings have been examined, the composition values

of the 500 top scored strings stored in the buffer are used to assemble

the 500-dimensional composition vectors to represent the whole

genomes. Let VðiÞ ¼ h�i1 ,�i2 , . . . ,�im i be the vector representing

genome i, for i ¼ 1, 2, . . . , n, where m ¼ 500 and �ij denotes the

composition value of the j-th highest scored string in genome i, for

j ¼ 1, 2, . . . ,m.

2.5 Pair-wise evolutionary distance

For every pair of genomes i and j, represented as

vectors VðiÞ ¼ h�i1 ,�i2 , . . . ,�im i and VðjÞ ¼ h�j1 ,�j2 , . . . ,�jm i in the

m-dimensional space, the Euclidean distance between them is

dði, jÞ ¼
Xm
‘¼1

ð�i‘ � �j‘ Þ
2

 !1
2

,

which is taken as the evolutionary distance between these two genomes.

This gives a distance matrix Dn�n ¼ dði, jÞð Þn�n for the n genomes in the

input dataset.
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2.6 Whole genome phylogenetic relationships

The distance matrix Dn�n is used as input to the Neighbor-Joining

algorithm to display the phylogenetic relationships among the whole

genomes. These distances are also used for HIV-1 subtype prediction

for each testing strain. Essentially, the distances between the testing

strain and the carefully chosen 42 HIV-1 reference strains are calculated

using the above steps of operations, and based on them the subtype or

the recombinant form of the testing strain is inferred.

3 COMPUTATIONAL RESULTS

3.1 Overview

To evaluate the effectiveness of our string selection method, we

have tested it on a dataset of HIV-1 pure subtype and

recombinant strains to predict their subtypes or recombinant

forms.
HIV is among the most genetically variable organisms

known. HIV-1 is classified into three major phylogenetic

groups, M (major), N (new) and O (others). Group M, which

is responsible for the HIV pandemic, is further divided into nine

subtypes, some of which have been even further subdivided

into sub-subtypes. Besides GenBank, there are several

other viral databases holding HIV virus sequences, such as

the one provided by Los Alamos National Laboratory (http://

hiv-web.lanl.gov/content/index). In 2005, a set of 42 reference

whole genomic sequences was published (Leitner et al., 2005),

which included 35 sequences in group M, 3 in group N and 4 in

group O. In addition, we have downloaded a total of 825 other

pure subtype and 331 recombinant HIV-1 whole genomes for

independent testing (several hundred other incomplete strains

were excluded from our experiments).
Accurate determination of the genetic subtype for an HIV-1

strain is of crucial importance for epidemiological monitoring

as well as for the design of molecular detection systems and

potential vaccines (Rambaut et al., 2004). This work addresses

mainly the pure subtype HIV-1 subtyping. A discussion on

using this subtyping system to determine the recombinant form

for a recombinant strain is included in Section 5. Current

subtyping and recombinant form determination methods

mostly rely on multiple sequence alignments (de Oliveira

et al., 2005; Martin et al., 2005; Myers et al., 2005), except

the one by Rozanov et al. (2004) based on BLAST search

(Altschul et al., 1997). To the best of our knowledge, multiple

sequence alignments have limited quality and are constrained

by the size of the dataset (e.g. the EMBL-EBI ClustalW server

at ‘http://www.ebi.ac.uk/clustalw/’ accepts datasets containing

no more than 500 sequences). On the set of 42 HIV-1 reference

strains, we selected the 500 top scored strings by relative

entropy, and the leave-one-out subtyping accuracy using only

the 500 selected strings was 100%. Using these 500 strings,

independent subtyping of the 825 testing strains achieved also

100% accuracy. The combined dataset of 867 pure subtype

strains were also sent to three other HIV-1 subtyping programs

(de Oliveira et al., 2005; Myers et al., 2005; Rozanov et al.,

2004), for comparison purpose. Overall, our method success-

fully avoids the computationally intensive alignment phase, and

achieves high subtyping accuracy. Another advantage of our

method is that it does not require any pre-knowledge about the

genomic sequences (such as one portion of the genome is more

important than the other portion during the subtyping), while

those important regions will be automatically detected accord-

ing to their coverage by the selected strings, which also allow

biological explanation.

3.2 Results

We applied our string selection method on the set of 42 HIV-1

reference sequences, which can be viewed as the training stage,

to select the 500 most informative strings for subtyping

purpose. The discerning power of these strings is evaluated

through the leave-one-out cross-validation on the 42 reference

sequences and an independent testing on the dataset containing

825 pure subtype HIV-1 viral sequences. The 42 HIV-1

reference sequences consists of 6 subtype A (4 A1 and 2 A2),

4 subtype B, 4 subtype C, 3 subtype D, 8 subtype F (4 F1 and 4

F2), 3 subtype G, 3 subtype H, 2 subtype J, 2 subtype K, 3 type

N and 4 type O. The average length of these strains is 9005 bp,

with the maximum length 9829 bp and the minimum length

8349 bp. These HIV-1 reference sequences were carefully

selected by considering several criteria (Leitner et al., 2005).

We set a maximum string length K in our method, and the

method examined the strings in increasing length and, for each

length, in lexicographical order. When K ¼ 21, the 500 top

ranked (out of 2 260 957) strings have their length distributed in

between 5 and 10. The second row of Table 1 shows the

percentages of different length strings among these 500 top

ranked strings, where one can see that length-7 and length-8

strings are dominant (81.0%). We have also collected

the relative entropies of the top 5000 strings (whose percentages

in the third row of Table 1) and plotted them in Figure 1 in

non-increasing order. The top 500 strings are colored blue

(the other 4500 in red) in 1. Form the plot, it is clear that the

strings that did not make into the list of 500 have relatively

small relative entropies, and thus can largely be ignored. By

representing each strain as a 500-dimensional vector, the

subsequently computed evolutionary distance matrix for this

set of 42 HIV-1 reference strains was used as input to the

Neighbor-Joining method to generate a phylogenetic tree

(Fig. 2), using one CIV strain AF447763 as an outgroup.

In this tree, all subtypes are clearly grouped together as distinct

branches, and the closeness relationships among the subtypes

are also well demonstrated, e.g. subtypes B and D are closer to

each other than to the others and subtype F (A) indeed contains

two distinguishable sub-subtypes F1 and F2 (A1 and A2,

respectively).
On these 42 HIV-1 reference sequences, we adopted the

leave-one-out cross-validation (LOOCV) scheme to predict the

subtype information for each sequence whose subtype was

Table 1. Percentages of different length strings in the top ranked strings

Length 4 5 6 7 8 9 10

Top 500 – 2.2 10.0 58.2 22.8 6.6 0.2

Top 5000 0.138 1.308 7.108 22.85 37.122 24.006 7.462

Nucleotide composition string selection in HIV-1 subtyping
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blinded. In more details, the testing sequence was removed
from the dataset, and the above string selection procedure was

applied to the rest of the 41 sequences to identify the 500 top
ranked strings by their relative entropies. Note that these 500

strings could slightly differ from the 500 top ranked strings by
using all 42 sequences. Next, using the selected 500 strings, the
distances between the testing sequence and all the 41 reference

sequences were calculated, and the subtype of the closest
reference sequence was taken as the predicted subtype of the

testing sequence. We repeated this training testing on each of
the 42 sequences and obtained 100% subtyping accuracy.
Using these 42 reference sequences as a training dataset to

select 500 strings, we independently predicted the subtype for
each of the 825 pure subtype HIV-1 sequences. Among the 825

sequences, there are 55 A1, 9 A (not known to be A1 or A2),
264 B, 415 C, 51 D, 2 F1, 10 G, 2 N and 17 O. For each of the
testing sequences, whose subtype was blinded, the distances

between it and all the 42 reference sequences were calculated

using (only) the 500 selected strings. The subtype of the closest

reference sequence was then taken as the predicted subtype of
the testing sequence. We also achieved 100% subtyping
accuracy (for each of the 9 A sequences, both A1 and A2

were counted as correct prediction) on this independent testing
dataset. Moreover, for each testing sequence, we have observed

that the second closest reference sequence from the 42 reference
sequences has the same subtype as the closest one. This
certainly indicates high prediction confidence. For each testing

sequence, we have also calculated its average distances to all the
13 subtypes. The closest subtype by average distance is exactly

the same as the subtype of the closest sequence. Let d1 and d2
denote the shortest and the second shortest average distances,
respectively, and d13 denote the longest average distance.

Numerically, we assigned ðd2 � d1Þ=ðd13 � d1Þ (Dixon metric)
as the quantified confidence associated with the subtype

prediction. For all the 825 testing sequences, their subtype
prediction confidences are plotted in Figure 3, in non-
increasing order, where only 5 of them are less than 0.1

(0.099233, 0.098523, 0.094155, 0.073713 and 0.052269), which
is the normal lower bound for high confidence (Su et al., 2001).

A closer look at these five sequences tells that (1) four of them
are of subtype D, and their average distances to subtypes D and
B are very close to each other; (2) the other one (AY173955) is
of subtype B, whose average distance to subtype D is very close
to its average distance to subtype B.
To compare with existing HIV-1 subtyping programs

(de Oliveira et al., 2005; Myers et al., 2005; Rozanov et al.,
2004), we have uploaded all the 867 pure subtype sequences to

them to predict their subtypes. The genotyping tool by
Rozanov et al. (2004) (http://www.ncbi.nlm.nih.gov/projects/
genotyping/) slides a window along the query sequence and

BLASTs each window segment against reference sequences.
Similarity scores to reference sequences are returned for each

BLAST, and we applied the naive pure subtype assignment
using the subtype of the reference sequence with the
highest average similarity score. Its overall prediction accuracy

was 99.5% (four were predicted incorrectly, precision 99.5%,
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Fig. 2. The Neighbor-Joining phylogenetic tree on the 42 reference

sequences using the 500 top ranked strings, one CIV strain AF447763
is used as an outgroup.
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dictions are considered not-so-confident under Dixon metric. Colour

version of this figure is available as Supplementary material online.
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Supplementary Materials), but when we forced it to predict
pure subtypes only, its accuracy reached 100%. The subtyping
system, BioAfrica, by de Oliveira et al. (2005) (http://

www.bioafrica.net/subtypetool/html/) consists of a multiple
sequence alignment by ClustalW, maximum likelihood phylo-
genetic analysis by PAUP followed by bootscanning

and subtype determination by Treepuzzle. Its prediction
accuracy was 99.2% (seven were unassigned, no false positive,
Supplementary Materials). The STAR subtyping system

by Myers et al. (2005) (http://www.vgb.ucl.ac.uk/starn.shtml)
evaluates the query sequence against subtype profiles and
returns discrimination scores, which are then transformed into

a Z-score distribution for determination of HIV-1 subtype. Its
prediction accuracy was 96.4% (31 were unassigned, no false

positive, Supplementary Materials). There is a recent indepen-
dent assessment (Gifford et al., 2006) of three automated
genotyping tools including the above BioAfrica and STAR,

which (was brought to our attention during the revision) shows
many inconsistent genotyping results and suggests that those
unassigned strains/sequences show some evidence of recombi-

nation. The 867 strains have been annotated as pure subtypes,
and our method did perform well, though it might seem
aggressive on the not-so-confident prediction.

4 DISCUSSION

We mentioned that the maximum string length K to be
examined did not affect the subtyping performance in our
experiments, as long as it is larger than a certain value C.

On the set of 42 HIV-1 pure subtype strains, C is 10 when we
set the number of strings to be selected to 5000 or less.
Nevertheless, C is clearly associated with the number of selected

strings, and a larger number of selected strings would imply a
larger value of C. We also believe that C is dataset dependent.
That is, for other whole genomic sequences, C could have

different values, even when the number of selected strings is the
same. We will be investigating this idea on avian influenza virus
(AIV) and food and mouth disease virus (FMDV).

To address whether 500 top ranked strings by relative
entropy are appropriate for HIV-1 subtyping, we examined a
range of selected strings from 50 to 5000, at the increment of 50,

and checked the corresponding subtyping accuracy. We have
observed the first 100% subtyping accuracy at 450, and for

every other number tested afterwards, the subtyping accuracy
remained at 100% (i.e. never decreased). We therefore decided
to set 500 as the default. Nevertheless, we have found that, by

using 5000 strings, most of the subtyping confidences increased.
In particular, four not-so-confident predictions using only 500
strings became confident when using 5000 strings, and only one

(DQ054367) remained not-so-confident (the Dixon metric
decreased, strangely, from 0.098523 to 0.080143). On top of
the non-increasing order of prediction confidences using 500

strings (blue), the prediction confidences using 5000 strings
(red) are plotted and shown in Figure 4, where one can see that
the relative confidences remain largely unchanged and, for most

of the testing sequences, the associated prediction confidences
using 5000 strings increase.
Next, we examined how well the selected 500 strings cover

the positions in the HIV-1 whole genomes. For each of these

500 selected strings, if it occurs in one of the 867 pure subtype

sequences, then the positions where the string occurs receive a

probability of k=ðL� kþ 1Þ each, where k is the string length

and L is the sequence length. The probability that one position

receives is regarded as the coverage probability of the position,

which indicates the relative significance of the position for

subtyping purposes. For each position in the multiple align-

ment of the 42 reference sequences by ClustalW (which was

constructed through the EMBL-EBI server at ‘http://www.

ebi.ac.uk/clustalw/’, in 113 min1), we computed its coverage

probability and plotted them in Figure 5. One can see from this
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Fig. 4. The prediction confidence values using the top 5000 strings
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prediction using the top 5000 strings remains not-so-confident. Colour
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1Unfortunately, we would not be able to construct the multiple
alignment of all the 867 sequences due to the limit of sequence number
in the server.We have also downloaded ClustalW for local testing but
the estimated running time for the 867 sequences was more than two
months on a desktop of 2.8GHz and 8GB memory. Nevertheless, we
did submit a subset of 412non-C strains to the server, and obtained an
MSA after more than 80 h.
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plot that the most frequently covered positions by these 500
selected strings match very well with the most important
positions in the ClustalW’s multiple alignment (shown as red þ,

others as blue circles). This is another indication that our
method is able to capture the critical sequential evolutionary
information indicated by multiple sequence alignments.

In addition to the above string composition values computed
within the second order Markov model, we have also examined
the first order Markov model in which the composition value

directly uses the string occurrence frequency. Also, in addition
to the relative entropy scoring schemes, we have tested two
other scoring functions: the SD of the composition values and

the mean-weighted variant. It turned out that the relative
entropy scoring scheme performed significantly better than the
other two (data not shown); and the first order Markov model

appeared much inferior to the second order Markov model
(data not shown). Note that our string selection was done by

examining all the strings within the length range, but assuming
no correlations amongst them. One immediate future task is to
consider possible correlations, and if identified, to borrow ideas

from general feature selection methods and classification
methods to exploit the feature correlations. Finally, but not
of least interest, we will be working with other groups to further

investigate the biological content of these 500 selected strings
for post-subtyping studies. Interestingly, a BLAST search
seemingly shows that the top ranked string GAAAAAGAG, by
relative entropy, seems a signature of subtypes B, F and K
(GAAAAAGAG appears in 41.8, 80, 100% subtype B, F, K strains
in our dataset, respectively).

5 RECOMBINANT FORM PREDICTION

There are many proposed methods and programs which
address RNA recombination detection, especially in RNA
viruses, such as HIV and hepatitis C virus (HCV) (Martin et al.,

2005; Milne et al., 2004; Rozanov et al., 2004). Most of
these methods and programs start with multiple sequence
alignments (Martin et al., 2005; Milne et al., 2004). For an

HIV-1 viral strain known to be pure subtype, its subtyping
is considered relatively easy. This has been demonstrated by
our method, as well as the three subtyping programs we have

tested. However, HIV-1 is notorious for its various forms of
recombinations, which constantly challenge the drug develop-

ment (Rambaut et al., 2004). Thus, upon the arrival of each
new strain, the subtyping task is to determine whether it is a
pure subtype strain, and, if it is not, to determine its

recombinant form.
We randomly selected 16 out of the 825 pure subtype

sequences, and for each of them, we partitioned it into 50 equal

parts, each containing around 180 nt. At each testing, a
consecutive ‘ parts, where 1 � ‘ � 25, were removed from the
whole strain and the remainder were concatenated into a new

sequence. Using the 5000 top ranked strings selected using the
42 HIV-1 pure subtype reference sequences, the new sequence
was again represented as a 5000-dimensional composition

vector. The distances between this vector and the 42 reference
sequences were then calculated, and the subtypes of the two
closest reference sequences were reported. For each strain, a

total of 950 testings were executed and 1900 predicted subtypes

were reported. For each of the distinct 13 subtypes, its

occurrence frequency in these 1900 predicted subtypes was

calculated, and every strain was represented as a 13D vector.

These frequencies are color coded and plotted in Figure 6

(the left 16 columns), where one can easily see that those non-B

strains are confidently evaluated to be pure subtype strains,
though a few of them (two A1, two B and two D) have been

mixed with some small percentage of information from other

subtypes.
We then used the above approach, extended from our pure

subtyping method, to determine the HIV-1 circulating recom-

binant forms (CRFs). That is, each of the 331 HIV-1

recombinant strains (196 CRF01AE, 52 CRF02AG,

3 CRF03AB, 3 CRF04CPX, 3 CRF05DF, 8 CRF06CPX,

7 CRF07BC, 4 CRF08BC, 5 CRF09CPX, 3 CRF10CD, 10
CRF11CPX, 10 CRF12BF, 6 CRF13CPX, 7 CRF14BG,

5 CRF1501B (AE/B), 2 CRF16A2D, 4 CRF18CPX and

3 CRF19CPX) was partitioned into 50 equal parts, and there

were 950 associated testings, for each of which the subtypes of

the two closest reference sequences were reported. Then,

similarly, for each of the distinct 13 subtypes, its occurrence
frequency in these 1900 predicted subtypes was calculated and

every recombinant strain was represented as a 13D vector

(for seven randomly picked recombinant strains, their asso-

ciated vectors are plotted in Figure 6, the right seven columns).

The non-trivial portions of the predicted subtypes can be

assigned as the recombinant form. For instance, for strain
AF179368, 37.6% predicted subtypes are A1, 0.2% are F1,

2.6% are F2 and 59.6% are G. Therefore, we may predict this

strain as A1G recombinant. The known recombinant form,

recorded in the LANL HIV Sequence Database, is CRF11CPX

and it is a mosaic of A/G/E/J. In other words, our

computational prediction somehow missed subtype J informa-
tion. For each recombinant strain, we calculated the prediction

accuracy as the percentage of correctly assigned subtypes

among the 1900 ones. The average prediction accuracy on those

91 recombinant strains (CRF02AG, CRF03AB, CRF05DF,

CRF07BC, CRF08BC, CRF10CD, CRF12BF, CRF14BG and
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CRF16A2D) which have the deterministic recombinant forms
is 87.3%. Among the above seven selected recombinant strains,
our method perfectly predicted on AF063224 and L39106,
which are AG recombinants (Fig. 6, the 20th and 21st
columns).
It is claimed that the NCBI genotyping tool is ‘especially

useful for the analysis of recombinant sequences’ (Rozanov
et al., 2004). To consider this claim, we first conducted a
comparative study by submitting all the 331 recombinant

strains to the server, but only allowed it to predict pure
subtypes. For each sliding window, we reported the top two
subtypes according to the BLAST similarity score, and

similarly calculated the prediction accuracy. For the 91
strains having deterministic recombinant forms, the average
prediction accuracy was 73.4%. Second, we replaced the 48

reference pure subtype strains in the tool by our 42 reference
strains (in fact, our 42 are included in the 48) to test the

BLAST methodology using the same set of reference strains.
For the 91 strains having deterministic recombinant forms,
the average prediction accuracy decreased a little to 66.2%.

In another study, we allowed the server to report the closest
recombinant form since it has reference recombinant strains.
Among the collected 331 recombinant strains, 65 of them are

used as references in the tool (the tool has in total 68
reference recombinant strains, in which 3 of them are absent
from the LANL HIV Sequence Database). For the other 266

recombinant strains, the server made only two mistakes
where two CRF12BF strains, AY771588 and AY771589,
were predicted to pure subtype B. The prediction results

remained exactly the same even when the 48 reference pure
subtype strains were replaced by our 42 reference strains. In

the last study to test our pure subtyping method, we used
our 42 reference pure subtype strains and the 68 reference
recombinant strains in the NCBI tool, and the 5000 selected

nucleotide strings to map every strain into a 5000-
dimensional space and subsequently calculated all the pair-
wise distances. Each of the 266 testing recombinant strains

was assigned the closest pure subtype or recombinant form.
We were able to assign only 242 strains correctly, while all
the other 24 strains were incorrectly assigned as CRF02AG.

This indicates that the 5000 nt strings are not good enough
for recombinant form prediction, since they were selected
for pure subtyping purpose. Nevertheless, it is interesting to

see that both AY771588 and AY771589 were predicted to
CRF02AG but not pure subtype B, suggesting that the 5000
selected nucleotide strings might capture some information

missed by BLAST.

6 CONCLUSIONS

We proposed a method to select the most informative strings
and use only their composition values to represent the

whole genomes. Such a proposal appears novel in the context
of HIV-1 subtyping and recombinant form determination.
It reduces the genomic data dimensionality, and possibly

reduces sequential evolutionary noise, and thus makes feasible
the whole genome phylogenetic analysis on a large set of
sequences. Such a method also enables us to identify

informative explicit strings with respect to a large set of

sequences and therefore supports biological explanation. Using
our method to select 500 strings, for a total 867 pure subtype
HIV-1 viral strains, we were able to predict their subtype

perfectly, i.e. 100% accuracy.
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