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Abstract
Background: Serotypes of the Foot-and-Mouth disease viruses (FMDVs) were generally
determined by biological experiments. The computational genotyping is not well studied even with
the availability of whole viral genomes, due to uneven evolution among genes as well as frequent
genetic recombination. Naively using sequence comparison for genotyping is only able to achieve a
limited extent of success.

Results: We used 129 FMDV strains with known serotype as training strains to select as many as
140 most serotype-specific nucleotide strings. We then constructed a linear-kernel Support Vector
Machine classifier using these 140 strings. Under the leave-one-out cross validation scheme, this
classifier was able to assign correct serotype to 127 of these 129 strains, achieving 98.45% accuracy.
It also assigned serotype correctly to an independent test set of 83 other FMDV strains
downloaded separately from NCBI GenBank.

Conclusion: Computational genotyping is much faster and much cheaper than the wet-lab based
biological experiments, upon the availability of the detailed molecular sequences. The high accuracy
of our proposed method suggests the potential of utilizing a few signature nucleotide strings instead
of whole genomes to determine the serotypes of novel FMDV strains.

Background
Foot-and-mouth disease (FMD) is one of the most conta-
gious animal diseases, with a large economic impact. Fre-
quent sporadic outbreaks have been reported in many
countries. The most recent outbreak in the United King-
dom costs tens of billions of dollars [1]. This disease
causes extensive epidemics in domestic and wild cloven-
hooved animals, such as cattle, sheep, goats, and pigs. In
addition, it can result in persistent infections in rumi-

nants, and so the disease is in the importation banning
and detection list of most countries. Furthermore, this dis-
ease can cause mild infection in human through skin
wounds or the oral mucosa. Therefore, once this disease is
identified, the infected animals are always required to be
destroyed. The vaccination is the most efficient method to
prevent this disease, so preparation and selection of an
efficient vaccine will be the most important for FMD pre-
vention and control.
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FMD is caused by a single strand RNA virus, so-called
FMD virus [2], which is a member of the family Picorna-
viridae, genus Aphthovirus. The genome of FMDV is about
8.4 kbp in size (including highly structured 5' and 3'
untranslated regions), and encodes 12 proteins – leader
proteinase Lpro, four structural proteins 1A (VP4), 1B
(VP2), 1C (VP3), and 1D (VP1), and seven non-structural
proteins 2A, 2B, 2C, 3A, 3B (VPg), 3C, and 3D [3]. Like
other RNA viruses, mutation and recombination always
facilitate the emergence of new FMDV strains. So far,
seven immunologically distinct serotypes have been iden-
tified: Euroasiatic serotypes A, O, C, and Asia1 and South
African Territories serotypes SAT1, SAT2, and SAT3. The
capsid protein VP1 is exposed to the surface of the viron
and contains serotype-specific amino acid sequence varia-
tions. Note that the dissimilarity in nucleic acid in the pro-
tein coding region among different serotypes can be up to
54% [3].

Traditional laboratory experiments for serotyping were
based on the enzyme-linked immunosorbent assay
(ELISA) [4,5] and the reverse transcriptase polymerase
chain reaction (RT/PCR). More recent methods, such as
antigen capture RT/PCR (Ag-RT/PCR) [6], employ type-
specific antibodies (against immuno-reactive recom-
binant proteins) for virus capturing followed by RNA
amplification. These methods generally target only the
VP1 gene, or VP1 and other capsid-coding genes. They are
very useful for selecting the correct vaccines in case of
FMD outbreak, but they may not be able to identify the
presence of new variants or recombinants of multiple
serotype viruses, which are very common cases for FMD.
However, identification of the presence of new variants or
recombinants is essential for determining the source of
outbreak, understanding the evolution of the virus, and
advancing the FMDV epidemiological study. Recently,
advances in genomic sequencing technologies allow us to
obtain rapidly the complete genomes of FMDV, and this
enhances the development and application of computa-
tional strategies in serotype and genotype analyses of

FMDV [3,6-8]. Previous computational genotyping analy-
sis is generally based on a multiple sequence alignment of
the viral genomic sequences or their protein products [7].
For example, the most recent FMDV phylogenetic and
recombination analysis used split decomposition [8] to
examine the complete strains of 103 isolates [3]. How-
ever, this strategy is limited by data size (particularly, the
number of sequences), that is, the larger the dataset, the
lower accuracy can be achieved.

In this study, we propose to identify a set of signature
nucleotide strings which can be readily used to efficiently
detect the genotypes for emerging FMDV strains. Our
method utilizes information theory and an advanced fea-
ture selection method to extract the serotype-specific
nucleotide strings using the complete composition vector
(CCV) representation [9] of a set of known FMDV strains
and then to build linear-kernel support vector machines
as a genotype classifier using these extracted strings. In
addition to genotype analysis, these extracted signature
strings may shed lights on virus evolution, especially
within the unique regions in the viral proteins, which may
be used for vaccine construction for virus recombinants.

Results
The first FMDV dataset we collected contains in total 129
whole viral genomes [see Additional file 1 for their NCBI
GenBank accession numbers]. This dataset is used for
cross validation study. Among these 129 whole genomes,
there are 47 serotype A strains, 48 serotype O strains, 8
serotype C strains, 9 serotype Asia1 strains, 9 serotype
SAT1 strains, 4 serotype SAT2 strains, and 4 serotype SAT3
strains (Table 1, second column). The average length of
these whole genomic sequences is 8, 151 bp (including
highly structured 5' and 3' untranslated regions), with the
maximum length 8, 280 bp and the minimum length 6,
996 bp. These FMDV sequences were downloaded from
NCBI GenBank in December 2006. The second dataset
contains 83 other FMDV strains [see Additional file 1 for
their NCBI GenBank accession numbers], which were

Table 1: LOOCV and independent genotyping accuracies

A O C Asia1 SAT1 SAT2 SAT3 A O C Asia1 SAT1 SAT2 SAT3

129 47 49 8 9 10 3 3 83 6 31 16 26 1 2 1
A 47 47 6 6
O 48 48 31 31
C 8 8 16 16

Asia1 9 9 26 26
SAT1 9 9 1 1
SAT2 4 1 3 2 2
SAT3 4 1 3 1 1

The composition of the different serotype FMDV strains in our two datasets (columns 2 and 10). The LOOCV genotype prediction results on the 
first dataset are in row 2 from columns 3 to 9 and more details in rows 3–9 and columns 3–9 as a confusion matrix; the independent testing results 
on the second dataset are in row 2 from columns 11–17 and more details in rows 3–9 and columns 11–17 as a confusion matrix. Numbers in bold 
denote the correct genotype predictions.
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downloaded separately from NCBI GenBank in February
2007 and May 2008 and used for independent testing
purpose. Their serotype composition is recorded in the
10th column of Table 1.

Setting the maximum string length to 15, there are in total
1,320, 791 distinct nucleotide strings occurring in the first
dataset of 129 FMDV strains. We computed the composi-
tion values for each of these strings in the 129 strains and
retained the top 10, 000 ones ranked by revised relative
entropy (RRE) [9,10]. By this point, the serotype informa-
tion of the strains had not been used. These 10,000 top
ranked strings have their length in between 4 and 11 and
the detailed percentages are collected in Table 2, where
length-6, 7, 8 strings show dominant (97.11%). In the
next stage of signature nucleotide string identification and
validation, we adopted the leave-one-out cross validation
(LOOCV) scheme [11], in which at every run one strain
was held out as testing sample while all the others, with
their labeled serotype, form the training dataset. For string
identification purpose, we adopted the biomarker identi-
fication method, the Disc-F-test method [12]. Essentially,
the k-means algorithm was used to cluster these 10, 000
strings into 150 clusters, using their composition values
across the 128 training strains and the differences between
the mean composition values in different serotypes
(which were used to define the Euclidean distance
between two strings, see Methods and [12]); and the F-test
method [13] was run to re-sort the 10,000 strings, incor-
porating the strain serotype information; then the Disc-F-
test method walked through the string order by the F-test
method to pick up one string per cluster. For extracted
string validation purpose, we examined their power in
genotyping the testing strain. That is, the strings selected
by the Disc-F-test method were used to build an SVM-clas-
sifier and a Mean-classifier [14]. Applying a sliding win-
dow of width 20 along the Disc-F-test string list to use
only 20 strings to build the two classifiers, their classifica-
tion accuracies are plotted in Figure 1, respectively. From
these two plots, one can see that the genotype recognition
strength of strings selected by Disc-F-test was decreasing in
general, and particularly lower than 80% after rank 120.
Using the first k strings by the Disc-F-test method, for k =
1,2, 3,..., 140, the LOOCV accuracies of the SVM-classifier
and the Mean-classifier are plotted in Figure 2. The highest
LOOCV accuracy reached by the Mean-classifier was 123/
129 = 95.35%, when using 71–75 or 77 selected strings;
The highest LOOCV accuracy reached by the SVM-classi-

fier was 127/129 = 98.45%, when using around 120
selected strings (Table 1 columns 3–9, where SAT2 strain
AY593849 was predicted as O and SAT3 strain AY593850
was predicted as SAT1). Figure 2 shows a clear pattern that
the Disc-F-test-SVM-classifier performed the best.

The linear kernel SVM-classifier constructs seven decision
hyperplanes in the high dimensional space that best sep-
arate each genotype from the others. Upon the arrival of
the testing strain, it computes the distance between the
testing strain, represented also as a vector in the high-
dimensional space, and each of the hyperplanes. The sero-
type associated with the closest hyperplane to the testing
strain is taken as the predicted serotype for the testing
strain. During the experiments, we were unable to return
all these distances for prediction confidence evaluation
purpose. For the Mean-classifier, associated with the test-
ing strain, let d1 and d2 denote the shortest and the sec-
ond shortest average distances, respectively, and d7
denote the longest average distance between the testing
strain and the seven serotypes. We calculated (d2 - d1)/
(d7 - d1) (Dixon metric) [14] to be the quantified confi-
dence associated with the prediction. For all the 129 test-
ing strains, their prediction confidence values of the Disc-
F-test-Mean-classifier, using the top ranked 120 nucle-
otide signature strings, are plotted in Figure 3 and parti-
tioned into different genotypes and in non-increasing
order. Only 8 of 129 predictions have confidence less than
0.1, which is the normal threshold for high confidence
[14]. These 8 strains include 1 A strain, 2 C strains, 1 O
strain, 1 SAT1 strain, 2 SAT2 strains, and 1 SAT3 strain.
Among these 8 predictions, 4 were incorrect.

Independent genotyping results
Using the first dataset of 129 FMDV strains as the training
dataset, and applied the above procedure to firstly rank all
occurring strings by RRE, then re-rank the top 10, 000 of
them by F-test using the strain serotype information
(assuming the serotypes of all the 129 strains are correct,
see Discussion), and lastly select 140 strings using the
Disc-F-test method. Notice that these 140 strings could
slightly differ from each of the sets of 140 strings in the
above LOOCV study. Using the linear-kernel SVM classi-
fier built on them, every strain in the second dataset, 83
strains in total, was submitted to have its genotype pre-
dicted. We achieved 100% prediction accuracy in this
independent test (Table 1, Columns 11–17).

Table 2: Composition of the top ranked 10, 000 nucleotide strings by RREs

String Length 4 5 6 7 8 9 10 11

Percentage (%) 0.01 0.59 12.27 57.43 27.41 2.11 0.12 0.06

The percentages of different length nucleotide strings in the top ranked 10, 000 strings by their RREs.
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Discussion
Always mis-typed strains
For each of the 129 viral genomes in the first dataset, we
submitted it to BLAST and assigned its genotype using
either the closest hit or a majority vote from 5 nearest
neighbors. SAT1 strain AY593844 was incorrectly typed
when using the closest hit, and four SAT2 strains
AF540910, AY593847, AY593848, and AY593849 were
mistyped using the second rule. We note that the genome
database we used in BLAST contains many more FMDV
strains than we have (most of these extra sequences are
not complete genomes), yet BLAST made some unex-
pected mistakes.

The linear-kernel SVM classifier we constructed using 140
strings selected by RRE and Disc-F-test achieved 127/129
= 98.45% LOOCV genotyping accuracy and made mis-
takes on SAT2 strain AY593849 and SAT3 strain
AY593850. One possible reason for these mistakes is the
limited number of SAT isolates in our dataset, compared
to Euroasiatic serotypes, which formed an unbalanced
training dataset. On the other hand, similar to many other
RNA viruses, FMDVs have been reported with active
recombination, which may be located in not only the

structural protein coding regions but also the non-struc-
tural protein coding regions [3]. Phylogenetic analyses
have shown the incongruent topologies between the
genes, for example, Lpro, 3Cpro, and 1D [3,15-18]. The
above two mistyped strains by our SVM classifier have
been reported with potential recombination [3]: strains
AY593849 (SAT2/3 Kenya 11/60) and AY593850 (SAT3/
2 SA57/59) were reported with conflicting phylogenetic
topologies over the overall genomic sequences and differ-
ent regions (e.g., Lpro/2A to 3D). We also examined these
two mistyped strains by analyzing the different fragments
on their genomes using our SVM classifier. The region-by-
region analyses revealed that their P1 region, especially
the VP1 gene which is used currently for the FMDV sero-
typing, is closely related to their GenBank recorded sero-
type. However, the other different regions in their
genomes are closer to the genotypes predicted by our SVM
classifier than to their recorded serotypes. In fact, the top
10 strings we used for genotyping are all outside VP1
region (CCGCCTG, TAAGGTA, AGTCCAT, TTCATCAA,
ACCGACGG, CCAGTGAA, GCGACAAC, ACCAACAT,
GTTTCT, CACATGG), which further support our predic-
tion method. For example, VP2, VP3 and VP1 genes in
strain AY593850 show high sequence similarities with

The LOOCV genotype prediction accuracies of the SVM-classifier and the Mean-classifier using 20 consecutive nucleotide strings in the string list selected by the Disc-F-test methodFigure 1
The LOOCV genotype prediction accuracies of the SVM-classifier and the Mean-classifier using 20 consecutive 
nucleotide strings in the string list selected by the Disc-F-test method. That is, the accuracies at position k are the 
ones by the SVM-classifier and the Mean-classifier built using strings k to k + 19, respectively.
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isolates of SAT3; While its P2, P3 and 3' UTR regions share
more sequence similarities with SAT1 and SAT2 strains,
rather than with SAT3 strains. For strain AY593849, a
BLAST search using its full genomic sequence showed that
the top 5 statistically significant hits are one SAT2 strain,
one SAT1 strain, and three Asia1 strains, which was unex-
pected since there were several other SAT2 strains in Gen-
Bank. Therefore, we strongly believe that the mistyped
results were caused by potential recombination between
FMDVs. Future study will be to identify the potential
recombination cases using the signature string informa-
tion.

The maximum string length
In our experiments, we set the maximum string length to
15. The rationale on setting this value was that increasing
it did not improve the genotyping accuracy, since essen-
tially strings of length greater than 11 did not make into
the list of top ranked 10, 000 strings by RRE. Nevertheless,
long serotype-specific amino acid motifs have been pro-
posed/discovered, for example, YSTXEDHXXGPN was
believed serotype A specific, YXTXEDFVXGPN was
believed serotype O specific, YATXEDXXGPN was
believed serotype C specific, YXVXEDAVSGPN was

believed serotype Asia1 specific, YAXXDXFLPGPN was
believed serotype SAT1 specific, YADXDSFRXGPN was
believed serotype SAT2 specific, and YXSADRFLPGPN was
believed serotype SAT3 specific [3]. We have therefore
increased the maximum string length to 26 (The experi-
ment failed on the maximum length 27 due to insufficient
computer memory. All these experiments were carried out
on a Heisler cluster node with a 2.2 Ghz CPU and 5.0 GB
memory.) and applied all the above described genotyping
methods. Again, we found no improvement on genotyp-
ing accuracy, and only two length-16 strings were able to
make into the top 10, 000 strings though still not selected
by either the F-test or the Disc-F-test method.

The size of training dataset
On the first dataset of 129 strains downloaded in Decem-
ber 2006, we have conducted the LOOCV study. This first
dataset was also used as the training dataset to genotype
the second dataset of 83 strains which were downloaded
from NCBI GenBank in February 2007 and May 2008 sep-
arately. Both the LOOCV and the independent testing
show promising computational genotyping results. One
may question how large a training dataset should be in
order for effective genotyping. We have conducted a

The LOOCV genotype prediction accuracies of the SVM-classifier and the Mean-classifier using the top ranked nucleotide strings by the Disc-F-test methodFigure 2
The LOOCV genotype prediction accuracies of the SVM-classifier and the Mean-classifier using the top ranked 
nucleotide strings by the Disc-F-test method.
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Monte Carlo type analysis to form training subsets of n
randomly chosen strains from this first dataset of 129
strains, for n = 20, 40,60, 80, 100, 120. For each value of
n, 100 random subsets were formed. On each such subset
the same informative string selection was performed and
subsequently the SVM-classifier was built. The strains not
in training dataset, 129 - n strains in total, formed the
independent testing dataset, on which the genotyping
accuracy was collected. The average genotyping accuracy
over 100 datasets of the same size n is plotted in Figure 4,
which clearly shows that for effective genotyping a sub-
stantial number, such as 80, of training strains is neces-
sary. Note that this is nevertheless understandable given
that there are 7 subtypes of FMDVs. The LOOCV genotyp-
ing result on the first dataset of 129 strains is also plotted
in Figure 4, which matches nicely with the result using
100 or 120 training strains (or roughly the 5–10-fold cross
validation [11] result on the set of 129 strains).

Other experimental settings
We have also experimented with the 20, 000 top ranked
strings by RRE and found that these 20, 000 strings have
their length in between 4 and 15 (the detailed percentages
not shown) and length-6, 7, 8 strings are still dominant
(93.445%). Applying the same string selection methods

coupled with the SVM-and Mean-classifiers (built on up
to 140 strings) did not improve the genotyping accuracy,
but decreased a little. The highest accuracy observed was
125/129 = 96.90%, by Disc-F-test-SVM-classifier, when
selecting 100 strings. Moreover, the top 20 strings selected
by Disc-F-test from the 20, 000 strings shared 10 strings in
common with the top 20 strings selected by Disc-F-test
from the 10, 000 strings, and their ranks were roughly the
same (ranked 1–5 and 7–11). This fact also suggested that
these 10 common strings should carry rich serotype spe-
cific information.

In addition to the above string composition values com-
puted within the Markov model [9,19,20], we have also
examined the genotyping performance using the string
occurrence frequencies. It turned out that using the com-
position values performed significantly better than using
the occurrence frequencies (data not shown). Several
other advanced feature selection methods and another
well-known k nearest neighbors (KNN) classifier have
also been examined (results not shown). The results were
all compatible though slightly worse, indicating that com-
putational genotyping FMDV strains via a few serotype-
specific nucleotide strings is feasible and can be success-
ful.

Confidence of the LOOCV genotype prediction of the Mean-classifier using the nucleotide strings selected by the Disc-F-test methodFigure 3
Confidence of the LOOCV genotype prediction of the Mean-classifier using the nucleotide strings selected by 
the Disc-F-test method.
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Other computational genotyping results
We have also conducted several other ways of whole
genome based computational genotyping on the FMDV
strains. For example, we constructed a multiple sequence
alignment for the 129 strains, via ClustalW (which took
18.7 hours on a desktop with a 2.1 GHz CPU and 2.0 GB
memory to complete), and the associated phylogenetic
tree [see Additional file 2] showed at least the two mis-
placed strains, SAT1 strain AY593844 and SAT2 strain
AY593849. In fact, this is the only result that is about
equally good to our Disc-F-test-SVM classifier, the latter
took only seconds to type all the 129 strains under the
LOOCV scheme.

Along the CCV-representation approach, using the top 10,
000 nucleotide strings ranked by RRE, every strain was
represented as a 10, 000-dimensional vector. Applying the
standard principle component analysis (PCA) on this 10, 000
× 129 matrix to obtain the first two principle components
(PCs), the linear discrimination analysis (LDA) showed that
all the Euroasiatic serotype strains well separated from
those South African Territories (SAT1-3) strains, except
SAT1 strain AY593844 and SAT2 strain AY593849 which
appear close to Euroasiatic strains [see Additional file 3].

Within Euroasiatic serotype strains, some of them, for
example, some serotype O strains, showed large distances
from the other strains, while some others seemed to mix
up together. Within SAT serotypes, the strains all mixed
together and were seemingly inseparable. Increasing the
number of PCs (up to 9) could obtain some finer resolu-
tion results but the general conclusions remained the
same (data not shown). This indicates that CCV-PCA-LDA
might not be a good approach for FMDV genotyping,
though PCA has been successful in many other applica-
tions.

Note that it is computationally impossible to perform
PCA on all the 1, 320, 791 strings. Nevertheless, we were
able to use the 1, 320, 791-dimensional representation
vectors to calculate the pairwise distances for all the 129
strains, and subsequently submit them to Neighbor-Join-
ing method in Phylip 3.70 to construct a phylogeny [see
Additional file 4]. This phylogeny showed that, though
common serotype strains were largely clustered into sepa-
rate clades, there were at least 7 misplacements. Applying
the same procedure but using only the 10, 000 top ranked
strings, the Neighbor-Joining tree showed at least 9 mis-
placements [see Additional file 5].

A Monte Carlo type analysis on the average genotyping accuracy over 100 independent testing datasets of size 129 - n, corre-sponding to the training datasets of different size n, for n = 20, 40, 60, 80, 100, 120Figure 4
A Monte Carlo type analysis on the average genotyping accuracy over 100 independent testing datasets of size 
129 - n, corresponding to the training datasets of different size n, for n = 20, 40, 60, 80, 100, 120.
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During the LOOCV scheme for selected string validation,
we have also tested distance-based genotyping approach.
Using all 1, 320, 791 strings on the training dataset, we
have calculated the Euclidean distance from the testing
strain to each of the 128 training strains, then calculated
the average distance from the testing strain to each of the
7 serotypes, and finally assigned the testing strain with the
closest serotype. The LOOCV accuracy of such a Mean-
classifier was 123/129 = 95.35%. We repeated this process
using only the 10, 000 top ranked strings by RRE, and the
LOOCV accuracy of the corresponding Mean-classifier
was 108/129 = 84.72%. Using all 1, 320, 791 strings and
the 10, 000 top ranked strings, respectively, linear-kernel
SVM classifiers were also built and used to predict the gen-
otype of the testing strain. The LOOCV accuracies of these
two SVM-classifiers were both 120/129 = 93.02%.

Using only the k top ranked nucleotide strings, for k = 1,
2, 3, ..., 140, by RRE, we have also collected the LOOCV
accuracies of the Mean-classifier and the SVM-classifier
[see Additional file 6]. The highest accuracy by the Mean-
classifier and the SVM-classifier were 111/129 = 86.05%
and 118/129 = 91.47%, respectively. The general ten-
dency was that the Mean-classifier performed slightly
worse than the SVM-classifier. Among the 10, 000 top
ranked strings by RRE, using the k top ranked strings by
the F-test method, for k = 1, 2, 3,..., 140, the LOOCV accu-
racy of the SVM-classifier has been collected [see Addi-
tional file 7, labeled with F-test-SVM-classifier]. Typically,
when k = 140, the LOOCV accuracy reached 123/129 =
95.35% (the highest by F-test-SVM-classifier). The
LOOCV accuracy of the Mean-classifier using these k
strings has also been collected [see Additional file 7,
labeled with F-test-Mean-classifier]. Typically, when k =
140, the LOOCV accuracy reached 124/129 = 96.12% (the
highest by the F-test based classifiers).

Conclusion
We proposed a method to select the most informative and
serotype-specific composition nucleotide strings for
FMDV whole genome genotyping. Such a proposal
appears novel in the context of FMDV genotyping, with at
least three advantages: 1) It does not involve the high
complexity stage of multiple sequence alignments, and
thus supports high throughput genotyping. This simpli-
fies the genotyping process through sequencing informa-
tion and thus shortens the disease control process – once
the genotype is defined, the decision on the type of vac-
cine can be made. Therefore, it helps to determine the
source of FMDV in case of an outbreak. The potential abil-
ity to recognize a recombinant, in addition to genotype
FMDV, makes our method very valuable, especially for
wars against bio-terrorists. 2) It considers the whole
genomic sequences for genotyping, and filters potential
random mutation at the same time. Therefore, it provides

an additional and/or complementary genotyping tool to
the current available methods. Moreover, computational
genotyping is much faster and much cheaper than the
wet-lab based biological experiments, upon the availabil-
ity of the detailed molecular sequences. Note that the
whole process including computing the genome CCV rep-
resentation, the LOOCV scheme to select signature nucle-
otide strings, to build classifiers subsequently, and to
predict the serotypes for testing strains, took less than 10
minutes on our first dataset. Excluding the training proc-
ess, genotyping one testing strain took less than one sec-
ond. In this sense, the proposed computational
genotyping is much faster and less expensive than the wet-
lab-based FMDV serotyping. 3) It adopts feature selection
methods to identify composition nucleotide strings that
are the most serotype-specific, and thus allows biological
explanation on the genotyping results. The identified sig-
nature strings may also facilitate the preparation of
recombination vaccine. It is interesting, but not com-
pletely unexpected, to see that using only around 120
strings selected by the Disc-F-test method, the genotyping
accuracy on the set of 129 FMDV whole genomes by the
SVM-classifier can reach as high as 98.45%.

Methods
The first FMDV dataset we downloaded in December
2006 from NCBI GenBank contains in total 129 whole
viral genomes, among which there are 47 serotype A
strains, 48 serotype O strains, 8 serotype C strains, 9 sero-
type Asia1 strains, 9 serotype SAT1 strains, 4 serotype
SAT2 strains, and 4 serotype SAT3 strains (Table 1, second
column). The second dataset contains 83 other strains,
which were downloaded separately in February 2007 and
May 2008 from NCBI GenBank and used for independent
testing. Their serotype composition is recorded in the
10th column of Table 1.

For each nucleotide string of length from 1 to 15, we cal-
culated its composition value [19] in every FMDV strain,
and subsequently represented FMDV strains using their
complete composition vectors [9]. In more details, given a
viral strain G of length L, the number of appearances of a

length-k nucleotide string α= a1a2 ...ak in G, where every ai

is a nucleotide, is denoted as f(α). Since there are L - k + 1
(overlapping) length-k nucleotide strings in G in total, the

frequency of appearance of string α in strain G is p(α) =

f(α)/(L - k + 1). Based on all these nucleotide string
appearance frequencies, we can calculate the composition

value π(α) for string α [19]. That is, we first calculate the

expected appearance frequency of string α = a1a2 ...ak as

q(a1a2 ... ak) = , and then definep a a ak p a a ak
p a a ak

( ) ( )
( )

1 2 1 2 3
2 3 1

… …
…

− ×
−
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. All these nucleotide string composition

values are stored in sequence, to form a vector Vk(G) = �π1,

π2,...,πm� that represents the viral strain G, where k is the

nucleotide string length and m denotes the total number
of length-k nucleotide strings under consideration. In this
work, we examine all the nucleotide strings of length from
1 to 15 (the reason for setting the maximum string length
to 15 is provided in Discussion). The vector definition by
using all these composition values of nucleotide strings of
length from 1 to 15, i.e., the concatenation of V1,V2,

...,V15, is referred to as the complete composition vector of the

viral strain. We note that from the definition, a maximum
string length larger than 15 might be able to provide a vec-
tor containing finer evolutionary information, yet our
empirical studies showed that 15 is probably large enough
(see Discussion). We also want to point out that such a
whole genome representation extends nucleotide compo-
sition vector and has been used and justified in biological
sequence analysis for a long time [9,19-22]. Theoretically,
there are 4 + 42 + 43 + ... + 415 = 1, 431, 721, 300 nucleotide
strings need to be considered, but it turned out that only
a fraction of 1,320, 791 strings whose composition values
need to be calculated for our collected datasets. We imple-
mented a prefix tree for the task.

Next, we concatenated all the 129 strains into a super-
strain and similarly compute its complete composition
vector. Using this vector as the background, we borrowed
the concept of relative entropy, also known as Kullback-Lei-
bler distance, to define a revised relative entropy (RRE) [9,10]
measuring the distance between the series of composition
values of a nucleotide string in the 129 strains and the
background. Such an RRE value is expected to estimate the
information content of strings across the FMDV strains,
and the larger the absolute RRE, the more informative a
string is. We kept only the top 10, 000 ranked strings (by
their RREs). Two interesting facts about the FMDV dataset
were that these top ranked 10, 000 strings have length less
than or equal to 11, and that 97.11% of them have length
6, 7, or 8. Such facts on one hand confirm partially the
decision that we can skip longer strings in the analysis, on
the other hand, support the observation that using a sin-
gle string length, as is done in [19,20], is not sufficient [9].

Using this 10, 000-dimensional vector representation for
FMDV strains, the euclidean distance between every pair
of strains can be calculated. These pairwise distances
treated all 10, 000 nucleotide strings equally, in terms of
their potential contribution in genotyping. A better way
would be using these strings as features to classify the
FMDV strains into different serotypes. However, the large

gap between 10,000 features and 129 FMDV strains could
result in non-unique classifiers which would be signifi-
cantly biased on these 129 strains. Our next step was to
further select a smaller number of strings out of the 10,
000 to build an effective serotype predictor for novel
strains. To do this, each strain is represented as a 10, 001-
dimensional vector, in which the last entry records the
serotype label. We then applied one of the most effective
feature extraction methods, the Disc-F-test method [12],
developed within our group originally for identifying
human cancer biomarkers using microarray gene expres-
sion data, to select 140 most discriminative strings. Essen-
tially, this Disc-F-test method regards each string as a
gene, the composition value as its expression value, and
the strains as microarray samples. Under the leave-one-out
cross validation (LOOCV) scheme [11], it first applies the F-
test method [13] to re-order the 10,000 strings, using their
composition values in 128 of the 129 strains (called train-
ing samples; the other strain is held out for testing purpose,
the testing sample, whose serotype label is blinded to the
constructed predictor). A string receives a high score if its
composition values are close to each other in strains of the
same serotype, but distinct to each other in strains of dif-
ferent serotypes. At the same time, the Disc-F-test method
uses a k-means algorithm to cluster the 10, 000 strings
into 150 clusters, using again their composition values in
all the 128 training strains, and additionally the differ-
ences between their mean composition values in different
serotypes. The method then walks through the string
order determined by the F-test method to pick up one
string per cluster for the first 140 clusters. Note that setting
up 10 more clusters in the k-means clustering algorithm
was to put away some strings that are not directly useful
for genotype classification. These 140 selected strings,
together with their composition values in all the 128
strains, were fed into a linear kernel SVM to build a classi-
fier. Later on, for the testing strain, the composition values
for only these 140 strings were calculated and such a 140-
dimensional vector was sent to the SVM-classifier for gen-
otype prediction.
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