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Summary. To satisfy the ever growing need for effective screening and diagnos-
tic tests, medical practitioners have turned their attention to high resolution, high
throughput methods. One approach is to use mass spectrometry based methods for
disease diagnosis. Effective diagnosis is achieved by classifying the mass spectra as
belonging to healthy or diseased individuals. Unfortunately, the high resolution mass
spectrometry data contains a large degree of noisy, redundant and irrelevant infor-
mation, making accurate classification difficult. To overcome these obstacles, feature
extraction methods are used to select or create small sets of relevant features. This
paper compares existing feature selection methods to a novel wrapper-based feature
selection and centroid-based classification method. A key contribution is the ex-
position of different feature extraction techniques, which encompass dimensionality
reduction and feature selection methods. The experiments, on two cancer data sets,
indicate that feature selection algorithms tend to both reduce data dimensionality
and increase classification accuracy, while the dimensionality reduction techniques
sacrifice performance as a result of lowering the number of features. In order to eval-
uate the dimensionality reduction and feature selection techniques, we use a simple
classifier, thereby making the approach tractable. In relation to previous research,
the proposed algorithm is very competitive in terms of (i) classification accuracy,
(ii) size of feature sets, (iii) usage of computational resources during both training
and classification phases.
Keywords: feature extraction, classification, mining bio-medical data, mass spec-
trometry, dimensionality reduction.

30.1 Introduction

Early detection of diseases, such as cancer, is critical for improving patient
survival rates and medical care. To satisfy the ever growing need for effective
screening and diagnostic tests, medical practitioners have turned their atten-
tion to mass spectrometry based methods. While other proteomic methods
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exist, such as PAGE∗, mass spectrometry (MS) based approaches provide
high throughput, are widely applicable, and have the potential to be highly
accurate. This paper examines supervised classification in proteomic appli-
cations. The term proteomics will be restricted to mean the study of protein
spectra, acquired by mass spectrometry techniques, to classify disease and
identify potentially useful protein biomarkers. A biomarker is an identified
protein(s) whose abundance is correlated with the state of a particular dis-
ease or condition. Currently, single biomarkers, such as PSA† used to detect
prostate cancer, are relied on for disease screening and diagnosis. The identi-
fication of each biomarker, tailored for a specific disease, is a time consuming,
costly and tedious process. In addition, for many diseases it is suspected that
no single biomarkers exit, which are capable of producing reliable diagnoses.
The following quote further motivates the use of high resolution MS tech-
niques:

“The ability to distinguish sera from an unaffected individual or an in-
dividual with [for example] ovarian cancer based upon a single serum
proteomic m/z feature alone is not possible across the entire serum
study set. Accurate histological distinction is only possible when the
key m/z features and their intensities are considered en masse. A lim-
itation of individual cancer biomarkers is the lack of sensitivity and
specificity when applied to large heterogeneous populations.” (Conrads
et al., 2003)

While high-resolution mass spectrometry techniques are thought to have po-
tential for accurate diagnosis due to the vast amount of information captured,
they are problematic for supervised training of classifiers. Specifically, the
many thousands of raw attributes forming the spectra frequently contain a
large amount of redundancy, information irrelevant to a particular disease,
and measurement noise. Therefore, aggressive feature extraction techniques
are crucial for learning high-accuracy classifiers and realizing the full poten-
tial of mass spectrometry based disease diagnosis.

The rest of the paper is organized as follows. We first motivate the task
by presenting two important disease diagnosis problems and recent studies
on them. A novel combination of feature selection and classification methods
is subsequently proposed and empirically evaluated on ovarian and prostate
cancer data sets. The paper is concluded with discussion and future research
directions.

30.1.1 Ovarian Cancer Studies

In (Petricoin et al., 2002a), genetic algorithms together with self-organizing
maps were used to distinguish between healthy women and those afflicted

∗The acronym PAGE stands for polyacrylamide gel electrophoresis. It is also
known as 2DE for two dimensional polyacrylamide gel electrophoresis (Patterson
and Aebersold, 2003).

†PSA stands for prostate specific antigen.
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with ovarian cancer. Although cross-validation studies were not conducted,
the approach was able to correctly classify all cancer stricken patients and
95% of healthy women, on a single test set. Motivated by the need for greater
recall and precision, in (Conrads et al., 2003), a low resolution mass spec-
trometry technique was compared with a high resolution technique using the
same ovarian cancer data set. The goal was to determine whether sensitivity
and PPV‡ (i.e., recall and precision) scores would improve by using a higher
resolution spectra provided by the SELDI TOF MS hardware§. Keeping all
other parameters fixed (including the machine learning algorithm), classifica-
tion based on high resolution data achieved 100% specificity and PPV scores
on the ovarian cancer data set. In contrast, none of the models based on the
low resolution mass spectra could achieve perfect precision and recall scores.
The researchers, therefore, concluded that the 60-fold increase in resolution
improved the performance of the pattern recognition method used. Due to the
low prevalence of (ovarian) cancer (Kainz, 1996), a screen test would require
a 99.6% specificity to achieve a clinically acceptable positive predictive value
of 10%. As a result, high resolution mass spectrometry techniques have been
adopted to increase classification accuracy.

Unfortunately, increasing data resolution proliferates “the curse of dimen-
sionality”, and thereby decreases the applicability of supervised classification
techniques. As a result, feature extraction is needed to extract/select salient
features in order to make classification feasible. In addition to making machine
learning algorithms tractable, feature extraction can help identify the set(s)
of proteins (i.e., features) that can be used as potential biomarkers. In turn,
key protein identification can shed light on the nature of the disease and help
develop clinical diagnostic tests and treatments.

Using the same data set, in (Lilien et al., 2003) the researchers used Prin-
ciple Component Analysis (PCA) (Kirby, 2001) for dimensionality reduction
and Linear Discriminant Analysis (LDA) for classification. For each of the var-
ious train/test data splits, 1000 cross-validation runs with re-sampling were
conducted. When training sets were larger than 75% of the total sample size,
perfect (100%) accuracy was achieved. Using only 50% of data for training,
the performance dropped by 0.01%. We conclude that PCA appears to be an
effective way to reduce data dimensionality.

In (Wu et al., 2003), the researchers compared two feature extraction al-
gorithms together with several classification approaches. The T-statistic¶ was
used to rank features in terms of relevance. Then two feature subsets were
greedily selected (respectively having 15 and 25 features each). Support vec-
tor machines (SVM), random forests, LDA, Quadratic Discriminant Analy-
sis, k-nearest neighbors, and bagged/boosted decision trees were subsequently

‡PPV stands for Positive Predictive Value, see glossary for details.
§SELDI TOF MS stands for surface-enhanced laser desorption/ionization time-

of-flight mass spectrometry.
¶The T-statistic is also known as the student-t test (Press et al., 2002).
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used to classify the data. In addition, random forests were also used to select
relevant features with previously mentioned algorithms used for classification.
Again 15 and 25 feature sets were selected and classification algorithms ap-
plied. When the T-statistic was used as a feature extraction technique, SVM,
LDA and random forests classifiers obtained the top three results (accuracy
appears to be about 85%). On the other hand, classification accuracy im-
proved to approximately 92% when random forests were used for both feature
extraction and classification. Similar performance was also achieved using 1-
nearest-neighbor.

The data from (Wu et al., 2003), was subsequently analyzed in (Tibshirani
et al., 2004), using the nearest shrunken centroid algorithm. The ten-fold cross
validated specificity was 74% with a corresponding sensitivity of 71%. Thus
the balanced accuracy (BACC) of this algorithm was 72.5%. Although the
accuracy of this algorithm is less than that of other methods presented, this
approach used only seven features‖ out of 91360.

30.1.2 Prostate Cancer Studies

In (Adam et al., 2002), the researchers used a decision tree algorithm to dif-
ferentiate between healthy individuals and those with prostate cancer. This
study also used the SELDI TOF MS to acquire the mass spectra. Receiver
Operating Characteristics (ROC) curves were used to identify informative
peaks which were subsequently used by the decision tree classification algo-
rithm. The researchers did not perform cross-validation, but on a single test
set the classifier achieved an 81% sensitivity and a 97% specificity, yielding a
balanced accuracy (BACC) of 89%.

In (Qu et al., 2002), the performance was improved from (Adam et al.,
2002) by using ROC curves to identify relevant features. For classification,
the researchers used decision trees together with AdaBoost and its vari-
ant, Boosted Decision Stump Feature Selection (BDSFS) method. AdaBoost
achieved perfect accuracy on the single test set for the prostate cancer data
set. However, a 10-fold cross validation performance yielded average sensitiv-
ity of 98.5% and a specificity of 97.9%, for an overall BACC of 98%. For the
BDSFS, the results were worse, with a sensitivity of 91.1% and a specificity
of 94.3%. The researchers informally report that other classifiers had similar
accuracies but were more difficult to interpret.

In (Lilien et al., 2003), the researchers again used PCA for dimensionality
reduction and LDA for classification. The data set was obtained from the au-
thors of (Adam et al., 2002). In the same fashion as with the ovarian cancer set,
the researchers conducted a detailed study using various train/test set sizes.
For each train/test data split, 1000 cross-validation runs (with re-sampling)

‖It should be noted that peak extraction and clustering were used to preprocess
the data and produced 192 peaks from which 7 were used by the shrunken centroid
algorithm.
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Comparison of three reports for prostate cancer diagnosis based on SELDI-TOF technology.
Adam et al. (1) Petricoin et al. (12) Qu et al. (29)

Diagnostic sensitivity and
specificity

83%; 97% 95%; 78–83% 97–100%; 97–100%

SELDI-TOF chip type IMAC-Cu Hydrophobic C-16 IMAC-Cu
Distinguishing peaks, m/z a 4475, 5074, 5382, 7024 ,

7820, 8141, 9149,
9507, 9656

2092, 2367, 2582, 3080,
4819, 5439, 18220

Noncancer vs cancer: 3963, 4080,
6542, 6797, 6949, 6991, 7024 ,
7885, 8067, 8356, 9656 , 9720

Healthy individuals vs BPH:b 3486,
4071, 4580, 5298, 6099, 7054,
7820, 7844, 8943

Bioinformatic analysis            Decision tree algorithm Proprietary; based on genetic
algorithms and cluster analysis

Boosted decision tree algorithm

Fig. 30.1. Comparison of classification techniques for prostate cancer diagnosis
(reproduced from (Diamandis, 2003).) Respectively, the accuracies for (Adam et al.,
2002, Petricoin et al., 2002b, Qu et al., 2002) are 89%, 83%, 98%. This comparison
demonstrates the wide classification variance due to different mass spectrometry and
machine learning approaches.

were conducted. When training sets were larger than 75% of the total sample
size, an average accuracy of 88% was achieved. Using only 50% of data for
training, the performance dropped to 86%. In comparison to ovarian cancer
sets the lower accuracy suggests that this data set is much more difficult to
classify correctly.

In (Petricoin et al., 2002b, Wulfkuhle et al., 2003), researchers used Genetic
Algorithms (GA’s) for feature extraction and Self Organizing Maps (SOM’s)
for classification of prostate cancer. This approach achieved a 95% specificity
and a 71% sensitivity, for a balanced accuracy of 83%. Although cross valida-
tion was carried out, the results were not presented.

In (Diamandis, 2003), the aforementioned studies on prostate cancer raised
the following question: Why do the features and classification performance
vary so drastically across studies? Indeed, results reproduced in Figure 30.1,
indicate that different SELDI-TOF approaches combined with different ma-
chine learning techniques for pattern recognition produce highly variable re-
sults. This observation further motivates the need for comparative studies
done on a regular basis using several mass spectrometry techniques in con-
junction with a number of machine learning approaches. We attempt to carry
out such a study in this paper.

30.2 Existing Feature Extraction and Classification
Methods

Feature extraction is central to the fields of machine learning, pattern recog-
nition and data mining. This section introduces algorithms used in this study.
More details on the algorithms used within this study can be found in Part
1, Chapters 3 and 4.
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30.2.1 Centroid Classification Method

A fast and simple algorithm for classification is the centroid method (Hastie
et al., 2001, Park et al., 2003). This algorithm assumes that the target classes
correspond to individual (single) clusters and uses the cluster means (or cen-
troids) to determine the class of a new sample point. A prototype pattern for
class Cj is defined as the arithmetic mean:

μCj
=

1
|Cj |

∑
xi∈Cj

xi

where xi’s are the training samples labeled as class Cj . Recall that the training
sample is a MS spectra represented as a multi-dimensional vector (denoted
in bold). In a similar fashion, we can obtain a prototypical vector for all the
other classes. During classification, the class label of an unknown sample x is
determined as:

C(x) = arg min
Cj

d(μCj
,x)

where d(x,y) is a distance function or:

C(x) = arg max
Cj

s(μCj
,x)

where s(x,y) is a similarity metric. This simple classifier will form the basis
of our studies. It works with any number of features and its run-time com-
plexity is proportional to the number of features and the complexity of the
distance or similarity metric used. Preliminary experiments were conducted to
establish which similarity/distance metric is most appropriate for the centroid
classification algorithm∗∗, and the L1 distance metric was selected. Defined
by:

L1(x,μ) = ‖x− μ‖1 (30.1)

with ‖y‖1 =
∑N

i |y(i)|, and y(i) being the value of the ith feature. The value
L1(x,μ) has a linear cost in the number of features. In this study, data sets
contain two classes and hence the number of calls to a metric is also two.
Therefore, the centroid classifier, at run-time, is linear in the number of fea-
tures. During training, two prototypes are computed and the cost of com-
puting each prototype is O(mN), where N is the number of features and m
is the number of training samples which belong to a given class. Note that
m only varies between data sets and not during training or feature selection
processes. Thus, we can view m as a constant and conclude that the centroid
classifier has O(N) cost in the training phase.

∗∗Due to space restrictions, the results are not shown. A companion technical
report (Levner, 2004) provides experimental details and supplementary material.
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30.2.2 Nearest Shrunken Centroid

A special purpose feature selection algorithm for the nearest centroid algo-
rithm was developed by Tibshirani et al. and presented in (Hastie et al., 2001,
Tibshirani et al., 2003, 2004). The algorithm, related to the lasso method de-
scribed in Part 1, Chapter 1, Section 4, tries to shrink the class prototypes
(μCj

) towards the overall mean:

μ =
1
m

m∑
i=1

xi (30.2)

Briefly, the algorithm calculates:

dj =
μCj

− μ

mj(s)
(30.3)

where mj =
√

1
|Cj | −

1
m , s is a vector of pooled within class variances for

each feature and division is done component wise. We can now view the class
centroid as:

μCj
= μ +mj(s · dj) (30.4)

where · denotes component wise multiplication. By decreasing dj we can move
the class centroid towards the overall centroid. When a component of the class
centroid is equal to the corresponding component of the overall mean for all
classes, the feature no longer plays a part in classification and is effectively
removed. Hence as dj shrinks progressively more features are removed.

30.2.3 Ordered and Sequential Feature Selection

Using the aforementioned centroid method as the base classifier, we can select
features with SFS (Sequential Forward Selection) technique or via an ordered
feature selection approach. Both of these wrapper-based techniques incremen-
tally build a feature set by adding one feature at a time to the active (i.e.,
previously selected) set of features and invoking the nearest centroid classi-
fier using the active feature set. Sequential Forward (respectively Backward)
selection (SFS and SBS) methods start from an empty (respectively full) set
of features and at each step add (respectively remove) a single feature that
produces the greatest increase in performance. In contrast, the ordered fea-
ture selection approach first evaluates each of the N features independently of
all others. The features are then ranked according to the performance of the
base classifier (i.e., the nearest centroid classifier in our case). Once ranked and
sorted, the ordered feature selection approach incrementally adds the topmost
ranked feature to the active set. In total, N feature subsets are tried, where s1
contains a single top ranked feature, s2 contains the two top ranked features,
and so on until sN is tried. In contrast, to the SFS procedure, ordered feature
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selection is linear in the number of calls to the base classifier since at each
stage the top ranked feature is added to the active set and the newly created
active set is evaluated by the base classifier. Since there are only N features
the total number of calls to the base classifier is 2N , N initial calls to rank
individual features, and N times to evaluate the ever larger subsets s1, ..., sN .
Unlike the SFS algorithm, the greedy approach will not stop until all N sets
have been tried. The final stage of the algorithm merely selects the feature
set producing the best classification accuracy on the particular data set.

30.2.4 Univariate Statistical Tests

Instead of ranking features by invoking a classifier, one can use filter ranking
based on statistical tests. In general, univariate statistical tests analyze each
feature independently of others. The student-t (T-test) and the Kolmogorov-
Smirnov (KS-test) (Press et al., 2002) algorithms are common examples. Both
tests compare feature values from samples belonging to class i to feature values
from samples belonging to class j. The goal is to determine if the feature
values for class i come from a different distribution than those for class j.
The key difference between the two tests are the assumptions they make. The
T-test assumes that both distributions have identical variance, and makes no
assumptions as to whether the two distributions are discrete or continuous. On
the other hand, the KS-test assumes that the two distributions are continuous,
but makes no other assumptions.

In the case of the T-test, the null hypothesis is μA = μB , representing
that the mean of feature value for class A is the same as the mean of the
feature values for class B. In the case of the KS-test, the null hypothesis is
cdf(A) = cdf(B), meaning that feature values from both classes have an iden-
tical cumulative distribution. Both tests determine if the observed differences
are statistically significant and return a score representing the probability
that the null hypothesis is true. Thus, features can be ranked using either
of these statistics according to the significance score of each feature. In ad-
dition, the two tests can be combined together into a composite statistic.
While many possible composition strategies exist, we limit our experiments
to a simple multiplicative composition, whereby the T-test significance score
is multiplied together with the KS-test significance score (referred to as the
T*KS-test henceforth).

Both the benefits and drawbacks of these statistical tests stem from the
assumption that features are independent. On one hand, the independence
assumption makes these approaches very fast. On the other hand, the inde-
pendence assumption may not hold for all data sets. Technical details on these
and other statistical tests can be found in (Hastie et al., 2001, Press et al.,
2002).

Recall that in (Wu et al., 2003), the T-test and random forests were used
for feature extraction teamed with a number of classifiers. The researchers
used the T-test to rank each feature but chose to test classification algorithms
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with 15 and 25 top-ranked features. Their line of research appears more fo-
cused on comparing classifiers rather than the two feature extractors (T-test
and random forests). In contrast, we show that feature ranking coupled with
ordered feature selection can automatically find a feature subset of arbitrary
size that improves performance (with respect to using either a single best
feature or using all features).

30.2.5 Dimensionality Reduction

Recall that feature selection algorithms attempt to select relevant features
with respect to the performance task, or conversely remove redundant or
irrelevant ones. In contrast, dimensionality reduction algorithms attempt to
extract features capable of reconstructing the original high dimensional data.
For example, PCA (Kirby, 2001) attempts to find a linear combination of
principal components that preserves the data variance. In proteomic pattern
recognition the most common technique is down sampling. This technique
filters the spectra and sub-samples it to reduce the dimensionality. A common
approach is to convolve the spectrum with a uniform filter at regular intervals
(windows). This technique, essentially removes high frequency components.
In order to test the conjecture made in (Conrads et al., 2003), that higher
resolution data tends to improve classification performance, we will use this
approach to test the merit of dimensionality reduction via down sampling.

30.3 Experimental Results

We conducted experiments on the ovarian and prostate data sets, previously
used in (Petricoin et al., 2002a) and (Petricoin et al., 2002b). The ovarian
cancer set includes sera from 91 controls and 162 ovarian cancers patients.
Acquired from (Johann, 2003), each data sample contains 15,156 features.
The prostate cancer data set is composed of 322 samples in total, and was
also acquired from (Johann, 2003). There are 190 serum samples from patients
with benign prostate whose PSA levels are greater than four, 63 samples with
no evidence of disease and PSA level less than one, 26 samples with prostate
cancer with PSA levels four through ten, and 43 samples with prostate cancer
and PSA levels greater than ten. Again, each sample is a histogram with
15,156 bins, with each bin corresponding to a single feature.

For all experiments, each data set was split into three subsets of equal
size. Each test fold used one of the three subsets with the remaining two sub-
sets used for training. We ran two sets of experiments. The first optimized
performance directly on the test set. For a given feature selection technique,
this approach produces a single feature set and hence makes feature analy-
sis possible. The drawback of this approach is that performance estimates
are overly optimistic. To get a better performance estimate, a second set of
experiments was carried out. It optimized performance on the training set.
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Specifically, we used a leave-one-out cross-validation (LOOCV) internal loop
based solely on the training set to select features using a subset of the most
promising algorithms. The reported accuracy for all experiments is the average
classification accuracy over the three test folds and the error bars represent
one standard deviation. Accuracy is taken as the arithmetic mean of sensi-
tivity and specificity. This measure is related to BER (Balanced Error Rate)
and can be analogously thought of as balanced accuracy (BACC), where
BER = 1−BACC.

Dimensionality Reduction

We progressively down-sampled the spectra by averaging each sample spectra
using a uniform filter. In other words, given a window of size w we averaged w
adjacent features (i.e., m/z values) into a single new feature. The window was
then shifted by w features and the process repeated. For each trial we increased
size of the window w. This effectively produces data with progressively lower
resolution and reduced dimensionality. For each down sampled data set we
used the centroid classifier. The results, presented in Figure 30.2, show that
classification performance decreases as the size of the filter increases. However,
the decrease is clearly non-monotonic and, in essence, very noisy. This noise
can be attributed to either the filtering or the sub-sampling stages of the
down-sampling process. To determine which of the two components produced
the oscillations in classification accuracy, another experiment was carried out.

In the second experiment we performed frequency based data filtering.
The procedure first transformed each spectra into the frequency domain via
the Fast Fourier Transform (FFT). Then a low pass filter was applied to
the frequency coefficients in order to remove the high frequency components.
The final stage transformed the filtered data back to the spatial domain. By
varying the size of the low pass filter, the number of frequency coefficients
used in reconstructing the MS spectra was varied and, in essence, consid-
ered feature selection in the frequency domain. Clearly the loss in accuracy,
shown on the right side of Figure 30.2, is much more monotonic in compari-
son with the down-sampling method (the left-hand side). This suggests that
the majority of oscillations result from the sub-sampling step rather than the
frequency filtering step. This led us to the conjecture that down-sampling
is in general detrimental to classification performance. To further investigate
this hypothesis, we ran the centroid classifier on each individual feature for
the down-sampled spectra and found the classification performance inferior to
the performance of a single best feature from the non down-sampled spectra.
This further supported the claim that down-sampling appears detrimental
to classification accuracy. The conclusions drawn are in line with those in
(Conrads et al., 2003) where changes in resolution created by different MS
techniques produced similar results. Because the MS spectra are histograms
describing the ion concentrations based on the mass-to-charge ratios, the low
resolution techniques effectively aggregate distinct ion concentrations into a
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Fig. 30.2. Classification accuracy on progressively down-sampled data. Top: ovar-
ian cancer data set. Bottom: prostate cancer data set. Left: Down-sampling Perfor-
mance. The down-sample factor indicates the ratio of original number of features to
the number of features after down-sampling. As the down-sample factor increases,
the number of features decreases. Right: Frequency filtering. While all data sets
exhibit oscillations, the performance nevertheless gradually declines as the dimen-
sionality of the data is reduced as indicated by the increasing down-sampling factor
on the x-axis.

single bin. Hence, down-sampling, whether due to low-resolution MS hard-
ware or done deliberately in software to reduce data dimensionality, appears
to lower diagnosis performance.

30.3.1 Ordered and Sequential Feature Selection

To compute the exact relevance of individual features, the centroid classifier
was ran on individual features. Histogram plots for each data set are shown
in Figure 30.3. Each plot represents the distribution of features with respect
to classification accuracy and shows that a very large number of features
are essentially irrelevant and/or redundant with respect to diagnosis. This
provides further unfavorable evidence for the down-sampling approach, which
in essence, aggregates individual features together. Such an approach would
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Fig. 30.3. Performance using individual features Left: ovarian cancer data set.
Right: prostate cancer data set. The histograms show the number of features with
a specific classification accuracy on a single test fold when individual features are
used.

inevitably merge relevant and irrelevant (or redundant) features together and
decrease the overall performance as evidenced by the experimental results of
the previous section. Interestingly, there are a number of features within each
data set that produce classification accuracies below 50%. These features can
mislead and confuse the classifier.

Once each feature was ranked and the feature set sorted, ordered feature
selection was used. In addition, the SFS procedure was also employed to select
relevant feature sets. The results are presented in Figure 30.4 and are discussed
in the next section.

30.3.2 Performance Comparison

Figure 30.4 presents the best performance for each feature extraction tech-
nique on each data set. Clearly, SFS coupled with the centroid algorithm
produced superior results in comparison to the other algorithms tested in
terms of feature set size and classification accuracy.

On the ovarian cancer data set, classification based on four features se-
lected via SFS had the same accuracy of 98.0%, tieing with a set composed of
48 features created by the ordered feature selection. Previously, PCA coupled
with LDA produced the only perfect cross-validated classification accuracy
(Lilien et al., 2003). On the prostate cancer data set, the SFS classifier in-
creased the base classification accuracy from 69.7% to 94% using only 11 of
15,154 features. In contrast, PCA coupled with LDA produced an accuracy
of 88% (Lilien et al., 2003) . In (Qu et al., 2002), the boosted decision stumps
produced an impressive 98% accuracy on the same data set. However, we were
unable to get this set and used the data set from (Petricoin et al., 2002b),
where the accuracy using GA’s combined with SOM’s was only 83%. Overall
the SFS/centroid system appeared competitive with the previous approaches
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Fig. 30.4. Performance of Feature Extraction Algorithms optimized on the test
sets. Top: ovarian cancer data set. Bottom: prostate cancer data set.

in terms of classification accuracy but produced considerably smaller feature
sets. Note that the PCA/LDA approach always uses n features corresponding
to n eigenvectors. Since the rank of the covariance matrix is bounded by the
number of samples, n is necessarily upper bounded by the number of training
samples, and was set to this upper bound in (Lilien et al., 2003). Furthermore,
boosted decision stumps used to classify the prostate cancer data set needed
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Table 30.1. Active feature set extracted by the SFS procedure. Top: Ovarian
cancer data set. Bottom: Prostate cancer data set. Column 1 shows the order each
feature was added to the active set. Column 2 contains the feature index. Column 3
shows classification accuracy using just the one feature. Column 4-6 present the rank
of each feature using the T-test, KS-test, and T*KS-test with respect to topmost
ranked feature. The SFS procedure does not appear to select the same features as
any of the ordered FS methods.

Order
Added

Feature
Index

Individual
Feature

Accuracy
T-Test KS-Test T*KS -Test

1 1679 0.9258 5003 9289 14129
2 541 0.8303 8185 7502 9272
3 1046 0.62 9012 13276 5997
4 2236 0.9104 4855 5501 7953

Order
Added

Feature
Index

Individual
Feature

Accuracy
T-Test KS-Test T*KS -Test

1 2400 0.8147 2106 1880 1499
2 6842 0.6393 7823 14543 11650
3 2667 0.6246 1756 7601 13111
4 6371 0.5776 5600 609 4297
5 2005 0.5262 7128 11984 8482
6 1182 0.5147 12400 6180 890
7 7604 0.6328 7694 12788 5943
8 462 0.4531 11165 14343 11810
9 659 0.5868 13282 11766 11307

10 187 0.4994 14893 1807 5032
11 467 0.6036 12602 8744 2272

500 stumps to achieve the aforementioned accuracy. In contrast, the SFS/-
centroid method selected only 5 and 11 features for the ovarian and prostate
cancer data sets respectively, while producing comparable classification accu-
racy.

Active Feature Sets

The relationship between the features selected by the SFS procedure and
the corresponding rankings based on statistical tests is illustrated in Table
30.1. Each table examines the features selected by the SFS procedure for the
ovarian and prostate cancer data sets. In both cases, the features added to
the active set are ranked far from first by the statistical tests. In addition,
individual feature performance does not appear to be an effective indicator
of classification performance within a set of features. In fact, the eighth and
tenth features have individual classification accuracies of less than 50% on
the prostate data. Furthermore, not a single feature selected by any of the
ordered feature selection approaches appears in the active set produced by
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Table 30.2. Active feature set extracted from the prostate cancer data set by the
SFS procedure. Column 1 shows the order each feature was added into the active set.
Column 2 contains the feature index. Column 3 provides the actual mass-to-charge
ratio of each feature. The last three columns present nearby (±500 Da) features
found previously in (Adam et al., 2002, Qu et al., 2002, Petricoin et al., 2002b).
Clearly the SFS procedure found a set of features very different than the other
algorithms.

Order
Added

Feature
Index

M/Z Adam et al. Qu et al. Petricoin et al.

1 2400 500.8
2 6842 4074.8 4475 3963; 4080; 4071
3 2667 618.6
4 6371 3533.0 3486 3080
5 2005 349.4
6 1182 121.3
7 7604 5033.3 5074 5289 4819; 5439
8 462 18.4
9 659 37.6

10 187 3.0
11 467 18.8

the SFS procedure. However, the ordered approaches do improve performance
in comparison to the classification accuracy based on the full feature set.
This indicates that there are a number of relevant features related to the
presence/absence of cancer.

To further examine the features extracted by the SFS, we compared the ac-
tive sets extracted by this procedure for the prostate cancer set to the features
selected using other approaches surveyed in the previous research literature
(refer to Figure 30.1). The results are summarized in Table 30.2. Clearly, very
few common features are observed. As hypothesized in (Diamandis, 2003), it
appears that different algorithms extract different relevant features based on
their internal machinery and bias. A crucial goal for future research is there-
fore, to determine which, if any, features can serve as potential biomarkers,
and shed light on the nature of cancer, and possibly even its cure.

30.3.3 LOOCV Performance

The previous section presented results with classification performance opti-
mized directly on the test set. While this approach produces feature sets that
can be analyzed easily, algorithm performance may be grossly optimistic. To
produce a more realistic performance estimate we re-ran our experiments with
feature selection done using leave-one-out cross-validation (LOOCV) within
the training set. This procedure was also repeated 3 times for each external
test set. Due to the increased cost of the LOOCV procedure, we selected SFS,
KS-test, T-test and also the nearest shrunken centroid algorithm for compari-
son. Results are presented in Figure 30.5. The LOOCV performance estimates
are similar to performance optimized on test sets for the ovarian cancer. How-
ever, for the prostate cancer LOOCV performance is substantially lower.
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Fig. 30.5. Performance of Feature Extraction Algorithms optimized using LOOCV
within the training set. The balanced accuracy is averaged over 3 test folds unseen
during training. Top: ovarian cancer data set. Bottom: prostate cancer data set.

Table 30.3. Computational times, in CPU seconds, taken by each algorithm for
the LOOCV feature selection.

CPU Time 
(sec)

None KS-test     T-test   SFS
Shrunken
Centroids

Ovarian 0.87 24.55 623.37 2175.75 33115.00
Prostate 1.31 25.4 639.14 3269.37 33115.00

The running times of each algorithm are presented in Table 30.3. Although
the nearest centroid takes the greatest amount of time, the running time is
dictated by the number of shrunken centroids examined during the LOOCV
stage. Recall that decreasing dj shrinks the class centroid (for each class).
Hence the number of times we decrease dj directly impacts performance. In
our case we used 200 progressively shrunken centroid sets and picked the best
one using LOOCV.

30.4 Conclusion

Mass spectrometry disease diagnosis is an emerging field poised to improve
the quality of medical diagnosis. However, the large dimensionality of the data
requires the use of feature extraction techniques prior to data mining and
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classification. This paper analyzed statistical and wrapper-based approaches
to feature selection as well as dimensionality reduction via down-sampling. Ex-
perimental results indicate that down-sampling appears detrimental to classi-
fication performance, while feature selection techniques, in particular sequen-
tial forward selection coupled with a fast but simple nearest centroid classifier,
can greatly reduce the dimensionality of the data and improve classification
accuracy. Future research will investigate how the selected features impact
classification accuracy when used in conjunction with more sophisticated clas-
sifiers, such as Artificial Neural Networks and Support Vector Machines. From
a biological perspective, it is of interest to investigate the nature of the se-
lected features. As potential biomarkers, these features may shed light on the
cause or even the cure to cancer and other disease.
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Glossary

In this section we define the various measures used. Respectively, TP , TN ,
FP , FN , stand for the number of true positive, true negative, false positive,
false negative samples at classification time.

Sensitivity TP
TP+FN

is also known as Recall.

Specificity TN
TN+FP

PPV (Positive Predictive Value) TP
TP+FP

. is also known as Precision.

NPV (Negative Predictive Value) TN
TP+FP

Accuracy defined as 1
2
( TP

TP+FN
+ TN

TN+FP
) in this paper.
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