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Abstract Inspired by phylogenetic tree construction in computational biology, Lin
et al. (The 11th Annual International Symposium on Algorithms and Computation
(ISAAC 2000), pp. 539–551, 2000) introduced the notion of a k-phylogenetic root.
A k-phylogenetic root of a graph G is a tree T such that the leaves of T are the
vertices of G, two vertices are adjacent in G precisely if they are within distance k in
T , and all non-leaf vertices of T have degree at least three. The k-phylogenetic root
problem is to decide whether such a tree T exists for a given graph G. In addition to
introducing this problem, Lin et al. designed linear time constructive algorithms for
k ≤ 4, while left the problem open for k ≥ 5. In this paper, we partially fill this hole
by giving a linear time constructive algorithm to decide whether a given tree chordal
graph has a 5-phylogenetic root; this is the largest class of graphs known to have such
a construction.
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1 Introduction

A phylogeny describes the development and history through evolution for a set of re-
lated species. One natural representation of a phylogeny is a tree where the leaves are
labeled by the species and distances in the tree represent their evolutionary closeness.
Reconstruction of these phylogenetic trees is a fundamental problem in computa-
tional biology.

Motivated by phylogenetic tree construction, Nishimura et al. (2002) introduced k-
leaf roots and k-leaf powers. A k-leaf power of tree T is a graph G = (V (G),E(G))

such that the leaves of T are the vertices of G, and two vertices are adjacent in G

precisely if they are within distance k in T , measured by the number of edges on the
path connecting them. Tree T is a k-leaf root of G. Given graph G, to construct a
k-leaf root T we allow for the addition of internal nodes in T to facilitate the distance
constraint. These nodes do not correspond to vertices of V (G) and are called Steiner
points.

Initially, Nishimura et al. (2002) had given an O(n3) time algorithm for the recog-
nition of 3-leaf and 4-leaf powers. Brandstädt and Le (2006) and Brandstädt et al.
(2006) recently, and Rautenbach (2006) independently, gave simpler characteriza-
tions for 3-leaf and 4-leaf powers. Brandstädt and Le (2006) and Brandstädt et al.
(2006) also showed the use of their characterizations by producing linear time k-leaf
root construction algorithms for both k = 3 and 4. Particularly, their characterization
of 3-leaf powers is the same class of graphs we restrict our attention to in this paper—
tree chordal graphs. A graph is tree chordal if it is the result of substituting cliques in
place of the vertices of a tree.

A Steiner point in a k-leaf root is thought of as an evolutionary event in the phy-
logeny of a set of species. These events represent genetic splits from common un-
known ancestors and motivated Lin et al. (2000) to consider the k-phylogenetic root
construction problem. A k-phylogenetic root is similar to a k-leaf root, with the ex-
tra constraint that all its Steiner points have degree at least 3. Analogously, when
a k-phylogenetic root T exists for a given graph G, G is the k-phylogenetic power
of T . Lin et al. (2000) showed how to recognize k-phylogenetic powers and construct
a k-phylogenetic root in linear time for k ≤ 4. Nevertheless, no polynomial time k-
phylogenetic root construction algorithm is known for k ≥ 5, neither the complexity
of the recognition problem.

In this paper, we partially answer this question by constructing a 5-phylogenetic
root for a given tree chordal graph, if such a root exists. As our work builds on the
work of Lin et al. (2000), we first give some of the key ideas in their construction
algorithms while exploring the structure of k-phylogenetic powers. We then proceed
in Sect. 3 to present structural restrictions for the input graph G characterizing when
5-phylogenetic roots do not exist. A 5-phylogenetic root construction algorithm for a
slightly restricted class of tree chordal graphs is presented in Sect. 4; this algorithm
is then used as a sub-routine in the full construction algorithm presented in Sect. 5.
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2 Preliminaries

We present some of the key ideas in the k-phylogenetic root construction algorithms
by Lin et al. (2000), from there, we explore the structure of the 5-phylogenetic
powers. Two facts used in Lin et al. (2000) are that k-phylogenetic powers are nec-
essarily chordal, i.e., they do not contain any induced cycles of length four or more,
and that chordal graphs are linear time recognizable.

The first key insight in Lin et al. (2000) is that certain subsets of vertices could be
grouped together as in some sense they were indistinguishable in any k-phylogenetic
root of graph G. In graph G = (V ,E), a subset H ⊆ V is homogeneous if every
vertex in V \ H is either adjacent to all vertices of H or none of H . A clique C ⊆ V

is a subset of pairwise adjacent vertices. A clique C is critical if C is a homogeneous
subset and C is maximal (in the sense that no vertex v exists such that C ∪ v is
still a clique and homogeneous). The size of a critical clique denotes the number of
vertices it contains. Clearly, the set of critical cliques, V , forms a partition of the
vertex set V . Moreover, if M is a maximal clique and C is a critical clique, then C is
either contained in M (C ⊆ M) or disjoint to M (C ∩ M = ∅).

Based on the notion of critical clique, an auxiliary graph associated with G, called
the critical clique graph, can be defined as CC(G) = (V,E), where V is the set
of critical cliques in G and two critical cliques are adjacent if and only if they are
contained in some common maximal clique. That is, a critical clique in graph G

one-to-one corresponds to a node in graph CC(G). This construction is invertible,
i.e., given CC(G), one can reconstruct graph G by replacing each node of V by the
corresponding critical clique and adding edges to connect vertices of two adjacent
critical cliques. In this sense, this associated critical clique graph is equivalent to the
original graph. We note that the structure of critical clique graphs is central to our
5-phylogenetic root construction algorithm, to be detailed. Moreover, we assume the
input graph G to be chordal, and consequently its critical clique graph CC(G) can
be constructed in linear time (Lin et al. 2000). Graph G is tree chordal precisely if
CC(G) is a tree. Furthermore, a critical clique in a tree chordal graph G is a leaf
critical clique if it is a leaf in CC(G); otherwise, an internal critical clique.

The second key insight in Lin et al. (2000) is to reduce the k-phylogenetic root
problem to an equivalent auxiliary S-restricted (k − 2)-Steiner root problem. An S-
restricted k-Steiner root T of graph G = (V ,E), where S ⊂ V , is similar to a k-phylo-
genetic root but now the vertices of graph G may label internal nodes of tree T , more
than one vertex of graph G may label the same vertex of T , and the pre-specified
subset S of vertices must be internal in tree T . Lin et al. (2000) showed that when
graph G has a k-phylogenetic root T , then the leaves adjacent to a common Steiner
point in T must belong to a common critical clique in G. It follows that by labeling
Steiner points in T using the corresponding critical cliques, and then removing all the
leaves from T , we can obtain a new tree T ′ which is an S-restricted (k − 2)-Steiner
root of CC(G), where S is the set of size-1 critical cliques in G. Conversely, the
existence of such an S-restricted (k − 2)-Steiner root T ′ of CC(G) with S being the
set of size-1 critical cliques in G implies a k-phylogenetic root T of graph G, where
T can be constructed, with some care, from T ′ by attaching the vertices in a critical
clique to the corresponding labeled nodes.
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3 Structural restrictions

For the remainder of this article, we assume the given graph G is tree chordal, to
examine its structure when it is a 5-phylogenetic power. We also assume graph G is
non-trivial, i.e., containing at least 3 critical cliques. For ease of presentation, when
graph G has a 5-phylogenetic root T , the Steiner points in T that are attached with
vertices from a critical clique C are called the representatives of C.

Lemma 1 Assume T is a 5-phylogenetic root of graph G and C is a leaf critical
clique in G. Then removing the vertices and the representatives of C from T does not
disconnect the other leaves of T .

Proof Since C is a leaf critical clique, it has only one neighbor in CC(G), denoted
as D. Suppose to the contrary that removing the vertices and the representatives of
C from T disconnect the other leaves of T . Then in T , at least one representative of
C, r(C), must lie on a path, P , connecting one representative of D, r(D), and one
representative, r(X), for a third critical clique X 
= D. It follows that every leaf in the
subtree rooted at r(C) and containing r(X) is strictly closer to r(C) than to any other
representatives outside this subtree, including r(D). This implies either C is adjacent
to another critical clique other than D or graph G is disconnected, a contradiction. �

The following follows directly from Lemma 1:

Structural Restriction 1 If G has a size-1 leaf critical clique, then G does not have
a 5-phylogenetic root.

Assume T is a 5-phylogenetic root of graph G and C is a critical clique in G. Let
TC be the subgraph of T induced by the representatives of C and the paths connecting
them. Clearly, TC must be a tree, and must have diameter at most 3.

Lemma 2 Assume T is a 5-phylogenetic root of graph G and C is an internal critical
clique in G. Then TC must be a star. Moreover, if D is another internal critical clique
of G, then TC and TD do not overlap.

Proof A star is a tree whose diameter is less than or equal to 2. Suppose to the con-
trary that TC has diameter 3. Let r1 and r2 be the two representatives of C such that
their distance in T is 3, and denote the path connecting them as r1xyr2. Since C is an
internal critical clique, it has at least two neighbors, say D1 and D2. Let r(D1) and
r(D2) be representatives of D1 and D2, respectively. It follows that d(ri, r(Dj )) ≤ 3
for i = 1,2 and j = 1,2. These four inequalities imply that d(r(D1), r(D2)) ≤ 3,
contradicting to the fact that D1 and D2 are not adjacent in CC(G).

The second half of the lemma follows easily since otherwise both TC and TD

would be diameter-2 stars and they share a common center, which would imply that
C and D were identical. �

Lemma 2 gives a simple 5-phylogenetic root construction algorithm when every
leaf critical clique has size at least 4 and every internal critical clique has size at least
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2, as follows: Given graph G, in linear time we can construct the associated CC(G);
Second, we replace each node Ci in CC(G) with a Steiner point si ; Third, if si is
internal, then attach a representative r(Ci) to si for critical clique Ci ; Otherwise,
attach two representatives r1(Ci) and r2(Ci) to si for leaf critical clique Ci ; Lastly, if
si is internal, then attach all (at least 2) the vertices in Ci to the representative r(Ci);
Otherwise, attach all (at least 4) the vertices in Ci to the two representatives r1(Ci)

and r2(Ci), making sure at least 2 vertices to each representative. The tree produced
in this way is easily seen to be a 5-phylogenetic root. It is worth pointing out that this
is essentially the construction presented by Brandstädt and Le (2006) for the 3-leaf
root problem.

The real difficulty of the 5-phylogenetic root problem lies in satisfying the de-
gree requirements on Steiner points. The above algorithm does not work for all tree
chordal graphs; We still have to deal with leaf critical cliques of size 2 and 3 and
internal critical cliques of size 1. The complication with these “small” critical cliques
is that they need to “borrow” some representatives from adjacent critical cliques to
satisfy the degree requirements. This leads to the following further examination on
how representatives can be adjacent to one another.

Lemma 3 Assume T is a 5-phylogenetic root of graph G. Then every Steiner point
in T can be adjacent to representatives for at most two different critical cliques.

Proof If a Steiner point s in T is adjacent to 3 representatives for 3 critical cliques,
respectively, then these 3 critical cliques must be adjacent to each other, violating the
fact that graph G is tree chordal. �

Similarly, we can prove the next lemma (proof omitted).

Lemma 4 Assume T is a 5-phylogenetic root of graph G. Then every length-3 path
in T can contain representatives for at most two different critical cliques.

Lemma 5 Assume T is a 5-phylogenetic root of graph G and C and D are two
adjacent critical cliques in G. If both C and D have exactly one representative,
r(C) and r(D), respectively, then d(r(C), r(D)) = 1 or d(r(C), r(D)) = 3. Further-
more, if d(r(C), r(D)) = 1, then one of C and D has degree at least 3 in CC(G); if
d(r(C), r(D)) = 3, then both C and D are internal in CC(G).

Proof Suppose to the contrary d(r(C), r(D)) = 2. Then the Steiner point connecting
r(C) and r(D), denoted by s, should be adjacent to a fourth Steiner point, say x. It
follows that the vertices in the subtree of T rooted at s and containing x are discon-
nected from the other vertices in G, a contradiction. Therefore, d(r(C), r(D)) = 1
or 3.

If d(r(C), r(D)) = 1 and assuming C is internal in CC(G), let X be another
critical clique adjacent to C and r(X) a representative of X. Since r(X) has to be at
distance at least 4 from r(D) and at most 3 from r(C), it must be at distance exactly
3 from r(C). Let the path in T connecting r(C) and r(X) be r(C)yzr(X). It follows
that y is a non-representative Steiner point and it should adjacent to a third Steiner
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point w to satisfy the degree constraint. To prevent from the same contradiction in
the last paragraph, w must not be a representative for any critical clique but it should
be adjacent to a representative for some critical clique other than C, D, and X. This
critical clique is adjacent to C in CC(G), that is, C has degree at least 3.

If d(r(C), r(D)) = 3 and assuming the path in T connecting r(C) and r(D) be
r(C)xyr(D), note that both x and y are non-representative Steiner points and each
of them is adjacent to another non-representative Steiner point, say z and w, re-
spectively. Again, to prevent from the disconnectivity contradiction, each of z and
w should be adjacent to a representative for some critical clique other than C and D,
that is, both C and D have degree at least 2 in CC(G). �

Structural Restriction 2 Given a tree chordal graph G, if there are two degree-2
size-1 adjacent internal nodes in CC(G), then G is not a 5-phylogenetic power.

Proof If graph G has a 5-phylogenetic root T , then these two adjacent critical
cliques, denoted as C and D, have exactly one representative each. Moreover, these
two representatives must be internal in the associated Steiner root of T . It follows
that these two representatives must be adjacent to each other in T , a contradiction to
Lemma 5. �

The following lemma is important as it simplifies the 5-phylogenetic root con-
struction considerably.

Lemma 6 Assume graph G is a 5-phylogenetic power. Then G has a 5-phylogenetic
root T in which every leaf critical clique in G of size less than 4 has exactly one
representative, and this representative must be adjacent to a representative for the
neighboring critical clique.

Proof Let C be a leaf critical clique in G of size less than 4. Since G is a 5-phylo-
genetic power, by Structural Restriction 1 we know that C has size either 2 or 3. From
Lemma 2, we conclude that at least one representative of C must be a leaf in the 3-
Steiner root obtained from a 5-phylogenetic root of G. Consequently, if C has size 2,
then it has only one representative. If C has size 3, it might have another representa-
tive. Let T be a 5-phylogenetic root of G in which C has two representatives r1(C)

and r2(C), and assume that r1(C) is a leaf in the 3-Steiner root obtained from T .
Again from Lemma 2, it can be easily proved that r1(C) and r2(C) must be adjacent
in T ; for otherwise either graph G would be disconnected or C would have more than
one neighbor. Subsequently, we may merge r1(C) and r2(C) into one representative,
and the resultant tree is still a 5-phylogenetic root of G.

To prove the second half of the lemma, let T be a 5-phylogenetic root of G in
which C has one representative r(C), which appears as a leaf in the 3-Steiner root
obtained from T . Let D be the neighboring critical clique of C in G, and r1(D) be a
representative of D in T which is the closest to r(C). A similar proof as in the last
part of the proof of Lemma 5 shows that r(C) and r1(D) must be adjacent in T . �
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When graph G is a 5-phylogenetic power, it will have a 5-phylogenetic root sat-
isfying the property stated in Lemma 6. Such a root is called minimal. We have the
following two more structural restrictions.

Structural Restriction 3 Given a tree chordal graph G, if there is a degree-2 size-1
internal node in CC(G) which is adjacent to a leaf node of size 2 or 3, then G is not
a 5-phylogenetic power.

Proof This holds directly from Lemmas 5 and 6. �

Structural Restriction 4 Given a tree chordal graph G, if there is an internal node
C in CC(G) for which the number of adjacent leaf nodes of size 2 and 3 is greater
than the size of C, then G is not a 5-phylogenetic power.

Proof From Lemma 6, every leaf node of size 2 or 3 requests for a distinct repre-
sentative of critical clique C in a minimal 5-phylogenetic root of graph G. This is
certainly impossible to satisfy if the size of C is less than the requested number of
representatives. �

Lemma 7 Assume graph G is a 5-phylogenetic power. Then G has a 5-phylogenetic
root T in which every leaf critical clique in G of size at least 4 has exactly two
representatives, which are adjacent to a common non-representative Steiner point.

Proof Let C be a leaf critical clique of size at least 4 in graph G, and D be its neigh-
boring critical clique. Let r(C) and r(D) be two representatives of C and D, respec-
tively, such that their distance in a 5-phylogenetic root of G achieves the maximum.
Clearly, d(r(C), r(D)) = 1,2 or 3.

If d(r(C), r(D)) = 3, and supposing r(C)xyr(D) is the path connecting them,
then all representatives for C must be adjacent to x. It follows that we can revise
the root, if necessary, to ensure that x is not a representative for D, and merge/create
exactly two representatives for C. If d(r(C), r(D)) = 2, and supposing r(C)xr(D) is
the path connecting them, then x should not be adjacent with any other representatives
for D. That is, x is either a representative for D, or a representative for C, or a
non-representative adjacent with another representative for C. In the first two cases,
we can always revise the root to ensure that x becomes a non-representative, and
merge/create exactly two representatives for C. If d(r(C), r(D)) = 1, then both C

and D have exactly one representative each. Therefore, we can revise the root by
inserting a non-representative Steiner point x into edge (r(C), r(D)), and splitting
r(C) to create exactly two representatives for C, both adjacent to x. �

Lemma 8 Assume T is a 5-phylogenetic root of graph G and C and D are two
adjacent critical cliques in G. If C has exactly one representative r(C) in T , and
D has exactly two representatives r1(D) and r2(D) in T and r1(D) and r2(D) are
adjacent to each other, then r(C) is adjacent to either r1(D) or r2(D). Furthermore,
if D is a leaf critical clique, then C has degree at least 3 in CC(G).
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Proof First, in T , r(C) is at distance at most two to either r1(D) or r2(D). Then, a
similar proof as for Lemma 3 shows that there should not be any other Steiner point
connecting r(C) and r1(D) and r2(D), for otherwise either graph G would not be
tree chordal or it would be disconnected. Now assume D is a leaf critical clique,
which implies that C is internal. A similar proof as in the middle part of the proof of
Lemma 5 shows that C has degree at least 3 in CC(G). �

Structural Restriction 5 Given a tree chordal graph G containing more than 3 crit-
ical cliques, if there is an internal degree-2 and size-2 node C in CC(G) and C is
adjacent to a leaf node of size 2 or 3, then G is not a 5-phylogenetic power.

Proof Assume to the contrary that T is a minimal 5-phylogenetic root of graph G.
Let D be the leaf node of size 2 or 3, and r(D) its representative. Lemma 6 implies
a representative of C, r1(C), which is adjacent to r(D) in T . On the other hand,
Lemma 5 implies that C has another representative, r2(C). Because C has size two,
both r1(C) and r2(C) must be internal in the 3-Steiner root obtained from T . From
the fact that C has degree two, r1(C) and r2(C) must be adjacent to each other. Let
X denote the other neighboring critical clique adjacent to C in CC(G). It follows
that all the representatives of X must be at distance exactly 2 from r2(C), through
a common non-representative Steiner point. From Lemma 8, X should have at least
two representatives, which however implies that every neighboring critical cliques of
X must be adjacent to C as well, a contradiction to the degree assumption on C or
the assumption that G contains more than 3 critical cliques. �

Lemma 9 Assume T is a 5-phylogenetic root of graph G and C is a size-1 critical
clique in G. Then C has degree at least 3 in CC(G). Furthermore, if C has degree
exactly 3, then one of its neighboring critical cliques must have size strictly greater
than the number of adjacent leaf critical cliques of size 2 and 3.

Proof We prove first that C has degree at least 3 in CC(G). Note that if C is adjacent
to a leaf critical clique of size 2 or 3, then by Lemma 5 C has degree at least 3 in
CC(G). In the following, assume to the contrary that C is not adjacent to any leaf
critical clique of size 2 or 3 and C has degree 2 in CC(G). Let r(C) denote the
unique representative for C in root T . Since r(C) must be internal in the associate
Steiner root of T , if all the representatives for the two neighboring critical cliques of
C are at distance exactly 2 to r(C), then graph G can contain only 3 critical cliques, a
trivial case. It follows that there is some representative which is at distance either 1 or
3 to r(C). Note that the existence of a distance-1 representative implies a distance-3
representative for the other neighboring critical clique of C. We conclude that there is
one neighboring critical clique of C, say D, such that one of its representatives r(D)

is at distance exactly 3 from r(C). Thus, in the same branch rooted at r(C) where
r(D) resides, there is another representative which is closer to r(C) than to r(D),
a contradiction to either Lemma 2, or Lemma 7, or the fact that C has degree 2 in
CC(G). Therefore, C must have degree at least 3 in CC(G).

When C has degree exactly 3, there must be a representative r(D) adjacent to
r(C) in root T . It follows that no representative for critical cliques other than C or
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D could be adjacent to r(D). Hence, from Lemma 6, we conclude that the size of
D is greater than the number of its adjacent leaf critical cliques of size 2 and 3 in
CC(G). �

4 Dense tree chordal graphs

A tree chordal graph containing no critical cliques of size 1 is called dense. In this
short section, we restrict ourselves to consider only dense tree chordal graphs (con-
taining at least 3 critical cliques), and present an algorithm for deciding whether a
dense tree chordal graph has a 5-phylogenetic root, and if so to construct such a root.
It turns out that Structural Restrictions 4 and 5 proven in the last section are sufficient
to guarantee the existence of a 5-phylogenetic root. Therefore, we check where the
input graph emits any of Structural Restrictions 4 and 5. For doing so, we need only
look at each critical clique and its neighbors once, and thus this step takes line time.

In the following, assume that the input graph G does not emit any of the four
Structural Restrictions. We start with the critical clique graph CC(G), which is a
tree, to construct a 5-phylogenetic root T for graph G. First, we replace each critical
clique Ci with a Steiner point si . Second, in CC(G), for each degree-2 Ci adjacent to
a leaf critical clique of size 2 or 3, denoted as L, we distinguish two cases: Ci has size
two or greater. If Ci has size two, then G contains exactly 3 critical cliques with the
third critical clique of size at least 4, by Structural Restriction 5; and for this case, T

contains one representative for L, two adjacent representatives for Ci , and two non-
adjacent representatives, which are adjacent to a common non-representative Steiner
point, for the third critical clique of size at least 4. In the following, we assume Ci

has size at least three. Let D be the other neighboring critical clique of Ci . If D is
also a leaf critical clique of size 2 or 3, then G contains exactly three critical cliques
and the skeleton of the 5-phylogenetic root T is a path of length 5, with the middle
three representatives for Ci and one leaf representative for each of L and D. If D is
not a leaf critical clique, then we create two representatives r1(Ci) and r2(Ci) for Ci ,
such that r1(Ci) is a leaf adjacent to si and r2(Ci) bisects the edge (r(L), si). In the
final tree T , one vertex of Ci is attached to r2(Ci), while the other vertices attached
to r1(Ci).

Third, for each Ci with degree three or more in CC(G), and for each adjacent leaf
critical clique of size 2 or 3, denoted as L, place a representative r(Ci) bisecting the
edge (r(L), si). In the final tree T , at least one vertex of Ci is attached to r(Ci), while
making sure all vertices of Ci are properly distributed to its representatives. Fourth,
for every internal critical clique Ci in CC(G) not adjacent with any leaf critical clique
of size 2 or 3, create exactly one representative r(Ci) and attach it to si . In the final
tree T , all vertices of Ci are attached to r(Ci). Fifth, for every leaf critical clique
Ci of size at least 4, create two representatives r1(Ci) and r2(Ci), and attach them
to si . In the final tree T , at least two vertices of Ci are attached to each of r1(Ci)

and r2(Ci), while making sure all vertices of Ci are properly distributed to these two
representatives. Finally, for every leaf critical clique Ci of size 2 or 3, replace its the
Steiner point si with its only representative r(Ci); and in the final tree T , all vertices
of Ci are attached to r(Ci). One can easily check that all critical cliques have been
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included in the above six cases, and the resultant tree T is a 5-phylogenetic root for
graph G. That is, we have proved the following:

Theorem 1 A dense tree chordal graph G = (V ,E) emitting none of the two Struc-
tural Restrictions 4 and 5 is a 5-phylogenetic power, and one of its 5-phylogenetic
root T can be constructed in O(|V | + |E|) time.

5 General tree chordal graphs

Structural Restrictions 4 and 5 summarize all those dense tree chordal graphs that
are not 5-phylogenetic powers. For general tree chordal graphs which might con-
tain size-1 critical cliques, Structural Restrictions 1–3 tell that some of them are not
5-phylogenetic powers either. In particular, these size-1 critical cliques have to be
internal (by Structural Restriction 1), each of them can be adjacent with at most one
leaf critical clique of size 2 or 3 (by Structural Restriction 4), and if one does then it
has to have degree at least 3 (by Structural Restriction 3). In this section, we present
three reductions each of which eliminates exactly one size-1 internal critical clique
from the input graph G to give a new graph G∗, through a (constant time) local trans-
formation, such that 1) G∗ contains one less size-1 internal critical clique than G,
2) G∗ is a 5-phylogenetic power if and only if G is a 5-phylogenetic power, and
3) Every internal critical clique of size equal to or greater than 2 in G is unchanged in
G∗. A reduction satisfying the above three properties is said to be valid. At the end,
we will obtain a graph G∗ that is dense tree chordal, for which a 5-phylogenetic
root can be constructed in the way as described in the last section (Theorem 1).
A 5-phylogenetic root for graph G can then be constructed from this root of graph
G∗. Let C be a size-1 internal critical clique in tree chordal graph G.

Reduction 1 If C is adjacent to exactly one leaf critical clique D of size 2 or 3, then
G∗ is the graph created by deleting D and increasing the size of C to 2.

Reduction 2 If C has degree 2 and is adjacent to exactly one leaf critical clique D

of size at least 8, then G∗ is the graph created by deleting D and increasing the size
of C to 2.

Reduction 3 If C is adjacent to no leaf critical cliques or at least two leaf critical
cliques of size at least 4, then G∗ is the graph created by increasing the size of C

to 2.

Lemma 10 Reduction 1 is valid.

Proof It is easily seen that G∗ contains one less size-1 internal critical clique than G,
and every internal critical clique of size equal to or greater than 2 in G is unchanged
in G∗.

Assume graph G is a 5-phylogenetic power. From Lemma 6, we know that there is
a 5-phylogenetic root T of G in which r(D), the unique representative for D, appears
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as a leaf in the corresponding Steiner root obtained from T , and it is adjacent to r(C),
the unique representative for C. Since no Steiner points other than r(C) can be within
distance 3 to r(D) in T , removing r(D) and the vertex in D, and attaching the newly
added vertex to C to its representative r(C) gives 5-phylogenetic root of graph G∗.

Conversely, assume graph G∗ is a 5-phylogenetic power. Note that critical clique
C has size 2, and is still internal. From the 5-phylogenetic root construction algo-
rithm presented in the last section for dense tree chordal graphs, we see that neither
the second nor the third step apply, by Structural Restriction 4 on graph G. Therefore,
the fourth step must apply, and thus there is a 5-phylogenetic root T for graph G∗
in which critical clique C has exactly one representative r(C), r(C) is adjacent to
exactly one other, non-representative, Steiner point, and every representative Steiner
point is at distance at least 3 away from r(C). It follows that, if we create a repre-
sentative Steiner point r(D) and attach it to r(C), then reducing the size of C to 1
(removing one vertex in C from tree T ) and attaching the vertices in D to r(D) give
a feasible 5-phylogenetic root for graph G. Therefore, Reduction 1 is valid. �

Lemma 11 Reduction 2 is valid.

Proof It is easily seen that G∗ contains one less size-1 internal critical clique than G,
and every internal critical clique of size equal to or greater than 2 in G is unchanged
in G∗.

Assume graph G is a 5-phylogenetic power and T is a 5-phylogenetic root. First
of all, we claim that the other neighboring critical clique of C, denoted as X, must
have a representative adjacent to r(C), the unique representative for C, in T . For
otherwise, a similar proof as in the proof of Lemma 5 leads to a contradiction that
either graph G is disconnected or C has degree at least 3. In more details, assume to
the contrary that no representative of X is adjacent to r(C), but one representative,
denoted as r(X), is at distance 2 to r(C), and let r(X)sr(C) denote the path connect-
ing them, where s is a non-representative Steiner point. Then, to satisfy the degree
constraint, there must be another Steiner point y adjacent to s. Since C is internal and
has degree 2, we conclude that X is internal too (since graph G is non-trivial) and
y must not be a representative for X. It follows that y must be a non-representative
Steiner point and consequently the vertices in the subtree of T rooted at s and con-
taining y are disconnected from the other vertices in G, a contradiction. Similarly,
it is impossible that no representative of X is within distance 2 to r(C) but one is
at distance exactly 3 to r(C). That is, our claim holds, which says there must be a
representative of X adjacent to r(C). It follows from this claim that every representa-
tive for the leaf critical clique D must be at distance exactly 3 to r(C) (otherwise D

would be adjacent to X; and therefore, there must be at least 4 leaf Steiner points in T

which are representatives for D, implying that the size of D is at least 8). Moreover,
removing the whole branch of T containing the representatives for D and all vertices
in D gives a 5-phylogenetic root for G∗, in which r(C) is now attached with the two
vertices in C.

Conversely, assume graph G∗ is a 5-phylogenetic power. Note that critical clique
C has size 2, and is a leaf critical clique in graph G∗. From the 5-phylogenetic root
construction algorithm presented in the last section for dense tree chordal graphs, we
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see that the last (the sixth) step applies, and thus there is a 5-phylogenetic root T for
graph G∗ in which critical clique C has exactly one representative r(C), r(C) is at-
tached with the two vertices in C, and r(C) is adjacent to a representative of its neigh-
boring critical clique in G∗. We create a branch of 4 representatives (r1, r2, r3, r4) and
3 non-representative Steiner points (s1, s2, s3), in which s1 is the root, s2 and s3 are
both adjacent to s1, r1 and r2 are both adjacent to s2, r3 and r4 are both adjacent to
s3, and each representative is attached with at least two vertices in D. It follows that
if we connect this branch to r(C) by adding an edge (s1, r(C)), then subsequently
reducing the size of C to 1 (removing one vertex in C from tree T ) gives a feasible
5-phylogenetic root for graph G. Therefore, Reduction 2 is valid. �

Lemma 12 Reduction 3 is valid.

Proof It is easily seen that G∗ contains one less size-1 internal critical clique than G,
and every internal critical clique of size equal to or greater than 2 in G is unchanged
in G∗.

Assume graph G is a 5-phylogenetic power and T is a 5-phylogenetic root. Triv-
ially, attaching the newly added vertex to critical clique C to the representative of C

in T gives a 5-phylogenetic root for graph G∗.
Conversely, assume graph G∗ is a 5-phylogenetic power. Note that critical clique

C has size 2, is internal, and is not adjacent with any leaf critical clique of size 2 or 3.
From the 5-phylogenetic root construction algorithm presented in the last section for
dense tree chordal graphs, we see that neither the second nor the third step apply, by
Structural Restriction 4 on graph G. Therefore, the fourth step must apply, and thus
there is a 5-phylogenetic root T for graph G∗ in which critical clique C has exactly
one representative r(C), r(C) is adjacent to exactly one other, non-representative,
Steiner point, and every representative Steiner point is at distance at least 3 away
from r(C).

Let T denote this 5-phylogenetic root. If the non-representative Steiner point s(C)

adjacent to representative r(C) for C has degree at least 5 (that is, at least 4 edges
connecting r(C) to non-representative Steiner points), then by splitting s(C) into two
non-representative Steiner points s1(C) and s2(C) such that each of them inherits at
least two edges out of s(C), and removing one vertex from C, we obtain from T a
5-phylogenetic root for graph G. In the other case, Steiner point s(C) has degree only
4, which implies that C has degree 3 in CC(G∗). Therefore, from Lemma 9, we have
at least one neighboring critical clique D of C whose size is strictly larger than the
number of adjacent leaf critical cliques of size 2 and 3 in CC(G∗). Consequently,
either we have one representative for D that is a leaf in the associated Steiner root,
or we can create a new representative r(D) for D and attach it to s(D) (that is,
again a leaf in the Steiner root). The obtained tree is not a 5-phylogenetic root for
graph G yet, but by removing the edge connecting s(C) and s(D), adding the edge
connecting r(C) and r(D), and removing a vertex from C, it becomes one. Therefore,
Reduction 3 is valid. �

The following main theorem summarizes the above efforts:
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Theorem 2 Given a tree chordal graph G = (V ,E), whether or not G is a 5-phylo-
genetic power can be determined in O(|V | + |E|) time. When G is a 5-phylogenetic
power, one 5-phylogenetic root can be constructed in O(|V | + |E|) time too.

6 Concluding remarks

We have shown how to recognize 5-phylogenetic powers for tree chordal graphs, and
if the input graph is a 5-phylogenetic power, then we construct one root in linear time.
This algorithmic result extends the results of Lin et al. (2000) and tree chordal graph
is the largest known class of graphs to have such a root construction. The complexity
of recognizing k-phylogenetic powers for k ≥ 5 is still unknown. We believe that for
the k = 5 case there exists a polynomial time algorithm, though it is likely to be quite
complex.

Our root construction algorithm is much more complicated than the characteriza-
tion of 3-leaf roots, which is exactly the class of tree chordal graphs (Brandstädt and
Le 2006). We see that the difficulty of the k-phylogenetic root construction lies in the
satisfaction of the Steiner point degree requirements. Note that both the leaf root and
the phylogenetic root problems were formulated out of the phylogeny reconstruction
in computational biology. Because in a phylogeny, internal nodes correspond to the
speciation events and thus are at least bifurcations, the phylogenetic root problem
seems more natural. Nevertheless, the leaf root problem has attracted much attention
in the last few years. To a larger extent, it would be interesting to study the more gen-
eral (k, �)-leaf root (Brandstädt and Wagner 2007) or (k, �)-phylogenetic root prob-
lem, where a tree T is a (k, �)-leaf/phylogenetic root of a graph G = (V ,E) if for
every edge (x, y) ∈ E, the distance between x and y in T is at most k, and for every
(x, y) /∈ E, the distance between x and y in T is at least �. The k-leaf/phylogenetic
root problem is the special case where � = k + 1.
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