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Shape space was proposed over 20 years ago as a conceptual formalism in which to represent
antibody/antigen binding. It has since played a key role in computational immunology.
Antigens and antibodies are considered to be points in an abstract &&shape space'', where
coordinates of points in this space represent generalized physico-chemical properties asso-
ciated with various (unspeci"ed) physical properties related to binding, such as geometric
shape, hydrophobicity, charge, etc. Distances in shape space between points representing
antibodies and (the shape complement) of antigens are assumed to be related to their a$nity,
with small distances corresponding to high a$nity.

In this paper, we provide algorithms, related to metric and ordinal multidimensional scaling
algorithms "rst developed in the mathematical psychology literature, which construct explicit,
quantitative coordinates for points in shape space given experimental data such as hema-
gglutination inhibition assays, or other general a$nity assays. Previously, such coordinates
had been conceptual constructs and totally implicit. The dimension of shape space deduced
from hemagglutination inhibition assays for in#uenza is low, approximately "ve dimensional.

The deduction of the explicit geometry of shape space given experimental a$nity data
provides new ways to quantify the similarity of antibodies to antibodies, antigens to antigens,
and the a$nity of antigens to antibodies. This has potential utility in, e.g. strain selection
decisions for annual in#uenza vaccines, among other applications. The analysis techniques
presented here are not restricted to the analysis of antibody}antigen interactions and are
generally applicable to a$nity data resulting from binding assays.
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1. Introduction

&&Shape space'' was introduced by Edelstein and
Rosen (Edelstein et al., 1978), and Perelson and
Oster (Perelson et al., 1979) as a conceptual
and computational framework in which to view
antibody-antigen a$nity and its resultant
consequences. It has since played an important
role in theoretical and computational studies
of the immune system (Segel & Perelson, 1988;
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Perelson, 1988; DeBoer et al., 1992, 1992a). This
paper presents algorithms related to ordinal and
metric multidimensional scaling (Shepherd, 1963,
1964; Kruskal, 1964a, b) which create an explicit
representation of shape space and which provide
numerical coordinates, given suitable experi-
mental data, which represent molecular positions
in the space. Although the numerical precision of
a$nity measurements is often limited, the algo-
rithms described here are robust, and can con-
struct quantitative information such as numerical
coordinates, from qualitative information such as
( 2001 Academic Press
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the rank order of a$nities as provided by a panel
of experimental data, e.g. hemagglutination inhi-
bition (HI) assay results. Hemagglutination inhi-
bition assays measure the ability of antibodies to
bind to antigens. In the context of in#uenza, the
assay reports the ability of ferret antibodies
raised against one viral strain to inhibit a second
strain's ability to agglutinate red blood cells. If
attempts are made to de"ne similarity of anti-
gens, respectively antibodies, using binding assay
data without reconstructing the geometry of the
underlying shape space, then signi"cant errors
can result as we demonstrate below.

The idea of shape space as originally developed
in the context of antibody/antigen binding is
simple yet powerful, and presumably applies to
other molecular interactions. Here we concen-
trate on antibody/antigen interactions. Each
antibody and each antigen is assumed to be im-
plicitly described by a vector of numbers, i.e.
a coordinate vector, which represent the geomet-
ric shape characteristics relevant to shape comp-
lementarity in binding, as well as more general
physico-chemical characteristics related to bind-
ing. These shape and physico-chemical charac-
teristics need not be known for any individual
molecule, but are assumed to exist, and are
assumed to be su$cient to provide a complete
description of molecular binding if they were
known. Each vector represents an antibody, re-
spectively antigen, as a point in a generalized
&&shape space'' of some (to be determined) dimen-
sion. Antigens which are bound tightly by an
antibody are assumed to have similar shape
space vectors (or more precisely, similar comp-
lement shape vectors, see below) to the antibody,
and hence are described by points in shape space
which are close in Euclidean distance as cal-
culated from their coordinate vectors to the anti-
body point. Experimentally observed a$nity
values are assumed to be a monotonic trans-
formation of the distance between an antibody
and an antigen in the underlying shape space.

In previous work (Perelson et al., 1979; Segel
& Perelson, 1988; Perelson, 1988; DeBoer et al.,
1992, 1992a) these coordinate vectors remained
as implicit theoretical constructs, but even
though implicit, the shape space formalism pro-
vided a powerful conceptual framework in which
to explore molecular a$nity and related issues.
In this work, we provide algorithms which calcu-
late explicit coordinate vectors in shape space
from experimental data, and provide a formalism
in which to execute quantitative investigations.
A point requiring mention is that, in general,
complementary shapes bind well (or more pre-
cisely, complementary physico-chemical charac-
teristics lead to good binding), and hence the
shape space vector describing one of the members
of the pair (antibody, bound antigen) actually
describes the complementary &&shape'' for that
member. The word &&shape'' in this context de-
notes geometric as well as other physico-chem-
ical characteristics of molecular surfaces relevant
to binding, and does not necessarily imply a &&lock
and key'' concept of molecular a$nity.

Perelson and Oster were able to estimate
certain gross properties of shape space, such as
bounds on the dimension of the space, from ex-
perimental data even though they had no means
to assign actual coordinate vectors in shape space
to molecules. The dimension estimated by Perel-
son and Oster turned out to be fairly low (ap-
proximately "ve-dimensional), a value validated
via our quantitative analysis using independent
methods on di!erent experimental data. A key
contribution of this paper is the development and
application of algorithms which provide an esti-
mate of dimension, as well as explicit coordinates
for molecules in shape space, given experimental
data such as hemagglutination inhibition (HI)
assays. Both the dimension, and coordinates, are
determined by minimizing an objective function
which relates the coordinates of points in shape
space, to the given binding data, via a monotonic
map from shape space distance to measured
a$nities. The algorithms are robust, and even
though assay data is typically of low precision,
the algorithms can produce high-quality coordi-
nates which provide a detailed description of the
geometry of shape space given only low precision
experimental data. This recovery of high pre-
cision metric information from low precision
data is a characteristic of the class of algorithms
known as ordinal multidimensional scaling algo-
rithms (Borg, 1997), to which our work is closely
related.

Our formalism provides a quantitative descrip-
tion not only of the binding of antigen to anti-
body, but also allows one to compute measures
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of similarity of one antigen to another antigen,
and of one antibody to another antibody. Vari-
ous applications of the formalism exist, including
analysis of hemagglutination inhibition (HI)
assay data used, e.g. in selection decisions for
components of the annual in#uenza vaccine. We
present results of analyses of various HI assay
panels.

2. Material and Methods

2.1. MEASURING SIMILARITY: DIFFICULTIES IN

CONVENTIONAL APPROACH

It is possible to calculate distances, i.e. (dis)sim-
ilarities, between either the antibodies, con-
sidered as a set, or the antigens considered as
a distinct set (but not between an antibody and
an antigen) by de"ning coordinates for either the
antibodies or the antigens in the following simple
manner: view the experimental values for M anti-
gens binding N antibodies as an M*N panel of
numbers, and consider the rows to be coordi-
nates for the antigens or, respectively, consider
the columns to be coordinates for the antibodies
in a Euclidean space. The rows, respectively col-
umns, can be thought of as &&feature vectors''
describing either the antigens or the antibodies.
A distance, or (dis)similarity between antigens,
respectively antibodies, can then be de"ned using
the standard (or possibly weighted) Euclidean
distance between feature vectors. By construc-
tion, antibodies and antigens are not represented
in the same space, and furthermore the dimension
of the resulting space is the (arbitrary) number of
antibodies, respectively, antigens, in the panel.

This intuitive method of de"ning similarities
can be misleading when a$nities are in fact re-
lated to distances in an underlying space of "xed
dimension, as per shape space assumptions.
A simple simulation of shape space demonstrates
this. Ten points representing antibodies are scat-
tered into a space of "ve dimensions by choosing
coordinates for the ten points at random between
!1 and #1 in each of the "ve dimensions.
Hence, N of a simulated NM panel is N"10.
Next, an additional 50 points are scattered in the
space in a similar fashion to represent 50 antigens
in the "ve-dimensional shape space. Hence,
M"50. The fact that experimental panels do not
usually have e.g. 50 antigens is irrelevant. We use
50 antigens in this 50 * 10 example merely to
make trends visually apparent in Fig. 1. Compare
distances between antigens (one could equally
consider antisera) as calculated in this ten-dimen-
sional space, to the distances between antigens as
calculated in the true underlying "ve-dimen-
sional shape space.

As can be seen in Fig. 1, attempting to select
similar points based on the ten-dimensional
&&panel distance'', by horizontally slicing in the
y value, results in a wide range of associated
distances in the true "ve-dimensional space rep-
resented by the x value. Hence, for all but the
very smallest y values, the simplistic procedure to
de"ne similarities can result in a wide range of
similarity values in the true space, including quite
poor similarities.

2.2. SIMILARITY MEASURES FROM AFFINITY PANELS:

A SHAPE SPACE APPROACH

&&Multidimensional scaling'' algorithms (refer-
red to hereafter as MDS) are a class of algorithms
initially developed in the computational psychol-
ogy literature (Shepherd, 1963, 1964) which re-
construct the true dimension of the space, and the
relative coordinates of points, given only distan-
ces, or more generally monotonic transforma-
tions of distances, between the points. &&Relative''
means that coordinates are reconstructed from
the distance data up to global translation, re#ec-
tion, scale and rotation which leave the relative
relation of points invariant. Since interest centers
on relative relationships, such global transforma-
tions are irrelevant.

There are two classes of MDS algorithms: (1)
&&metric MDS' algorithms, for which distances
between points are given as input to the algo-
rithms, and (2) &&ordinal MDS'' algorithms, for
which the rank order of distances are given as
input (Kruskal, 1964a, 1964b). Metric MDS has
seen previous use in biological applications
(Braun, 1987). Ordinal MDS algorithms have
been used extensively in the computational psy-
chology literature to derive quantitative con-
clusions from qualitative data, such as a human
subject's relative rankings of the visual similarit-
ies of pairs of objects (Edelman, 1995). Somewhat
surprisingly, if only the rank order of a set of



FIG. 1. Scatter plot for antigens with true shape space distance on the x-axis, vs. panel distance on the y-axis, for a panel of
50 antigens and ten antibodies in a "ve-dimensional shape space. A small distance corresponds to high similarity. Horizontal
slices in y-value (i.e. "xed &&panel distance'') are associated with a range of x values (i.e. true distances), and even relatively small
panel distances can have large x values (true distances), demonstrating that panel-based similarity measures typically include
points with questionable similarity in the true space. More precise methods, such as described in this paper, are required for an
accurate similarity determination.
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distances between points are known, it is still
often possible to compute with a high degree of
precision the coordinates of the points in shape
space giving rise to the ranked set of distances
(Edelman, 1995). This is because given enough
data, the set of rank relations impose su$cient
inequalities on distances between points in the
space such that the resulting set of simultaneous
inequalities slices the space into small allowable
regions in which each point can exist. The lower
the dimension of the space, the less data are
required for recovery of metric information from
ordinal data. Fortunately, the dimension of im-
munological shape space turns out to be low.

Following Perelson and Oster (Perelson et al.,
1979) we assume that a$nity measurements be-
tween antibodies and antigens are described by
an a priori unknown monotonic transformation
of the distances between the points describing
them in shape space. The ability to work with
rank order data encompasses totally general
monotonic transformations between distances in
shape space and experimentally measured values
such as hemagglutination inhibition assays, or
more general binding assays. For shape space
problems considered here, one is given experi-
mental measurements (assumed to be monotoni-
cally related to distances), involving a subset of
the data: only antigen}antibody measurements
are given, and the antibody}antibody and anti-
gen}antigen distances are then calculable after
the algorithm reconstructs coordinates in the
true underlying shape. Ordinal MDS applied to
a subset of the data is known as the &&unfolding
problem'' in the MDS literature (Borg, 1997).

2.3. ALGORITHMS

2.3.1. Metric MDS

For pedagogical purposes we "rst assume that
experimental measurements are in fact distances,
and not more generally, monotonic transforma-
tions of distance. Ordinal MDS will later be used
to address experimental values which are mono-
tonic transformations of distance. The computa-
tional task of metric MDS may be formulated as
minimizing the following objective function as
a function of coordinates

E"

i,j/M,N
+

i,j/1

(Dexpt
ij

!D
ij
)2,
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where Dexpt
ij

are the known, experimentally deter-
mined, &&distances'' (or more generally, mono-
tonic transformations of a$nity measurements),
and the estimated Euclidean distances D

ij
, are

computed in a standard fashion given the coordi-
nate vectors, X, of the points in a space of dimen-
sionality D (D to be determined). Hence,
D

ij
"DX

i
!X

j
D2, where DD2 represents the usual

vector norm. The D-dimensional vector, X
i
, rep-

resents the position of the i-th of M antigens in
shape space, and similarly X

j
represents the posi-

tion of the j-th of N antibodies (or more gener-
ally, antisera). Each vector, X

i
, has components

denoted as superscripts, X
i
"(X1

i
X2

i
X3

i
. . .XD

i
),

where the numerical values of the components,
and the dimension D, are to be determined. Vari-
ous weights can be introduced into E, if desired,
to weight smaller distances (higher HI values)
more heavily. The de"nition of D

ij
, above, as-

sumes a Euclidean reconstructed shape space. If
shape space were in fact non-Euclidean, but re-
construction of shape space was based, as in the
above, on a Euclidean assumption, then an arti"-
cially in#ated dimension will result. A simple
example of this is the embedding of the intrinsi-
cally two-dimensional, curved, surface of a
hemisphere in a minimum of three Euclidean
dimensions. Given the results obtained to date
and described below, consideration of a more
complicated non-Euclidean shape space recon-
struction algorithm does not seem necessary.

One may minimize E as a function of the
components using, e.g. steepest descents or
conjugate gradient methods, to "nd optimal
coordinates. Clearly, a trivial minimum is always
possible. This occurs when one chooses the
dimension, D, of the space to be greater than or
equal to P!1 where P is the number of points.
Because P points can always be embedded in
a Euclidean space of P!1 dimensions, e.g. three
points de"ne a plane in two dimensions, a non-
trivial embedding is obtained only if the objective
function can be minimized when D is substan-
tially less than P. One can therefore test possible
embedding dimensions, starting with a low di-
mension, and plotting the "nal value of the objec-
tive function, E, as a function of the trial embed-
ding dimension. A non-trivial embedding will be
evidenced by a signi"cant reduction of the "nal
value of the objective function at a dimension,
D"D
minimal

, which is considerably less than P,
the number of embedded points. Satisfying the
condition, D

minimal
;P de"nes a low-dimensional

submanifold constituting a non-trivial Euclidean
embedding. Ordinal MDS, described below, uses
a di!erent objective function to de"ne a non-
trivial Euclidean embedding.

The di$culty with applying metric MDS to
shape space is that the monotonic transformation
relating HI values to shape space distances, Dexpt

ij
,

is a priori unknown. It may be veri"ed via
simulated examples (data not shown) that if
a monotonic transformation is used to recon-
struct shape space which does not match the
actual transformation between HI and distance,
then (a) the reconstructed dimension is typically
arti"cially in#ated, and (b) a spread of recon-
structed distances against true distances (similar
to Fig. 1) is obtained. Ordinal MDS, considered
next, avoids these problems.

2.3.2. Ordinal MDS

Ordinal MDS addresses the monotonic trans-
formation problem by using only rank order in-
formation. The numerical values of the experi-
mental data are not used other than to sort the
values. This encompasses arbitrary monotonic
transformations, since such transformations
leave the rank order invariant. If there are
M antigens and N antibodies then there are M*N
experimental values, E

ij
, to be related to the

distances between the representative points in
shape space. Each E

ij
is assumed to be monotoni-

cally related to the distance D
ij

in shape space
between antigen i and antisera j via an a priori
unspeci"ed monotonic function.

The E
ij

values can be ordered by simple sort-
ing from high to low. Initially, coordinates for the
M*N points are chosen at random, and so the
ordering de"ned by sorting the E

ij
values will not

necessarily agree with the ordering de"ned by
sorting the associated D

ij
values. The algorithm

seeks to move coordinates of points so that ulti-
mately these orderings agree in the sense that HI
values increase as shape space distances decrease.
To achieve this, index the sorted list of E

ij
values

and the associated D
ij

with a number a from 1 to
MN, such that rank one is the highest experi-
mental value which ultimately is to be associated
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with the smallest distance. For example, if the
experimentally determined HI value for the pair
ij is the highest among all the antigen}antibody
pairs then pair ij is assigned an ordering label, a,
with a"1. We then denote the distance D

ij
be-

tween ij as D
1
, i.e. Da with a"1. If the next

highest HI value is between pair kl then the pair
kl is assigned a"2, and the distance D

kl
between

kl is denoted D
2
, i.e. Da with a"2. We wish to

"nd coordinates of all the points such that
D

1
"D

ij
is less than D

2
"D

kl
, and similarly and

simultaneously, D
2
(D

3
, D

3
(D

4
, etc. In other

words, we wish to "nd coordinates such that the
computed distances are in correct association
with the experimental values, i.e. high HI values
correspond to small shape space distances.

An objective function, which when minimized
as a function of shape space coordinates ranks
the computed distances in shape space in the
desired order in relation to the experimental
values, is

E"!

a/MN
+
a/1

log (g(Da`1
!Da )), (1)

Da references the MN computed distances using
the index, a, based on the rank ordering of the
experimental values explained above. g(x) is a sig-
moidal function which is zero at large negative
values of its argument and one at large positive
values e.g. g(x)"0.5 * (1#tanh(x)). The exact
algebraic form is not critical, and it is stressed
that this monotone function is not at all related
to the monotonic function relating distances in
shape space to HI values.

Note that when the rank order of the com-
puted distances is in the desired relation to the HI
values (which occurs when coordinates are found
such that D

1
(D

2
(D

3
. . .(D

MN
) then the g( )

function of each term of eqn (1) tends towards the
value 1 and hence log(g( )) tends towards the
value 0. Thus, this objective function is mini-
mized as a function of the antigen/antisera coor-
dinates in shape space, achieving a value equal to
zero, when the rank order of the computed dis-
tances is in desired relation to the experimental
values. A non-trivial embedding is obtained when
the desired rank order relation can be obtained in
dimension D"D

minimal
considerably less than
NM, the number of points. It is a somewhat
suprising, but classic result of ordinal MDS the-
ory (Borg, 1997), that this rank order restriction
in fact places great restrictions on the possible
coordinates of points, if D

minimal
is considerably

less than the number of points.
Conjugate gradient algorithms work well in

implementing an e$cient minimization. Local
minima, a minor problem in the analyses
described below, can easily be surmounted by
choosing a few initial starting values for the coor-
dinates of the points. Simultaneous coordinates
are produced for antigens and antibodies, hence
antigen}antigen and antibody}antibody distan-
ces are de"ned. The distances between antigens
and antibodies are, by construction, related to
their a$nities. Antigen to antigen distances and
antibody to antibody distances quantify the sim-
ilarity among antigens, respectively antibodies,
with regard to the interaction(s) being measured.

3. Results

In#uenza is a rapidly mutating RNA virus for
which there is a national and international policy
of annual vaccination. Abundant HI data are
produced each year to assess the cross-reactivity
of di!erent annual strains of in#uenza with anti-
sera that has been raised against strains of inter-
est, typically those of preceding years. Such data
are an important component of a decision pro-
cess involving HI data, sequence data, and epi-
demiological data to select strains for inclusion in
the in#uenza vaccine for any given year. A more
detailed analysis of the antigenicity and evolution
of in#uenza virus using our methods will be given
elsewhere. Here we concentrate on the deter-
mination of the dimension of immunological
shape space given experimental HI data, and the
exposition and validation of the algorithms
which reconstruct shape space from experimental
data.

We apply our version of ordinal multidimen-
sional scaling to various data sets of HI values for
in#uenza below. These comprise two published
panels of HI values (Raymond et al., 1986; Both
et al., 1983), "ve unpublished HI panels (Centers
for Disease Control, CDC, priv. comm.) repre-
senting repeated determinations on "ve separate
days of HI values for identical sets of antigens
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and antisera (to test invariance of the recovered
geometry to experimental uncertainties in the
determination of HI values), and "nally, various
sets of simulated HI data (to test if special proper-
ties of HI tables, e.g. the fact that they result from
two-fold dilution studies, can produce arti"cially
low dimensions under MDS analysis). All data
sets obtained from laboratory experiments turn
out to have a dimension equal to either four
or "ve.

3.1. ANALYSIS OF HI ASSAY DATA: H1 INFLUENZA

HEMAGGLUTININ 1950}1957 AND 1977}1983

The "rst data set we consider consists of
a panel of HI values for 19 antigens (in#uenza
viral strains) vs. 14 antisera (hence, M"19 and
N"14) for in#uenza H1 subtype hemagglutinin,
published in an investigation by Raymond et al.
(1986). The 19 antigens are selected strains of
in#uenza virus from the years 1950}1957 and
1977}1983, the 14 antisera are corresponding
antisera to a subset of these 19 antigens.

Application of eqn (1) results in the rank order
of the hemagglutination inhibition (HI) assay
values being preserved in a minimum of "ve di-
mensions. A clear signature, illustrated in Figs 2
and 3, of the underlying dimension of shape space
FIG. 2. Plot of log(HI) value on x-axis vs. computed distance
order of distances in shape space agrees with the rank order o
is given by the minimal dimension in which
points representing antisera and antigens may be
embedded without rank errors. The number of
rank errors is de"ned to be the number of times
the inequality Da`1

'Da of eqn (1) is violated.
Rank order of the HI values are preserved (i.e.

zero rank errors) in "ve dimensions (Fig. 2) while
rank orders in dimension four (Fig. 3) are not
preserved (144 rank errors). This determination
of the dimension shape space is in accord with
Perelson's and Oster's earlier estimate of a low
dimension (Perelson et al., 1979) resulting from
qualitative arguments concerning the binding of
B cells to random antigens.

Next, we verify that (a) the resulting inferred
geometry of shape space is independent of the
initial starting values for the coordinates used to
minimize eqn (1), and that (b) the resulting rela-
tive positions of antigens and antisera are so
highly constrained by the rank relations that
grossly di!erent geometries do not result. Con-
sider multiple runs in "ve dimensions, with di!er-
ent initial starting values for the coordinates and
possibly di!erent "nal coordinates. Scale, trans-
lation, rotation, and re#ection transformations
are not of interest. To factor out these inessential
transformations we evaluate the correlation
in shape space (dimension "ve) on y-axis. Note that the rank
f the experimental HI values in shape space dimension "ve.



FIG. 3. Plot of log(HI) value on x-axis vs. computed distance in shape space (dimension four) on y-axis. Note that the rank
order of distances in shape space does not agree with the rank order of the experimental HI values if the dimension of shape
space is too low (c.f. Fig. 2).
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(between pairs of runs) of the set of interpoint
distances resulting from each run. A low correla-
tion indicates variable geometries from run to
run. Five initial choices of starting coordinates
were used, resulting in 5*4/2"10 possible pair-
wise correlation measures. The average of these
ten correlations was 0.92, indicating a good re-
construction of the same underlying geometry
from run to run. We conclude that the "nal
computed geometry does not sensitively depend
on the initial values of coordinates, that local
minima are not a problem, and that the set of
rank relations highly constrains the relative loca-
tions of points in shape space.

3.2. ANALYSIS OF HI ASSAY DATA: INFLUENZA H3

HEMAGGLUTININ 1968}1980

This data set comprises a panel of M"14
antigens vs. N"14 antisera published in Both
et al. (1983) for strains selected from the years
1968}1980. The application of eqn (1) shows that
rank order relations between experimental HI
values and distances in shape space is preserved
in dimension "ve, but not in lower dimensions
(data not shown). We again conclude, using dif-
ferent experimental data, that the dimension of
immunological shape space is low, on the order
of "ve dimensions.

An evaluation of the correlation of interpoint
distances between "ve di!erent runs, analogous
to the correlation analysis performed on the pre-
vious data set, results in an average interpoint
distance correlation of 0.8. from run to run. The
reason for this increased variability relative to the
Raymond data set is that there happen to be
antigens with low cross-reactivity (i.e. low HI
values, and therefore associated high distance) to
a large number of the antisera used in the data set
(data not shown). Hence, the associated points in
shape space are less constrained by the given
data, which is re#ected by a variability in the "nal
computed distances. In the Raymond data set, as
well as other data sets considered below, this
issue, which is one of poor data for some points,
is not a problem.

Of interest in this data set are the relative
relationships of the strains A/HK/68, A/Eng/72,
A/PC/73 and A/Vic/75 in shape space. These
strains appear in the data collected from out-
breaks of H3N2 in#uenza at Christ's Hospital in
1974 and in 1976. Smith et al., (1999), suggest that
patients vaccinated in successive years can expect
to have higher attack rates when exposed to
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infectious virus compared to "rst time vaccinees
if the vaccine 1 to vaccine 2 distance is small, and
the vaccine 1 to epidemic strain distance is com-
paratively medium or large. In 1974, the epidemic
strain was A/PC/73-like and patients were pre-
viously vaccinated in successive years with the
vaccine strains A/HK/68 followed by A/Eng/72.
In 1976, the epidemic strain was A/Vic/75-like
and patients were previously vaccinated in suc-
cessive years with the vaccine strains A/Eng/72
followed by A/PC/73.

To visually represent the relationship of points
in "ve-dimensional shape space we borrow a de-
vice from phylogenetic tree analysis, which vis-
ually represents relations between sequences
given distances between them. The neighbor-
joining algorithm is a classic tree building algo-
rithm (Hillis et al., 1990) that uses a matrix of
pairwise distance relations as input. Distances
were calculated from the points assigned to the
antigens and the antisera in the minimal "ve-
dimensional space which preserved the rank or-
der relationships of the HI values. Figure 4 is
a neighbor-joining tree produced by the Phylip
package (Felsenstein, 1993), illustrating the rela-
FIG. 4. A neighbor-joining tree, produced by the Phylip
package, illustrating the relations between antisera and anti-
gens in "ve-dimensional shape space. The names ending
with &&ag'' denote antigens, those ending in &&sr'' denote
antisera. A$nity or HI value is monotonically related to
the distance between antigens and antisera: the smaller the
distance, the higher the HI value. Antigen}antigen or
antisera}antisera similarities are related to the respective
antigen}antigen or antisera}antisera distances: the smaller
the distance, the higher the similarity.
tion in "ve-dimensional shape space between the
points of interest, including both antisera and
antigen.

The vaccine 1 (HK68ag) to vaccine 2
(ENG72ag) distance is seen to be less than the
vaccine 1 to epidemic strain (PC73ag) distance.
The attack rate for "rst time vaccinees was 3%
and for two time vaccinees was 11%, in accord
with the suggestion by Smith et al. (1999). Sim-
ilarly, for the 1976 outbreak the vaccine 1 to
vaccine 2 distance is less than the vaccine 1 to
epidemic strain distance. The attack rate for "rst
time vaccinees was 13% and for two time
vaccinees was 22%, also in accord with the
suggestion.

3.2.1. Repeated HI ¹ables

Experimental variability can result in di!erent
reported HI values for the same set of antigens
and antisera if the experiments are repeated on
di!erent days. We consider the e!ects on the
computed geometry of this experimental variabil-
ity. Data kindly provided by the In#uenza
Branch of the Centers for Disease Control and
Prevention (priv. comm.) report results of "ve
di!erent HI assay experiments performed on the
same set of antisera/antigens over "ve separate
days in 1990: 8/10/90, 8/30/90, 9/26/90, 9/27/90,
10/2/90. The data comprised 11 antigens and
11 associated antisera for the following H3N2
in#uenza antigens, spanning a period from 1987
to 1990: BEIJING/337/89, BEIJING/353/89,
CZECHOSLOVAKIA19/89, ENGLAND/ 427/
88, ENGLAND/648/89, GUIZHOU/54/89,
SHANGHAI/06/90, SHANGHAI/11/87, SHAN-
GHAI/16/89, SICHUAN/68/89, VICTORIA/5/89.

In agreement with the analysis of other data
analysed in previous sections, the "ve data sets
can be represented without rank errors in a shape
space of low dimension (dimension is "ve for the
8/10/90 data set, and dimension is four for the
remaining data sets). Five di!erent geometries
resulted, yielding "ve sets of interpoint distances.
Similar to the previous analysis, irrelevant scale,
rotation, translation and re#ection variations can
be factored out by examining the correlations
between sets of interpoint distances in the "ve
di!erent geometries. There are 5*4/2 or ten such
possible correlations between the "ve geometries



FIG. 5. Plot of log(HI) on x-axis vs. computed distance in shape space (dimension "ve) on y-axis. Note the linear
relationship between log(HI) and shape space distance.

66 A. LAPEDES AND R. FARBER
of the "ve data sets. The average of these ten
correlations was 0.96, indicating a very good cor-
respondence between the computed geometries,
in spite of variation in the reported HI values
used as input. Furthermore, plotting HI values
vs. distance for this data shows that HI and
distance are simply related by HI"A exp!
(Distance), where A is a scale factor (see Fig. 5).
Hence, ordinal MDS algorithm can be used to
determine the monotonic transformation relating
shape space distance to HI values, which may then
be followed by metric MDS algorithms if desired.

3.2.2. <alidation/Simulation Studies

HI measurements involve a total titration by
a factor of approximately 1000 (210"1024,
corresponding to ten two-fold dilutions) which
results in only ten possible distinct values appear-
ing in any given HI panel. We address in simula-
tion Study 1 (below) whether this relatively small
number of discrete values could result in the
algorithmic determination of an arti"cially low
dimension even for high dimensional, random
data, if such data are similarly binned.

3.2.3. Simulation Study 1

Arti"cial data in 15 dimensions was created
by generating 14 points for antisera, and 19
additional points for antigens, with coordinates
drawn from a Gaussian distribution with zero
mean and unit variance in 15-dimensional space.
To relate these generated distances to discrete,
two-fold, HI values we "rst scale the distances
between 0 and 1 for convenience, and then bin the
distances to yield associated HI values as follows:

0.9(Distance("1.0 implies HI"10,

0.8(Distance("0.9 implies HI"20,

0.7(Distance("0.8 implies HI"40,

...etc. This binning generates a set of simulated HI
values 10, 20, 40, 80, 160, 320, 640, 1260, 2560,
5120 which are related by powers of two.

Next we determine if the data, generated in 15
dimensions, and "ltered through the simulated
two-fold HI dilution study (above) can be "t in
a low dimensional, e.g. "ve-dimensional space.

3.2.3.1. Result 1. Five separate sets of binned
data were generated as above. Fits in 15 dimen-
sions were successful, as expected. The same data
could not be "t in "ve dimensions. Similarly, "ve
sets of data prepared in ten dimensions were
successfully "t in ten dimensions, but not in
dimension "ve. Finally, "ve sets of data created
in seven dimensions was successfully "t in seven
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dimensions, but not in dimension "ve. Hence,
binned data comprising only ten discrete values,
will not result in an algorithmically determined
dimension that is signi"cantly less than the real
dimension of the space in which the points were
generated. The determination of a dimension of
approximately "ve for the real, experimental HI
values would therefore seem signi"cant.

3.2.4. Simulation Study 2

HI values of the experimentally determined
data were randomly permuted within a given HI
table to see if even such permuted data could be
"t in low dimension.

3.2.4.1. Result 2. For conciseness, we only re-
port results on the Raymond data set (Raymond
et al., 1986) considered earlier. Five di!erent at-
tempts were made to "t the permuted data in "ve
dimensions, using "ve di!erent sets of initial
values for the coordinates. All "ve attempts to "t
the permuted data in dimension "ve were failures.
Similarly, we attempted to "t the same permuted
data in dimension ten, and also in dimension 15.
In dimension ten, three of the "ve initial sets of
random values for the coordinates resulted in
failure to "t in ten dimensions. In 15 dimensions,
all "ve sets of random initial values for the coor-
dinates for Russian strain resulted in successful
"ts. It is not surprising that permuted data can be
"t in high (ten or 15)-dimensional space, because
in a high-dimensional space there is su$cient
&&room'' to adjust the coordinates of only
14#19"33 points to accommodate the small
number of discrete HI values. Reassuringly, in
a low dimensional space, e.g. "ve dimensions,
there is not su$cient freedom.

4. Discussion

The computational techniques developed here,
when applied to sets of experimental HI data for
in#uenza, yield a consistent estimate of four to
"ve dimensions for the dimension of immunolo-
gical shape space. These techniques can:

(1) Deduce the dimension of shape space from
experimental data and assign coordinates to both
antisera and antigen in the shape space.
(2) Accommodate arbitrary monotone rela-
tionships between distance in shape space and
experimental measurements related to a$nity.

(3) Calculate antibody}antibody and anti-
gen}antigen similarities based on experimental
data quantifying antibody}antigen interactions.

(4) Accommodate imprecise data whose only
signi"cance may lie in the rank order of the
experimental values.

After this work was completed we became
aware of the work of B-Rao & Stewart (1996),
which used metric MDS to reduce what we refer-
red to in Section 2 as &&panel distance'' relations,
to smaller dimensions; and the work of Beyer
& Masurel (1985) and Weijers et al. (1985) in
which panel distance relations were represented
using &&phylogenetic trees'', similar to our tree
representation in Section 3 of true shape space
distance. The non-metric MDS approach pre-
sented here, which avoids use of &&panel distance''
with its associated problems (see Section 2), can
infer a detailed geometry of immunological
shape space given experimental data of limited
precision such as a panel of hemagglutination
inhibition assay data, or other measures of
a$nity. This ability is potentially of value
in a number of application areas, such as ana-
lysis of HI data as part of the selection process
for deciding components of the annual in#uenza
vaccine.

Each HI table produces a separate shape
space in which the antigens and antisera for that
table are located. Since reference panels for succe-
ssive years typically contain points which over-
lap, it is possible in principle to construct one
large shape space (and resulting HI table) incor-
porating the results of several separate but over-
lapping assays. &&Overlap'' in this context means
that the separate HI tables, e.g. reference panels
used in successive years, contain some antigens
and antisera in common. Hence, each shape
space geometry will have a subset of points that
have identical geometries to a subset of points in
the shape space produced from another (overlap-
ping) panel. Computationally aligning these
overlapping subsets of points using a rigid body
transformation then relates all the points of the
di!erent shape space geometries. The accuracy
of the resulting global shape space geometry
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(and equivalent global HI table) will depend on
error propagation as successive geometries/tables
are joined. In principle, however, such an ap-
proach could be used to describe the global
evolution of antigenicity in shape space across
decades of viral evolution. Phylogenetic trees are
a standard way of representing viral evolution
based on sequence data, and it will be of interest
to relate shape space evolution as de"ned here
(e.g. Fig. 4), to sequence space evolution.

An issue not addressed in this paper is the
physico-chemical interpretation of the recon-
structed coordinates of antigens and antibodies
in the low-dimensional shape space. The low
dimension (approximately, dimension "ve) of
immunological shape space deduced herein for
in#uenza from the analysis of HI data, indicates
that approximately "ve independent combina-
tions of molecular descriptors including e.g.
geometric complementarity, electrostatic interac-
tions, hydrophobicity, etc., serve to describe the
binding of antibody to antigen. The work of
Katchalski-Katzir et al. (1992) and A#alo et al.
(1994), and later work of (Palma et al. (2000), as
well as related work in the cited references, is of
interest in this regard. In this line of investigation,
molecular descriptors are discovered which allow
the prediction of docking con"gurations of pro-
teins and ligands. How to relate these descriptors,
or combinations of these descriptors, to the un-
derlying low-dimensional shape space remains an
important challenge.

The formalism presented here is independent
of the speci"c application to in#uenza. It may be
applied to other serological data, as well as to
other a$nity studies quantifying the binding of
arbitrary molecules and ligands. Additional ap-
plications will be considered elsewhere.
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