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Abstract

Poker is an imperfect information game that requires decision-making under condi-
tions of uncertainty, much like many real-world applications. Strong poker players
have to skillfully deal with multiple opponents, risk management, opponent modeling,
deception and unreliable information. These features make poker an interesting area
for Artificial Intelligence research. This thesis describes work done on improving the
knowledge representation, betting strategy, and opponent modeling of Loki, a poker-
playing program at the University of Alberta. First, a randomized betting strategy
that returns a probability triple is introduced. A probability triple is a probabilistic
representation of betting decisions that indicates the likelihood of each betting action
occurring in a given situation. Second, real-time simulations are used to compute
the expected values of betting decisions. These simulations use selective sampling to
maximize the information obtained with each simulation trial. Experimental results

show that each of these enhancements represents a major advance in the strength of

Loki.
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Chapter 1

Introduction

Games are one of the oldest areas of research in the Artificial Intelligence (AI) com-
munity. In fact, in 1950, at the dawn of the computer revolution, Alan Turing and
Claude Shannon pioneered the work in chess programs. None of them wrote a pro-
gram which actually ran on a computer. Turing simulated his program by hand [28]
and Shannon described the underlying principles of modern computer game-playing
programs in one article [23]. Since then, there has been a wealth of AI research in

games.

1.1 Why games?

As in some other computer applications, games raise the question of whether comput-
ers can make good decisions based on the evaluation of present and possible future
situations. They also provide a suitable environment to support experimentation
in different areas of computer science such as algorithms, data structures, machine
learning, knowledge engineering, tree search, and reasoning.

If computers cannot solve decision-making problems in “simple” domains like
games, then how can we be sure that they can make good decisions in other complex
domains where rules are ill-defined, or there are high levels of uncertainty? Four

characteristics make games suitable for computer representation:

1. the state of the world is easy to represent,

2. there is a fairly small number of well-defined rules and a clearly specified goal,



3. the relative success obtained by playing a game can be measured with quantifi-

able results, and

4. the basic infrastructure for a game-playing program is easy to build.

Games are an abstraction of worlds in which hostile agents act to diminish each
other’s well-being. Thus, they can be used to design and analyze situations with
multiple interacting agents having competing goals. Since real life contains many
situations of this kind, a method to solve a game may be applied to problems in other
areas. For example, in Theory of Games and Economic Behavior, Von Neumann and

I

Morgenstern state that a study of “games of strategy” is required in order to develop
a theory for the foundations of economics and for the main mechanisms of social
organization, because games are analogous to a variety of behaviors and situations
that occur in these two areas [29]. In fact, games are already used to model certain
economic problems.

In addition, the development of a program to play a strategic game often involves
the application of theoretical concepts to practical situations. Programs that imple-
ment different theories can be played against each other to provide a comparison of
the effectiveness of these theories in a practical domain. Therefore, games can be
used as an experimental environment to obtain supporting or refuting evidence for

new ideas, and to stimulate discussion on different approaches to solve a particular

problem.

1.2 Why poker?

So far, the primary focus of games researchers has been placed on algorithms to solve
games with perfect information. As a result, high-performance systems have been
developed for games such as chess, Othello, and checkers. In many of these games,
high performance can be achieved by brute-force search. Recently, attention has been
given to games with imperfect information, such as bridge and poker, where searching
seems not to be the key to success. Since these games offer different algorithmic and
conceptual challenges, the successful development of a program capable of playing

them well may provide solutions to open problems in computer science.



Poker has several features that make it attractive for Al research. These include
imperfect information, multiple competing agents, risk management, opponent mod-
eling, deception, and dealing with unreliable information. These characteristics are

also present in many real-world applications that require rational behavior.

1. Imperfect information implies that a choice must be made from a set of
actions without complete knowledge. The relative desirability of each action
depends on the state of the world, but the agent does not know exactly which
state prevails. In poker, a player does not know the opponents’ cards. Without
knowing the complete state of the world, how can the player find which actions

are, “optimal”, in some sense?

2. Having multiple competing agents exponentially increases the complexity

of the computations required to play poker by enlarging the game tree.

3. Risk management requires making a decision to gain a profit while consid-
ering how much one can afford to lose. Making a good decision based on the
evidence available and “cost-benefit” considerations is a skill required in many
real-world activities. For instance, investing in the stock market has the same
adrenaline-releasing characteristic. Every time a player makes a betting deci-
sion in a poker game, there is the risk of losing money. However, there is always
a chance to win. In the long run, a player’s objective is to end up with a positive

balance.

4. Opponent modeling involves identifying patterns in the opponents’ play and
exploiting any weaknesses in their strategy. For example, opponent modeling is
extensively applied in political campaigns. In poker, it can be done by observing
the opponents’ betting habits, and determining likely probability distributions
for their cards. If a player can predict the opponents’ actions, then this player

will be capable of making much better decisions.

5. Deception and the ability to deal with unreliable information are traits
of a strong poker player. In fact, these activities are also necessary in real-world

situations. For example, assume one wants to acquire a used car. How much



shall one believe from all the wonders the salesman says about the car? How
can one get a reduction on the price of the car? Good poker players have to be
unpredictable by bluffing and varying their playing style, and must also be able
to deal with their opponents’ deceptive plays. For example, if a player is known
to raise only with a strong hand (a predictable player), the opponents are likely
to fold in such cases. Therefore, this player is missing opportunities to earn
more money on the best hands. By occasionally raising on a weak hand, this
player will either profit from a successful bluff, or will implant doubt that will
result in greater profits for strong hands. Hence, it is necessary to mislead the
opponents by letting them know that an occasional raise or high bet is possible

with a weak hand.

1.3 Thesis contributions

Loki is a poker-playing program developed at the University of Alberta starting in
1997. The name refers to the Norse god of mischief and discord. At the beginning of
the work presented in this thesis, Loki (henceforth referred to as Loki-1) was already
a intermediate level poker player (see [4], [5], [19]). It had the infrastructure to
incorporate advanced features for the next step towards the goal of creating a high-
performance poker program capable of defeating the best human players. However, its
rigid, deterministic, hand-tuned betting strategy was becoming a limiting factor for
its future development. This thesis presents the work done to improve the knowledge
representation and the betting strategy of Loki-1.

The first improvement is a probabilistic representation of poker betting decisions.
A betting strategy attempts to determine which betting action is most profitable in
a given situation, based on the evaluation function of the program. Loki-1’s evalua-
tion function was a deterministic strategy since it always returned a single value: the
“best” betting action. A deterministic strategy is vulnerable to being predictable,
which gives a skilled opponent the opportunity to find a counter-strategy that takes
advantage of this fact. The new version of Loki (henceforth referred to as Loki-2) re-
turns three probabilities, one for each betting action (fold, call/check, and raise/bet).

Loki-2 can then randomly select the betting decision based on this probability dis-



tribution. This new evaluation function is a mixed (randomized) strategy that adds
unpredictability to Loki-2’s play without sacrificing much in immediate expectation.
This routine also merges all the expert knowledge components used in Loki-1, since
the probability triple representation can be used throughout the program.

The second improvement is the use of simulation (search) to compute the expected
value of betting alternatives. The Loki-2’s betting strategy uses a simulation-based
approach: selective sampling simulation. This approach consists of simulating the
outcome of a hand many times. In every simulation trial, a likely instance of the
hidden information (opponents’ hands) is generated, and the hand is played out once
for each betting alternative as the first action of Loki-2 in the trial. The results of all
the trials are averaged and the betting action with the highest expectation is returned.
To select the most likely (selective sampling) opponents’ hands and actions from the
sample space during a simulation, Loki-2 uses all the information available about the
game and the opponents. The simulation refines the quality of the evaluation function
and the selective sampling increases the information gained with each trial.

Experimental results will be presented to demonstrate that both enhancements
represent a notable improvement in Loki’s playing ability. In all the self-simulation
experiments performed, Loki-2 outperformed Loki-1. Loki-2 has also consistently
increased its bankroll playing against human opponents on an Internet poker server;
at a rate that appears to be significantly higher than Loki-1’s.

This thesis is organized as follows. Chapter 2 introduces poker terminology, de-
scribes the game of Texas Hold’em (the poker variation played by Loki) and discusses
other work done in computer poker. Chapter 3 describes Loki-1 in detail. Chapter 4
discusses the probabilistic representation of betting actions (probability triples) used
to improve Loki-2’s betting strategy and opponent modeling. It also discusses the
new design of the program. Chapter 5 discusses the selective sampling simulations in
Loki-2. Chapter 6 is an overview of related work in selective sampling simulations.

Conclusions and future work are presented in Chapter 7.



Chapter 2

Poker

Poker is a multi-player non-deterministic zero-sum game with imperfect information.
In game theory, a game is considered strictly competitive if the players do not co-
operate. A strictly competitive game is a zero-sum game if the sum of the utility
(outcome) obtained for each of the players is zero, independent of the strategy fol-
lowed by each player. In poker, the profit of one player is the loss of other players.
The long-term goal of all the players is to leave the table with more money than they
had at the beginning.

A poker session is played in a sequential series of games' with a standard deck of
52 cards. Each card is identified by its suit and rank. There are four suits: & Clubs,
¢ Diamonds, © Hearts and # Spades. The thirteen card ranks are (in increasing
order of importance): Deuce (2), Three (3), Four (4), Five (5), Six (6), Seven (7),
Eight (8), Nine (9), Ten (T), Jack (J), Queen (Q), King (K) and Ace (A). In this
thesis cards are represented by two characters, one for the rank and one for the suit,
e.g. A (Ace of Diamonds) and QO (Queen of Hearts). A set of cards is represented
by the cards separated by dashes, e.g. K#-Q#. A set of cards held by a player can

also be called a hand.

2.1 A poker game

A poker game is composed of several rounds. A round consists of a number of cards
being randomly dealt followed by betting. Every active player is given the chance to

act at least once in a round. Every time it is a player’s turn to act, there are three

TAlso called deals or hands.



alternative actions:

e fold — become inactive for the game, losing all investment done in the current

game,
e call match the current per player contribution, or

e raise — increase the amount to call.

If there has not been any previous bet in the round, a call is referred to as a check,
and a raise is said to be a bet. A round ends when each player has either folded or
contributed the same amount of money as all the other active players. A poker game

has two termination conditions:

1. all the players have folded except one, who wins all the money wagered (the

pot), or

2. all the betting rounds have been completed.

In the latter case, the game proceeds to a showdown where all the active players
reveal their cards and the winner is determined. The winner is the player holding the
highest poker hand (see Table 2.1 for hand ranking). In the case of a tie, the pot is
split evenly.

The word poker refers to a collection of card games that share common features
such as betting rounds and ranking of hands. The card games classified as poker are
divided into flop games (some cards of each player are shared), stud games, and draw
games (no cards are exposed, some are discarded and replaced with cards from the
deck). Loki plays the limit version of Tezas Hold’em. Texas Hold’em is a flop game
which is played as the main event of the annual World Series of Poker to determine
the world champion. In the limit version of this game there is a fixed bet size for each
round. Texas Hold’em was chosen as the variant of poker played by Loki, because
it is the most strategically complex poker form that is widely played, and has the
smallest ratio of luck to skill [2].



Sample hand Name and description
Té-Od-3%-7dh-6& | Straight Flush (includes Royal Flush)
5 cards of the same suit in sequence
QM-QR-QV-QO-28 | Four of a Kind
4 cards of the same rank
JN-J&-JO-5O-58 | Full House
3 cards of identical rank and 2 cards of another rank
AB-I9N-TH-6M-28 | Flush
5 cards of the same suit
AO-K&-QO-JO-TH | Straight
5 cards of different suit in sequence
AB-A&-A0D-8-44 | Three of a Kind
3 cards of the same rank
K&-K&-TO-TH-9Q | Two Pair
2 cards of one rank and 2 cards of another rank
QU-Q&d-THh-8 -3 | Pair
2 cards of the same rank
Th-8&%-50-35-2 | High Card

5 cards of different suit and rank

Table 2.1: 5-card hands ranked from strongest to weakest

2.2 Texas Hold’em

A game of Texas Hold’em has four betting rounds called the preflop, flop, turn and
river. In the preflop every player receives two cards face-down (known only to the
player) called hole or pocket cards, and a betting round ensues. During the flop three
community or board cards are dealt face-up (known by all the players) and the second
betting round follows. At the turn a fourth face-up community card is dealt, followed
by a betting round. Finally, at the river, a fifth face-up community card is dealt and
the last betting round occurs, followed by a showdown. In the showdown, the pot is
awarded to the best five-card hand that an active player can make combining the hole
cards and the five community cards. There is normally a maximum of three raises
allowed per betting round. In Texas Hold’em, the number of players can vary from 2
to 23; but it is usually played with 8 to 10 players. Figure 2.1 shows a hand of Texas
Hold’em (on the turn) from Loki’s point of view against two opponents. The cards
denoted by a single question mark represent the imperfect information of the game.

The card denoted by two question marks represents the non-deterministic outcome



? ? ? ?

Opponent-1's hole cards Opponent-2’s hole cards

TOLAS |30 9 & 77
Flop Turn River
Ka&lAO

Loki’s hole cards

Figure 2.1: A Texas Hold’em hand

in the game (the card to come).

The players are in a fixed seating order at the table. The dealer-button rotates
clockwise around the table to indicate the (theoretical) dealer of each hand. The
player to the immediate left of the button (the small blind) is first to receive a card.
Figure 2.2 shows a table with the button’s and blinds’ positions indicated. Betting on
the preflop starts with the player on the left of the big blind. On subsequent rounds,
the first active player left of the button acts first (the small blind if not folded).

Button / Dealer

Small blind

Big blind

Figure 2.2: Seat position and betting order

The betting structure of 2-4 Limit Texas Hold’em starts with two forced bets
(blinds) on the preflop: a small blind of one unit and a big blind of two units. Blinds

are a “forced-bet” alternative to the more familiar ante in other games, where each

9



player is required to put a fixed amount into the pot before the game begins. In a
2-4 Texas Hold’em game, all bets and raises are a fixed size of two units during the
preflop and flop. This doubles to four units for all bets and raises on the turn and
river. Other amounts can also be used. For example, in a $10-$20 game, the unit size
is $5.00. The small blind posts a $5 blind, the big one blinds $10. The size of the
bet during the first two rounds (preflop and flop) is $10.00 and during the last two

rounds (turn and river) is $20.00.

2.3 Other work in computer poker

Since the founding of game theory by John Von Neumann, poker has been the subject
of mathematical and economics analyses. However, these studies have used oversim-
plified versions of poker, making most of the work done in these areas not applicable
to the development of strong poker-playing programs. In computer science, poker has
been used as a testbed in different areas such as cognitive science, machine learning,

search and Bayesian networks.

2.3.1 Findler’s work

One of the first studies of computer poker was done by Nicolas Findler [9] [10]. The
variation of poker used in his research was a simplified version of five-card draw poker.
During the years Findler’s project was carried out, various poker-playing programs
were created, each different in its structure and approach to decision-making.

Most of the computer players developed in Findler’s research were based on simu-
lating human cognitive processes involved in decision-making under uncertainty and
risk. His approaches were based on psychological precepts of human thought rather

than mathematically-oriented analysis. He considered that:

“In order to program a computer to play poker well it is necessary to un-
derstand the cognitive processes employed when human beings play poker.
(The mathematical theory of games can only treat simplified versions of

the game).” [10]

Findler’s goal was not to create a world-class poker-playing program and, indeed,

none of his programs appears to have been a strong player.

10



2.3.2 Machine learning

Waterman [30] and Smith [25] used poker as a testbed for automatic learning tech-
niques. Both of them worked on the problem of acquiring problem-solving heuristics
through experience.

Waterman worked in two areas: 1) the representation of heuristics as production
rules to facilitate their dynamic manipulation, and 2) the automatic modification
and creation of these heuristics by a learning program on the basis of information
obtained during training. During his research, five computer players were created,
differing in the number and source of the heuristics initially provided to the program.
The performance of his best program was evaluated to be the same degree of skill
as a “nonprofesional but experienced human player”. His programs played a two-
player standard version of five-card draw poker. He stated that by choosing poker,
the representation and generalization techniques he developed were shown to be an
effective approach to implementing decision making and learning in an imperfect
information environment.

Smith proposed an alternative method for dynamically learning heuristics by using
adaptive search (genetic algorithms). Poker was used as a testbed for this technique

to provide a basis for comparison with Waterman’s work.

2.3.3 Koller and Pfeffer’s work

Recently, Koller and Pfeffer [15] [16] have developed Gala, a system for automating
game-theoretic analysis for two-player competitive games with imperfect information.
The system takes a description of a game, analyzes it, and outputs strategies for the
different players which are game-theoretically optimal for the situation described. The
implementation is composed of two main interacting pieces: a special-purpose game
specification language, and an automatic game-theoretic analyzer for games in exten-
sive form. The extensive form represents the games as a tree with the information
sets (players’ knowledge states) indicated.

For games with imperfect information, the system finds an optimal randomized
strategy. The system can now solve simplified versions of two-player poker (e.g. 3-

card deck, 1 card dealt to each player, 3 rounds; or 11-card deck, 5 cards each player,

11



3 rounds). However, the authors state that:

“While we can now solve games with tens of thousands of nodes, we are
nowhere close to being able to solve huge games such as full-scale poker,
and it is unlikely that we will ever be able to do so. A game tree for five-
card draw poker, for example, where players are allowed to exchange cards,
has over 10% different nodes. The situation (for zero-sum games) is now
quite similar to that of perfect-information games: We have algorithms
that are fairly efficient in the size of the game tree; unfortunately, the

game tree is often extremely large.” [16]

Optimal versus maximal player

Koller and Pfeffer’s goal is to create an optimal poker player. By definition, the
optimal player does the best that can be done against a rational (perfect) opponent,
and it does not do worse even if its strategy is revealed to its opponent. However, the
optimal strategy does not take advantages of mistakes when they become apparent,
and human players invariably make mistakes. A mazimal player will deviate from the
optimal strategy to exploit the observed weak points in the opponent’s play. In theory,
the maximal player must take the risk of being sub-optimal to exploit a sub-optimal
opponent. In practice, the risk is small and well rewarded.

In contrast to Koller and Pfeffer’s aim, Loki is not an optimal player. Our goal
is to create a maximal player, which uses opponent modeling to exploit patterns
in its opponents’ play, with the intention of winning the most money it can in every
situation. Furthermore, since it does not seem feasible to determine an optimal player
for real multi-player poker, a program to play real-world poker in the near future most
likely will not be a game-theoretic optimal player.

Nevertheless, Koller and Pfeffer have suggested that an alternative approach to
deal with less-than-perfect players is to learn the type of mistake that a player is
prone to make. This approach can be used when there is a long-term interaction
with the same player. The authors point out that the ability of the Gala language to
capture regularities in the game may be particularly useful in this context, since the

high-level description of a game state can provide features for the learning algorithm.

12



One can see this learning algorithm as a potential opponent modeling component for

a program based on the Gala system.

2.3.4 Bayesian poker

Kevin B. Korb, Ann E. Nicholson and Nathalie Jitnah [17] at Monash University
are working in the Bayesian Poker Program (BPP). BPP plays two-player five-card
stud poker using a Bayesian network structure to represent the relationships between
current hand type, final hand type (after the five cards have been dealt) and the
behaviour of the opponent. Given evidence for BPP’s current hand type and the
observed cards and actions of the opponent, BPP obtains its posterior probability
of winning the game. BPP uses this estimated probability of winning the game to
randomly select its action based on probabilistic curves for each betting action.

BPP performs opponent modeling. It uses the relative frequencies of the oppo-
nent’s betting actions to update the conditional probabilities per round of passing or
calling versus betting or raising given the opponent’s current hand type.

BPP is work in progress as pointed out by Korb et al. The authors state that
poker appears to be an ideal domain for investigating the application of Bayesian
networks, and report positive results of BPP playing against a simple probabilistic

program, a rule-based program and non-expert amateur human players.

2.4 Summary

Although poker has been used as a testbed in different areas of computer science,
mathematics and economics, full-scale poker has been largely overlooked as a topic
of AI research. However, computer poker research, besides being interesting and

challenging, has the potential to provide results with real-world implications.

13



Chapter 3

Loki-1

This chapter describes the architecture, betting strategy, and opponent modeling
of the previous version of Loki (Loki-1), as it was at the beginning of the work
done in this thesis (1998). Also, the limitations detected in Loki-1 and the changes
implemented to overcome these limitations are outlined. This chapter provides a
summary of the material necessary to place the research described in this thesis in

context. See [4], [5] and [19] for more details on Loki-1.

3.1 Architecture

Figure 3.1 shows Loki-1’s architecture and the interactions between the main system
components. In the diagram, rectangles are major components, rounded rectangles
are major data structures, and ovals are actions. The data follows the arrows between
components. An annotated arrow indicates how many times data moves between the
components for each of Loki-1’s betting decisions (on the flop, in this case).

To make a betting decision, the Bettor calls the Hand Evaluator to obtain an
assessment of the strength of Loki-1’s hole cards. The Bettor uses the hand evaluation,
the public information about the state of the game, and expert-defined betting rules
to generate an action (fold, check/call or bet/raise). The probability distribution
of the opponents’ hands after the flop is not uniform. For example, hole cards of
Ace-Ace are more likely held by the opponents than hole cards of 7-2, since most
players will fold 7-2 in the preflop. The Opponent Modeler maintains an array for
each opponent with the probabilities (weights) of each possible hand being held by

each opponent. The Hand Evaluator uses these weights to estimate the strength of
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Figure 3.1: Loki-1’s architecture

a hand. Thus, the assessment of the strength of a hand is sensitive to the actions of
the opponents. Loki-1’s hand evaluation decreases if the opponents have shown signs
of strength (by raising) during the game, and increases if all the opponents have only
checked or called.

The Opponent Modeler modifies an opponent’s weight table after it observes an
action of this opponent taking into account the entire game context (community
cards). Updating the probabilities for all hands is a process called reweighting. After
each opponent action, the Opponent Modeler calls the Hand Evaluator once for each
possible hand and modifies the weight for that case to be consistent with the new

information.

3.2 Betting strategy

3.2.1 Preflop expert system

When it is Loki’s (either Loki-1 or Loki-2) first chance to act in the preflop, Loki

uses a rule-based expert system to select one of four defined preflop strategies (or six
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if Loki is the small blind). These strategies determine the number of bets Loki will
call and under which conditions it will bet/raise. The selection of the preflop betting
strategy is based on the average return on investment (income rate) of Loki’s hole
cards, and thresholds defined by linear formulas using expert values. The income
rate of all the two-card hands was determined with off-line simulations. The linear
formulas take into account the expected number of players (players who will play the
hand), Loki’s position on the table, and the tightness of Loki. The tightness is a
parameter that specifies the percentage of hands that Loki will play. There are three
settings for this parameter: tight, moderate and loose. The most aggressive strategy
whose threshold is less than or equal to the income rate of Loki’s hand is selected.
For example, assume that Loki’s is in the dealer’s position (last player to act)
and its hole cards are AQ-80. There are four players still active in the game and
Loki’s tightness has been defined as moderate. The income rate value of Loki’s hand
obtained by a table lookup is 338. By using the linear formulas, we calculate that
the thresholds for the four strategies from the most aggressive to the most passive
one are [M4 = 580, M2 = 200, M1 = 50, M0 = —oc]. Thus, Loki’s preflop strategy
in this case is M2, since 200 < 338 < 580. With the M2 preflop strategy, Loki will

raise if there have been less than two bet/raises in the round, otherwise it will call.

3.2.2 Postflop

Loki-1’s postflop betting strategy consists of expert-defined rules that uses the hand
evaluation and the public information about the state of the game to decide on a

betting action.

Hand Evaluation

To assess the quality of a hand after the flop, the Hand Evaluator combines together
the strength and the potential of the hand in a value called effective hand strength
(EHS). The EHS is an estimate which gives the probability that the given hand is
currently the strongest one, or that it will become the strongest one by the showdown

with the next community cards (potential).

EHS = hand_strength + (1 — hand_strength) x hand_potential
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To calculate a hand’s strength (HS) against a single opponent, the Hand Evaluator
enumerates all the possible opponent hands and sums the weights of the hands that
would win, lose or tie the given hand. Recall that the weight of a hand is the
probability that an opponent would still be active with that particular hand.

ahead + tied/2

HS =
ahead + tied + behind = total_number_of_hands

For instance, assume that Loki’s hole cards are AQ-8Q0 (the same as in the above

preflop example), the community cards on the flop are 90-8&-2é&, and all weights are

47

) ): 1081 possible opponent’s two-card

equal to 1 (uniform distribution). From the (
hands on the flop: 903 hands lose against Loki’s hand, six hands tie and 172 hands
defeat Loki’s'. Therefore, Loki’s HS is

903 4 6/2

HS =
903+ 6+ 172 = 1081

= 0.84

To extrapolate the hand strength value to multiple opponents, the Hand Evaluator
raises it to the power of the number of opponents still active in the game (HS,,). For
the above example, if there are four players active in the game (including Loki), the
Hand Evaluator calculates HS,, = (0.84)% = 0.59.

The potential of a hand can be either positive or negative. Positive potential
(PPOT) is the probability of a hand becoming the strongest one when it is behind.
Negative potential (NPOT) is the probability of a hand falling behind when it is
ahead. Both potentials are calculated by enumerating all possible opponents’ hands
and community cards to come in the next rounds. Potential calculations on the flop
can be done by looking ahead either one round (considering the 45 possible cards on
the turn) or two rounds (considering the (425): 990 possible two-card combinations
on the river). PPOT is calculated by adding the weights of the cases where Loki’s
hand improves.

be_behind_end_ahead + be_behind_end_tied/2 + be_tied_end_ahead /2

PPOT =
total _be_behind + total _be_tied /2

NPOT is given by:

be_ahead_end_behind + be_ahead_end_tied/2 + be_tied_end_behind/2
total _be_ahead + total _be_tied /2
1144 hands with one or two 9s and 28 hands with a pair of either A, K, Q, J, T, 8 or 2.

NPOT =
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Flop’s situation | River’s situation | Number of cases
Ahead 722,463

Ahead Behind 170,249

Tied 1,258

Ahead 37,659

Behind Behind 132,570
Tied 51

Ahead 270

Tied Behind 90

Tied 5,580

Table 3.1: Number of cases where Loki’s hand situation changes after two community
cards are dealt

Consider the same above example. Table 3.1 shows the number of cases where Loki’s
hand situation at the flop changes (or remains the same) by the time the other two
community cards are dealt. Assuming uniform weights, this table shows the sum of
the weights of all the cases. Total_be_ahead is equal to the number of cases where
Loki’s hand on the flop is the strongest one multiplied by the number of possible
next two-card combinations (903 x 990 = 893,970). Total_be_tied is 5,940 (6 * 990)
and Total_be_behind is 170,280 (172 % 990). The total number of cases enumerated
in the potential calculations is 1081 x990 = 1,070, 190. Thus, PPOT for Loki’s hand

(AO-8Q) is
37,659 + 51/2 + 270/2 B

PPOT = =0.22
170,280 + 5,940/2
and NPOT is :
1 24 1,2 2 2
NPOT — 70,249 + 1,258/2 + 90/ 019
893,970 + 5,940/2
Strategy

The basic postflop strategy is based on the EHS. Two thresholds determine the post-
flop betting actions: a postflop-raise threshold and a postflop-call threshold. If Loki-
1’s EHS is greater than or equal to the postflop-raise threshold then it will raise
when less than two bets have been made this round and call otherwise. When its
EHS is greater than or equal to the postflop-call threshold (but not greater than the
postflop-raise threshold), Loki-1 will bet if nobody else has done so and call otherwise,

except when it is two or more bets to call and Loki-1 has not already called a bet
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this round. In the cases where Loki-1’s EHS is less than the postflop-call threshold or
its decision is to fold, the options of semi-bluffing, calling with pot odds, and calling

with showdown odds are also considered.

e Semi-bluffing consists of betting if nobody has done so in the current round,
and Loki-1’s hand has a high enough PPOT to call both a bet and a raise.
In the subsequent rounds, Loki-1 will continue to bet (even without sufficient
PPOT) if no other player bets. With semi-bluffing Loki-1 pretends to have a
strong hand while there is a reasonable chance of winning the pot immediately

(to scare the opponents out from the game).

e Pot odds is the ratio of the amount of money in the pot to the amount required
to call the current bet. By using pot odds, Loki-1 will stay in the hand if
its winning chances (PPOT before the river and HS on the river) surpass the
expected return from the pot. For example, assume the pot is $20 and the
amount to call is $4. The pot odds are 24—4 = 0.16 and Loki-1’s winning chances
are 0.25 (25%). In this situation, three times out of four that Loki-1 calls, its
hand will lose at a cost of $4 each. However, it wins $20 one time out of four
resulting in an average profit of $2 per hand. A call is better than a fold when

Loki-1’s winning chances are greater than or equal to the pot odds.

e Showdown odds is the ratio of the amount of money expected to be in the pot by
the showdown, to the amount it will cost Loki-1 to stay in the hand to actually
see the showdown. Loki-1 calls when its EHS is greater than showdown odds.

This strategy was introduced to discourage frequent bluffing by the opponent.

Also, Loki-1’s betting strategy contains the knowledge of some advanced strategies
such as check-raising. This knowledge was introduced in Loki-1 as deceptive strategies

to add unpredictability to its play.

3.3 Opponent modeling

Although opponent modeling has been studied in perfect information games (for

example [7]), the performance loss by ignoring it and assuming a perfect opponent
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is small, and hence it is usually ignored. In contrast, opponent modeling in poker
can be the distinguishing feature between players at different skill levels. If a set of
players all have a comparable knowledge of poker fundamentals, the ability to alter
decisions based on an accurate model of the opponent may have a greater impact on
success than any other strategic principle.

Deciding how to gather information about the opponents and how to use it to im-
prove the quality of betting decisions is a complex and interesting problem. Loki-1’s
Opponent Modeler was a first attempt at making appropriate inferences from ob-
serving the opponents’ actions and then applying them by changing betting decisions
to exploit any identified pattern or weakness in the opponents’ play. The Opponent
Modeler uses the betting history of the opponents to determine a likely probabil-
ity distribution for their hole cards which is used by the Hand Evaluator. Opponent

modeling was experimentally shown to significantly improve Loki-1’s performance [4].

3.3.1 Representation

The Opponent Modeler assigns an array of weights (weight table) to each opponent
indexed by the two-card starting hands. Since Loki knows its two hole cards and the
three flop cards, there are (427) = 1081 used entries in the weight table after the flop.
The probabilities for each of the 1,081 subcases are called weights, since they act as
multipliers in the enumeration computations. Each time an opponent makes a betting
action, the weights for that opponent are modified to account for the action and the
community cards revealed. A weight for a hand reflects the relative probability that

a specific opponent has that particular hand.

3.3.2 Reweighting process

When an opponent action is observed, the Opponent Modeler obtains the threshold
hand value needed for the observed action and bases the weight adjustment on that
value. The Opponent Modeler maintains statistics for each opponent between games.
These statistics are used to calculate the frequency of folding, calling and raising of
each opponent per round and number of bets to call. From these frequencies, the
Opponent Modeler deduces the average (x) and variance (o) of the threshold needed

for the observed action. The threshold can be obtained either from default action
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frequencies (generic opponent modeling) or from the opponent’s observed action fre-
quencies (specific opponent modeling).

During the reweighting process, the reweight factors (rwt) are assigned based on
the distance between the hand value (income rate for the preflop and EHS for the
postflop rounds) and p. Since the income rates used in the preflop are not a percentile
hand valuing system like EHS, the u obtained needs to be converted from a percentile
value to a value on the income rate scale. To achieve this, y is used to index into
a sorted array (sample the nearest point) of the (52) = 1326 (all two-card hands)

2

income rate values.

0.01 if hand_value < p — o,

0.5 if hand_value = p,
WE=19 1 if hand_value > u + o,

handalue—pto  otherwise.

For example, based on observed frequencies, the Opponent Modeler deduces that
an opponent needs a median EHS (u) of 0.6 to call a bet on the flop, with a lower
bound of 0.4 and an upper bound of 0.8 (¢ = 0.2). In this case, all hands with an
EHS greater than 0.8 are given reweighting factors of 1.0. Any hand with a value
less than 0.4 is assigned a reweighting factor of 0.01, and a linear interpolation is
performed for values between 0.4 and 0.8.

To avoid eliminating legal subcases completely, no weight is allowed to go below
0.01. In Loki-1, the Opponent Modeler only performs one reweighting per model per
round. A copy of the weight table is stored at the beginning of each round and used
in the reweighting process each time a new action is witnessed that requires a higher
threshold. For example, assume an opponent calls a bet, and the reweight process
uses 1 = 0.5 to adjust the weight table. If, later in the betting round, that opponent
raises, the reweighting will be done with the higher value of u over the stored copy

of the weight table.

3.4 Modifications to Loki-1

Loki-1’s design has several limitations. First, expert knowledge appears in various
places in the program (Bettor, Opponent Modeler), making Loki-1 difficult to main-

tain and improve. Second, the Bettor is deterministic (it always returns the same
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single action: fold, call, or raise, given identical input). This makes Loki-1’s betting
actions predictable. Finally, the Opponent Modeler does not distinguish between the
different actions that an opponent might take (a call and a raise are treated the same)
and does not perform “negative reweighting”. The lack of negative reweighting gives
a pessimistic vision to the Hand Evaluator, since the weights of the top hands are
never decreased when a less aggressive opponent’s action is observed. These issues
led to a redesign of how knowledge is used in Loki-2.

The new version of Loki, called Loki-2, makes two fundamental changes to Loki-1's
architecture. First, it introduces a data object called a probability triple that is used
throughout the program. Chapter 4 explains probability triples in detail. For now
consider a probability triple as three values defining the probability distribution of
the betting actions (fold, call, raise) in a given context. In fact, Loki-2’s architecture
revolves around generating and using probability triples. Second, simulation with

selective sampling is used to refine the betting strategy (see Chapter 5).

OPPONENTS MODEL
: 1081
Number of :
Opponemﬁ ( <—{ OPPONENT MODELER
; A
weight table 1081
wt PT :
AA |85 | (0, .8 .2) 1 TRIPLE GENERATOR Public Game State ) :
————
KK |70 |(0,.7,.3) : ;
HAND EVALUATOR ‘
1081 entries ) PUBLIC DATA
1
; N N ‘
: ! !
@ : ACTION SELECTOR ‘ ! ‘ SIMULATOR |
Py I ¢ i
Betting L
Rule-base :
‘ Fold,
call, or

raise
PRIVATE DATA

Figure 3.2: Loki-2’s architecture

Figure 3.2 shows Loki-2’s architecture. The Triple Generator contains the poker
knowledge, and is analogous to an evaluation function in two-player games. The Triple

Generator uses the hand value provided by the Hand Evaluator, the current game
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state, and expert-defined betting rules to compute a probability triple. Probability
triples are used in three places in Loki-2. The Action Selector uses a single probability
triple to decide what action to take (fold, call, raise). The Simulator uses probability
triples to choose actions for simulated opponent hands. The Opponent Modeler uses
an array of probability triples (PT) to update the weight table of each opponent.
Loki-2 can be used with or without selective sampling simulation, as shown in the
diagram. With simulation, the Simulator component replaces the simpler Action

Selector.

3.5 Summary

Loki-1 was a intermediate level poker player as shown by the experimental results
in [19]. Also, Loki-1 demonstrated the benefits of using opponent modeling. However,
weaknesses in its betting strategy were hampering the overall performance of the
program and the Opponent Modeler required improvement. These issues led to a
redesign of Loki’s architecture to facilitate the addition of new components to the

program: probability triples and selective sampling simulations.
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Chapter 4

Probability triples

To make a betting decision Loki-1 uses an evaluation function to determine which of
the three actions (fold, check/call, or bet/raise) is more likely to be profitable. In
fact, the “best” action can be considered as the action with the highest expected value
over all the possible scenarios. However, Loki-1 provides too much information to the
opponents if it always takes the best action. Loki-1 is predictable and the opponents
exploit that predictability. We use probability triples, a set of three probabilities
representing the three types of actions, to provide a randomized betting strategy for
Loki-2 and to represent the probabilistic nature of poker. This representation isolates
the expert knowledge in a single function (probability triple generation routine) and
allows a computer oriented (i.e. easy to maintain and modify) design of the evaluation
function.

A probability triple (PT) is an ordered list of three values, PT = (f, ¢, r) such that
f +c+r =1.0. Each value represents the likelihood that the next action in a given
state is a fold (f), a call (¢), or a raise (r), respectively. Probability triples are used
in three places in Loki-2: 1) as a stand-alone betting strategy, 2) as the reweighting
factor in the opponent modeling module, and 3) as the action generation mechanism

during the simulations.

4.1 Probability triple generation function

The PT generation function describes how a player should behave with a particular
pair of cards in a specific situation. The function returns the probability distribution

that, given a specific two-card hand and the public information about the state of
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the game, the action should be either fold, call, or raise.
f = P(action = fold | pair of cards and game context)

¢ = P(action = call | pair of cards and game context)
r = P(action = raise | pair of cards and game context)

The function uses the hand evaluation in an expert-defined rule-based betting
strategy to compute the three values. The hand evaluation comprises the strength
and the potential of the hand; the strength represents the probability of the hand
presently being the strongest one and the potential represents the probability of the
hand becoming the strongest after future cards have been dealt (see [19]).

The first version of the PT generation function was a completely new betting
strategy that was simpler than Loki-1’s betting strategy. Although this function
sufficed to show experimentally the advantages of having a non-deterministic betting
strategy, it was outperformed by the old one. The main advantage of having a non-
deterministic betting strategy is that we allow Loki-2 to randomly choose its action
based on a set of probabilities rather than follow the single action returned by Loki-1’s
betting strategy.

The second attempt to create the PT function was to translate the strong, but
rigid, betting strategy of Loki-1 into the PT scheme. A literal translation of the previ-
ous betting strategy into the PT function produced pure or deterministic probability
triples. A pure PT has the value of the most likely action equal to one and the other
two actions equal to zero. Once the PT function mimicked Loki-1’s betting strategy,
the boundaries between actions were smoothed by applying linear interpolation to
create unpredictability.

With Loki-1's betting strategy in P'T form, small modifications to the PT func-
tion, such as the one described in the previous paragraph, are less time consuming
and the consequences of each change can be evaluated independently. By compart-
mentalizing the expert knowledge in a single routine, the design was improved by
standard software engineering concepts. The benefits of the PT generation function

are:
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e it hides the poker specific details of the evaluation function from the rest of the

system,
e it provides a well-defined interface,

e it confines the impact of changes in Loki-2’s knowledge to a single function, and

it facilitates the verification of changes.

To generate the PT for a hand, the hand value is computed first. The hand value
is an estimate of the probability of winning. This value is then used by a set of rules
to compute the probabilities of folding, calling and raising. Consider that S() gives
the public information about a game, h is a hand, EHS(h, S()) gives the hand value,
and PT s gus(f,c,r) represents a PT generation function. An abstract view of a
simplistic PT generation function is:

(0,.25,.75) it EHS(h, S()) > .75,
PTsrns =14 (.20,.80,0) if .75 > EHS(h,S()) > .50,
(.50,.40,0) otherwise

Note that one can add as many rules as needed to the P'T generation function. Since
all the knowledge is located in one single function, the addition of extra rules is a
minor change in the program. In Figure 4.1 the algorithm for a simplified four-rule
PT generation function is shown. The threshold values that define the likelihood
of each action (param_postflopRaise and param_minToRaise) and the probabilities of
each action for every case are defined by a poker expert and can be modified to vary
Loki-2’s playing style. Loki-2’s PT generation function uses nine rules to produce the
PTs used to choose an action in a game and eight rules to generate the PTs used
in the opponent modeling module as a reweighting factor. When the PT generation
function is called to determine a PT to select an action in the game, it considers rules
containing more expert knowledge such as calling based on pot odds (the ratio of
the amount of money in the pot to the amount of money it will cost us to call) and
based on showdown odds (the ratio of the amount of money it will cost us to stay
in the game to see the showdown to the amount of money we will make if we win in
the showdown). During the reweighting process a simpler and faster PT generation
algorithm is used. In addition, this PT generation function does not generate zero

probabilities for an action, because we do not want to rule out any opponent’s hand.
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#define MAXPROBABILITY 0.99
#define MINPROBABILITY 0.01

generate_probabilityTriple(PT[], bets_to_call, two_card_hand) {
PT[fold] = PT[call]l = PT[raise] = 0.0;
/* The evaluation of the hand includes the hand strength and
the hand potential */
hand_evaluation = evaluate(two_card_hand,game_state) ;
/* 4 expert-defined rules to calculate a probability triple */
if (hand_evaluation > param_postflopRaise[bets_to_call]) {
PT[raise] = MAXPROBABILITY;
PT[call] = MINPROBABILITY;
} else if (hand_evaluation > param_minToRaise[bets_to_call]) {
/* Linear interpolation between
param_postflopRaise[bets_to_call]l and
param_minToRaise[bets_to_call]l */
r = (1 / (param_postflopRaise[bets_to_call] -
param_minToRaise[bets_to_call])) x
(hand_evaluation - param_minToRaise[bets_to_calll);
PT[raise] = r;
PT[call] =1 - r;
} else if (hand_evaluation > param_postflopCall[bets_to_call]) {

PT[raise] = MINPROBABILITY;
PT[call] =1 - 2 * MINPROBABILITY;
PT[fold] = MINPROBABILITY;

} else {

if (hand_evaluation > param_minToCall) {
c = (1 / (param_postflopCall[bets_to_call] -

param_minToCall[bets_to_call])) *
(hand_evaluation - param_minToCall[bets_to_calll);

} else ¢ = 0;

d = calculate_Pot0dds();

/* Join probability */

c=d+ c - cd;

PT[raise] = MINPROBABILITY;
PT[call] = c * MAXPROBABILITY;
PT[fold] = (1 - c¢) * MAXPROBABILITY;

+
return (PT);

Figure 4.1: Pseudocode for a simplified PT generation function
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4.2 Using probability triples

4.2.1 As a betting strategy

Loki-2 can decide what action to take either using PTs or selective sampling simu-
lations. This section discusses the use of the PT generation function as the betting
strategy of the program. Selective sampling simulations are discussed in Chapter 5.

Every time Loki-2 has to act in a game, it calls the PT generation function and
selects its action based on the PT returned. The choice is made by generating a
random number in the range 0.0 — 1.0. For example, assume our hand and the
current information about the state of the game is given to the PT function and it
returns the triple [0.1,0.65,0.25]; if the random number is less than 0.1 Loki-2 folds,
if it is less than 0.75 Loki-2 calls, otherwise Loki-2 raises. A single random number
is generated at the beginning of each hand and used every time it is necessary to
select an action in the game. The random number is kept constant, because it defines
Loki-2’s level of aggressiveness in that game. If the random number is high then Loki-
2’s probability of betting or raising in the game increases and thus Loki-2’s playing
style is more aggressive. Loki-2’s aggressiveness should be consistent throughout a
hand, because it is not a good idea to bet strongly early in the game only to give up
later. A good player does not normally invest a lot in a hand and then fold easily in
the next round. Using a single random number keeps Loki-2’s style fixed in a game.
However, varying the random number from game to game makes it more difficult for
the opponents to create an accurate model of Loki-2 over a session.

The use of the PT generation function as Loki-2’s betting strategy adds unpre-
dictability to Loki’s play. Unpredictability is a requirement to play strong poker,
because if the opponents recognize a playing pattern then they are able to make
better informed decisions. For example, if an opponent realizes that Loki will bet
just with a very good hand (EHS > 0.8) then the opponent will fold when faced
with a bet by Loki. The result is that Loki’s winnings will be smaller. Using PTs
to randomly select a betting action allows the program to vary its play over time,
even in identical situations, making it difficult for opponents to predict the behavior

of Loki-2 and to exploit its weaknesses.
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reweight_weightTable (observed_action, opponent_wtTable) {
remove_from_deck(community_cards) ;
remove_from_deck(our_cards) ;
hand_list = enumerate_all_possible_2card_hands(deck);
for hand = hand_list[first] to hand_list[last] {
PT = probability_triple(hand, game_state);
opponent_wtTable[hand] =
opponent_wtTable[hand] * PT[observed_action];

Figure 4.2: Pseudocode for the reweighting algorithm using PT's

4.2.2 As a reweighting factor

The opponent modeling module maintains an array for each opponent with weights
for all the hands that opponent can hold. What does the weight for a specific hand
represent? For instance assume that the weight for Qé-T<> in Loki’s weight table for
a particular opponent is 0.60. This weight indicates that if Qé&-T< has been dealt
to this opponent then Loki believes there is a 60% chance that this opponent would
have played in the observed manner so far in the game. In other words, the weight
for a hand is the probability of an opponent’s past behavior in a game given a specific
pair of cards.

wt = P(observed actions | pair of cards)

When an opponent action is observed, the weight table for that opponent is mod-
ified to reflect the latest action. In Loki-2 probability triples are used during the
postflop rounds (after the three community cards have been dealt) as a reweighting
factor to update the weight table of each opponent. Loki-2 computes the P'T for each
hand the opponent can hold (the community cards and Loki-2’s cards are removed
from the deck) and multiplies the weight of each hand by the entry in the probability
triple that corresponds to the observed opponent’s action (see Figure 4.2).

By using PTs to update the weight tables, the opponent modeling module was
simplified. It was also improved since it makes better use of the information provided
by an opponent’s action by differentiating between a call and a raise, and by not ig-

noring an opponent’s check. For example, assume that the entry in the weight table
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for the hand A&-A< is 0.90, and the opponent calls. In the previous reweighting
system the weight for Ad-A< would still be high, because the program only distin-
guished between fold and play. Now, if the PT for Ad-A<{ in the current context is
[0,0.20,0.80] then the updated weight for this hand would be 0.90 x 0.20 = 0.18 (i.e.
Ad-Ad’s weight times the probability of the observed action). The relative likelihood
of the opponent holding A&-A<{ has decreased from 0.90 to 0.18 since no raise was
made.

However, an opponent might try to deceive Loki by calling with a strong hand
instead of raising. The call value of 0.20 in the above example reflects the uncertainty
in Loki’s beliefs about the actions of this particular opponent. Probability triple
values allow Loki-2 to deal with the unreliable information during opponent modeling.

This feature was not supported in Loki-1.

Specific opponent modeling

Loki-2 performs generic opponent modeling (GOM) in the sense that it uses the same
PT generation function for all the opponents without accounting for each opponent‘s
playing style. Obviously, treating all opponents the same is clearly wrong. Each
player has a different style, ranging from loose (plays most hands beyond the flop) to
tight (usually plays only those hands that have a very high probability of winning).
In addition a player may be passive (calling instead of raising even with a strong
hand) to aggressive (raising instead of calling). If the style of an opponent is known,
a player can adjust betting decisions based on the opponent’s style. For example, a
perceived tight player who bets aggressively, probably has a strong hand. A loose
player will play many marginal hands or may bluff a lot. This is useful information
and may allow a player to fold a strong hand or call with a weak one when it is correct
to do so. In general, a bet made by a loose aggressive player should not be taken as
seriously as one made by a tight passive player.

Loki-2 can gather information about the opponents to obtain betting frequencies
for each opponent and use this data to customize the PT function to account for
the playing style of each opponent. This process is called specific opponent modeling
(SOM). The default call and raise thresholds used in the PT generation function can

be adjusted by betting frequency statistics gathered on each opponent from previous
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hands. Thus, the reweighting factors applied to the entries of each opponent’s weight
table are adjusted to better fit their playing style. For example, assume a tight
opponent raises. Since in the case of a tight player, the call and raise thresholds will
increase, few PTs generated will have a high raise value. Hence, after reweighting,
this opponent’s weight table will indicate fewer hands that are likely to be held.

Loki-1 already collected the betting action frequencies of the opponents each round
based on the number of bets to call. These action frequencies are used by Loki-2 in
the PT generation function to obtain the EHS thresholds required to perform the
observed action. The EHS thresholds are obtained in the same way as was done in
Loki-1. For example, assume Loki has observed twenty actions by a specific opponent
on the turn with one bet to call. Assume the observations are six raises, eight calls
and six folds. The EHS raise threshold used for this opponent by the PT generation
function when an action is observed on the turn with one bet to call is 1 — % =0.7.
The EHS call threshold used is 0.7 — 2 = 0.3. Besides the accumulated (historic)
action frequencies collected by Loki-1, Loki-2 keeps track of the last twenty actions
of each opponent observed in the current session. EHS thresholds are calculated
from both records (historic action frequencies and last twenty observed actions) and
averaged to obtain the EHS thresholds used by the PT generation function. Keeping
track of the last twenty actions allows Loki-2 to react more quickly to changes in the
opponents’ playing style.

Superior opponent modeling is much more complex than the current techniques
used by Loki. Players can act to mislead their opponents into constructing an erro-
neous model. For example, early in a session strong poker players may try to create
the impression of being very conservative, only to exploit that image later in that
session when their opponents are using an incorrect model about them. Players can
also vary their style over a session, and then recency of the information gathered

about them has to be considered. Therefore, a strong player must continually adapt

the model for opponents who may be varying their playing style or trying to deceive.
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4.3 Experiments

4.3.1 Design

One goal of this research project was to construct a series of self-play poker tourna-
ment experiments to obtain statistically significant results that show each enhance-
ment improved Loki-2’s performance under different playing conditions (as is typically
seen against human competition). The experimental design to accomplish these goals
is described in this section.

Each self-play tournament consists of playing two versions of Loki against each
other: eight copies of a control version and two copies of a modified version. To reduce
the “luck” factor of the game and consequently the variance, the tournaments follow
the pattern of duplicate bridge tournaments described in [2] and [19]. Each deal is
played ten times, each time changing the seat order so that 1) every player holds
every set of hidden cards once, and 2) every player is seated in a different position
relative to all opponents. A tournament consists of 2,500 different deals (i.e. 25,000
games or {rials).

The playing style of a player is defined by the percentage of hands played (e.g.
liberal-loose or conservative-tight) and the frequency of raising when active (e.g. ag-
gressive or passive). Players are classified using a two character notation where the
first letter represents the percentage of hands played and varies from tight (T) to loose
(L), and the second letter represents the raising frequency and goes from passive (P)
to aggressive (A). These characteristics are not exclusive in a player. For example, a
conservative/aggressive (T/A) player will play few hands (fold most of the hands in
the preflop), but will bet/raise often when active.

To test an enhancement, one particular version of the program is first played
against an identical program with the new feature in a homogeneous field (all the
players have the same playing style). For example, one can play eight conserva-
tive/aggressive base Loki-1 players against two conservative/aggressive Loki-2 players
that are augmented with the PT function betting strategy. Second, the enhancement
is tested in combination with other changes. Third, the modification is tested against
opponents that have different playing styles.

To measure the impact of each new enhancement on the program’s performance,

32



we use the average number of small bets won per hand (sb/hand). This is a metric
sometimes used by human players. For instance, in a game of $10-$20 Holdem (small
bets are $10 and big bets are $20), a player who has an improvement of +0.20 sb/hand
will make an extra $60 per hour (based on 30 hands per hour); anything above +0.05
sb/hand is considered a large improvement. One must be cautious when interpreting
the results of these self-play experiments, since any feature could perform worse (or
better) playing against human opposition [1]. The main function of these experiments
is to weed out bad ideas. Ultimately, the only performance metric that is important
is how Loki plays against humans. Since it is difficult (and expensive) to get this

data, most of our experimentation must be done with self-play first.

4.3.2 Results

This section contains the experimental results of using Probability Triples as a stand-
alone betting strategy (Section 4.2.1) and as a reweighting factor in opponent model-
ing (Section 4.2.2). Both the individual effect of each enhancement and their combined
result are discussed. In the experiments, B stands for the use of the PT generation
function as a betting strategy and R stands for the change of the reweighting system
to use PTs.

Figure 4.3 shows the results of playing ten Lokis against themselves in a ho-
mogeneous environment (only one type of player) with the B and R enhancements
individually and combined (B+R). The players were eight Loki-1 players against two
enhanced Lokis. Loki-1’s performance is the baseline for the comparison. The B
feature represents a 0.041 4 0.009 sb/hand improvement, the R feature represents a
0.055 4+ 0.016 sb/hand and B+R represents a 0.085 £+ 0.020 sb/hand improvement.
The B+R results show that the effect of these enhancements is nearly additive since
these features are almost independent of each other. Note that each enhancement is
a win by itself and in combination with the other one.

A second series of experiments was conducted to see how well the new features
performed against a mixture of opponents with different styles. For this set of ex-
periments, opponents with different playing styles were used. In each experiment
there was a pair of players from each of the four categories: tight/passive (T/P),

tight /aggressive (T/A), loose/passive (L/P) and loose/aggressive (L/A). In each pair,
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Figure 4.3: Loki-1 versus Loki-2 with PT enhancements

one of the players was a basic Loki-1 player and the other was a Loki-2 player with
either new betting strategy (B), new reweighting system (R) or both features (B4+R).
Figures 4.4, 4.5 and 4.6 show the absolute improvements per type of player obtained
by adding B, R or B+R respectively. Since ten players are required to play a tour-
nament, we actually used two pairs of tight/passive players and reported the average
over the results of both pairs.

In each mixed experiment, the enhanced player always outperformed the corre-
sponding un-enhanced player. The absolute individual improvement varies greatly
from one style of player to another. For example, the L/A player enhanced by R
in Figure 4.5 had a 0.11 sb/hand improvement going from -0.033 sb/hand to 0.077
sb/hand, while the T/P player enhanced with R went from -0.031 sb/hand to 0.023
sb/hand showing a 0.054 sb/hand improvement. On average the B enhancement
produced an improvement of 0.045 sb/hand, the R enhancement of 0.070 sb/hand
and B+R of 0.096 sb/hand. These experiments showed that both enhancements win,
regardless of playing style.

Loki-2 with B and R was also tested under more realistic conditions against human

opposition. Loki-2 plays in an on-line poker game running on the Internet Relay Chat
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Figure 4.5: PTs as reweighting factor (R) in a mixed environment
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Figure 4.6: PTs as reweighting factor and betting strategy (B+R) in a mixed envi-
ronment

(IRC) poker server (irc.poker.net). Human players and other poker-playing programs
connect to IRC and participate in games conducted by dedicated server programs.
No real money is at stake, but bankroll statistics on each player are maintained. Since
there is no control over the quality and type of opponents, the performance of the
program depends strongly on which players happen to be playing and the variance
in these games is very high. However, Loki-2 is a consistent winner increasing its
bankroll at a rate of 0.11 sb/hand in 25,703 games (Loki-1’s winning rate on IRC was
0.08 sb/hand).

4.4 Summary

Representing poker decisions as a set of three probabilities provides a suitable infras-
tructure to perform well in a noisy environment, where randomized strategies and
misinformation are important aspects of strong play. Besides the performance im-
provement obtained by the use of PTs as a non-deterministic betting strategy and as
the reweighting factor in the opponent modeling module, the PT generation function

improves the design of the system by encapsulating all the knowledge-based compo-
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nents of Loki-2 in a single routine.

Although the results obtained are encouraging, there are still opportunities for
improvement. Using showdown and bluffing information about the opponents to
perform more accurate specific opponent modeling, replacing Loki-1’s preflop betting
strategy with a PT-based strategy, using PTs in preflop reweighting, and refining the
knowledge in the current probability triple function are some of the possible next

steps.
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Chapter 5

Selective sampling simulation

The general structure of a program for a perfect information game, such as chess or
checkers, contains an evaluation function and a search algorithm. Loki’s knowledge-
based betting strategy is, in fact, analogous to a static evaluation function. If deter-
ministic perfect information games are used as a model then the obvious extension is
to add “search” to Loki’s evaluation function.

In checkers or chess, the average branching factor is 3 and 30—40 respectively. One
can consider all possible moves as deeply as resources permit. However, in poker the
existence of hidden information, uncertainty and multiple players makes the same
approach infeasible. There are too many possibilities to consider. In a two-player
Texas Hold’em game there are 363.9 x 10° possible states at the beginning of the flop
and (427) = 1,081 possible opponent’s hole cards (see Figure 4.2 in [19]) plus multiple
possibilities for each betting round. Therefore, computing the complete game tree
for poker is prohibitively expensive in real-time. If exhaustive search is out of the
question, how do we add “search” to Loki?

We can examine (simulate) a representative sample, as large as resources permit,
from all the possible game scenarios. The larger the sample and the more informed
the selection process, the higher the chances to deduce meaningful conclusions.

A simulation consists of playing out a hand in many likely scenarios, from the
current state of the game through to the end, to determine how much money each
decision will win or lose. Every time Loki-2 faces a decision, it performs a simulation to
get an estimate of the expected value (EV) of each betting action and then chooses the

action with the greatest expectation. Inside each simulation, Loki-2 uses probability
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triples (PTs) to generate actions for all the opponents and itself, as well as, opponent

modeling information (weight tables) to bias the selection of opponent’s cards.

5.1 How simulation works

When it is Loki-2’s turn to act, it invokes the simulation routine to get an estimate
of the EV of calling and raising. Folding is considered to have a zero EV, because
there is no further profit or loss. The simulation routine plays out Loki-2’s hand a
specified number of times (trials). However, each trial is actually played out twice
once to consider the consequences of a check/call and once to consider a bet/raise.
For each case the amount of money won or lost is determined and averaged with the
corresponding results of all the trials. At the end of the simulation the averages of
the two sets of trials are taken as the EVs of the corresponding actions.

Simulation is analogous to a selective expansion of some branches of a game
tree. Since not all the branches of the game tree can be expanded due to time
constraints, the information obtained from a simulation needs to be maximized. The
“perfect” simulation would examine only the real game state (complete information
about the opponent hands, played out over all possible combinations of future com-
munity cards). However, the “perfect” simulation is impossible without knowing the
opponents’ cards, and an accurate estimate may be found without looking at all pos-
sible outcomes of future cards. One can try to approximate the EV values obtained
by the “perfect” simulation by expanding and evaluating the nodes which are most
likely to occur. In poker not all opponent’s hands are equally likely. For example, a
player who has been raising the stakes is more likely to have a strong hand than a
player who has just called every bet. To consider the opponents’ hands in proportion
to their underlying probability distribution, Loki-2 uses the information gathered by
the opponent modeling module. At the beginning of every trial, Loki-2 randomly
generates a hand for each opponent based on the weight table of that opponent. A
random method is used to generate the opponents’ hands, because of the simplicity
of its implementation.

Loki-2’s first betting action is predetermined to be either call or raise. Every time

it is a player’s turn to act inside the simulation, an action is chosen from one of three
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alternatives (fold, check/call, bet/raise). Since the choice is strongly correlated to the
quality of the cards that the player holds, Loki-2 can use the PT generation routine
to obtain the likelihood that the player will fold, check/call, or bet/raise. Thus, when
a player (an opponent, or Loki-2 after its first action) has to act in the simulation,
the PT generation function is called with the player’s hand and the current state
of the simulated game. The player’s action is then randomly selected based on the
probability distribution defined by the triple returned, and the simulation proceeds.

As more trials are performed, if the EV of one betting action exceeds the alterna-
tives by a statistically significant margin, one can say that this action is an obvious
move and the simulation can be stopped early, with full knowledge of the statistical
validity of this decision. We currently define an obvious move as any action where the
separation between the EV of the best action and the EV of the second best action
is greater than the sum of the standard deviations of the EVs. This criterion for
defining an obvious move is extremely conservative, since the separation between the
“best” decision and the next one is usually not more than two small bets, and the
average standard deviation of the EVs is six small bets for calling and eight small bets
for raising. This situation results in declaring fewer than 5% of actions as obvious
moves. Given the real-time nature of the game, more liberal criteria for distinguish-
ing obvious moves need to be tested to produce more frequent cutoffs while retaining
same statistical validity.

The interactions between the opponent modeling module (Opponent Modeler),
the PT generation routine (PT Generator) and the simulation module (Simulator)
are shown in Figure 5.1. In the diagram squares are system components and rounded
rectangles are data structures. The data follows the arrows between components.
The square corresponding to the Simulator also illustrates the major steps inside the
simulation process. The dashed square around the Opponent Modeler and the PT

Generator indicates that their interaction occurs before the simulation starts.

1. For every trial, the Simulator generates the opponents’ hands based on their

weight tables which have been updated by the Opponent Modeler.

2. Each trial is played twice once with call as the first action and once with raise

as the first action. As the hand is played the PT Generator is called to obtain
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Figure 5.1: Simulation process

the likelihood of the actions of the players (including Loki-2). This means that

all players in the simulation use the PT Generator as their betting strategy.

3. The Simulator stops when an obvious move is found or the maximum number

of trials is performed.

4. At the end of the simulation the expected value (the average over all the trials)

for each action is calculated.

When the simulation returns the EV values for check/call, bet/raise and zero for
fold, the current version of Loki-2 simply chooses the action with the greatest expec-
tation. If two actions have the same EV, the program opts for the most aggressive one
(call over fold; raise over call). However, against human opposition, a better strategy
will be to randomize the selection of betting actions whose EVs are close in value to

increase unpredictability.

5.1.1 Dealing cards out

The opponents hands are generated according to the seating order of the players (the

small blind gets cards first and the dealer gets cards last). The criterion for assigning
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the hole cards to an opponent depends on whether the opponent is still active in the
game or not. Hole cards are dealt to the folded players because we want to choose
the cards to come (turn and river cards) not only from the correct number of cards,
but also from cards with the correct distribution of weak/strong cards.

To deal the hole cards to an opponent, the Simulator uses selective sampling. It
randomly extracts two cards from the deck and generates a random number in the
range 0.0 — 1.0. In the case of an opponent already folded, the cards extracted are
kept as the opponent’s hole cards if the preflop hand value (income rate of the hand)
is less than the random number; otherwise, the cards are returned to the deck and
the generation process is repeated. Thus, preference is given to weak hands (hands
that are likely to fold on the preflop). For an opponent who is still active in the game,
the cards extracted are kept if the weight for the two cards in the weight table of
the opponent is greater than or equal to the random number; otherwise, the cards
are re-inserted into the deck, and the Simulator extracts two cards and generates
another random number. Since the weight of a pair of cards indicates the likelihood
of the opponent holding these cards, preference is given to the most likely holdings.
However, all the two-card combinations have some opportunities to be selected.

In analyzing the results of self-play experiments with selective sampling simula-
tion, we noticed that simulations contain high variance and a lot of noise. We need
to keep the sampling in the simulation as representative and fair as possible to get
the best possible (reliable) results. Thus, different methods to reduce variance have
to be tested. For example, in the current version, a random selection of the turn and
river cards is made for every trial in a simulation. To reduce statistical anomalies and
variance, one can obtain a perfect representation of the one-card potential by dealing
all 47 possible turn cards exactly once. Then a certain number of river cards can be

chosen, without replacement, for each of these turn cards.

5.2 Experiments

The experimental design used to test Loki-2’s simulation-based performance is the
same as described in Section 4.3.1. In a tournament, there are eight Loki-1 players

playing against two Loki-2 players. A tournament consists of 2,500 different deals
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played ten times each (i.e. 25,000 games). The number of trials per simulation was
chosen to meet real-time constraints and statistical significance. In the experiments,
500 trials per simulation were performed, since the results obtained after 500 trials
were quite stable. For example, 4.6% of the betting actions selected with 100 trials
changed after more trials were performed, whereas only 0.5% of the decisions were
changed after 500 trials.

Selective sampling simulation was tested alone and in combination with the PT
enhancements. Figure 5.2 shows the increment in Loki-2’s performance in a homoge-

neous environment obtained by using the following modifications in Loki-1:

S = Selective sampling simulation,

S+R = Selective sampling simulation with PT-based reweighting,

S+B = Selective sampling simulation with PT-based betting strategy as the

action generation mechanism inside the simulation, and

S+B+R = Selective sampling simulation with PT-based reweighting and PT-
based betting strategy.

In the graph, Loki-1's performance is the baseline for comparison. Selective
sampling simulation (S) represents an improvement of 0.098 £+ 0.038 small bets per
hand (sb/hand). By adding both PT enhancements (S+B+R), an improvement of
0.11 £+ 0.035 is obtained. As can be seen in the graph, the effects of S, B and R are
not additive. These enhancements may exploit the same aspect of the opponents’
play and their effects overlap. Another reason may be the hyper-aggressive playing
style of the simulation-based players. They are very successful against Loki-1 players,
and can lead to over-optimistic conclusions about the performance improvement rep-
resented by S. Since the B enhancement allows us to simulate less tight opponents,
S+B may result in a less aggressive playing style, lowering S+B winnings against
Loki-1 opponents.

Also, one has to consider that the larger the winning margin, the smaller the
opportunity there is for demonstrating further improvement against the same opposi-

tion. There is a limit to how much money one can make from an opponent in a game.
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Figure 5.2: Selective sampling simulation experiments

Two other experiments were carried out raising the baseline for comparison. In the
first experiment, two Loki-2s with S were matched with a field of Loki-2s with B+R.
The S enhancement won 0.023 4= 0.044 sb/hand. In the second experiment, the same
field of opponents (B+R) played against two Loki-2s with S+B+R. The S+B+R’s
winning rate was 0.087 + 0.038 sb/hand.

A mixed environment experiment was conducted to see how well selective sampling
simulation performed against different playing styles. In this experiment, the field of
opponents was composed of pairs of players with the styles: tight/aggressive (T/A),
loose/passive (L/P) and loose/aggressive (L/A), as well as two pairs of tight /passive
(T/P) players. From each pair of players, one player used selective sampling simula-
tion and the other one was a Loki-1 player. Figure 5.3 shows the average performance
of the players without simulation (AVE) and the average performance with simula-
tion (AVE+S). The average improvement obtained for all different players by using
simulation is 0.036 sb/hand.

Loki-2’s playing ability with the three enhancements (S+B-+R) was also tested
against human opposition in on-line poker games on the Internet Relay Chat (IRC).

Loki-2’s winning rate is 0.13 sh/hand in 26217 games (Loki-1’s winning rate on IRC
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was 0.08 shb/hand). Figure 5.4 shows Loki-2’s behaviour on the first level of IRC.

5.3 Comments about selective
sampling simulation

5.3.1 Advantages

The simulation-based approach used in Loki-2 has experimentally proved to be better
than Loki-1’s static approach. This should not be at all surprising, since the simu-
lation approach essentially uses a selective search to augment and refine the static
evaluation function. Excluding a serious misconception (or bad luck on a limited sam-
ple size), playing out relevant scenarios can only be expected to improve the values
obtained by a heuristic (i.e. by the static evaluation function), resulting in a more
accurate estimate.

Selective sampling simulations discover information that improves the values ob-
tained by the static evaluation function. In both Loki-1’s betting strategy and the
PT generation function, actions are taken based on the hand evaluation. During a
simulation, the accuracy of the hand evaluation is increased. The number of trials
where our hand is stronger than the one assigned to the opponents refines the esti-
mate of hand strength. The fraction of trials where our hand becomes the best one,
or is overtaken, with the next cards dealt refines the calculation of hand potential.
In addition, a simulation yields information about subtler implications difficult to
address in a static betting strategy.

By performing simulations Loki-2 is able to find game strategies which are not
specified in the knowledge contained in its evaluation function. For example, if a
player has a strong hand then the player can pretend weakness by checking in the
first turn to act in a betting round. The opponents will likely bet to their hands
(thinking that the player’s hand is not good), and then a raise will collect more
money than betting as the first action. This strategy is known as check-raising. Loki-
2 check-raises its opponents without having the explicit knowledge to do it. Selective
sampling simulations uncover the benefits of complex strategies such as check-raising
without providing additional expert knowledge to the program.

The use of available information about the game to bias the sampling of the
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game tree is the key difference between selective sampling simulations and Monte
Carlo simulations. Selective sampling is context sensitive. In Loki-2 the opponents’
weight tables are used to influence the selection of hole cards for each opponent. The
sample is taken in accordance with the underlying probability distribution of the op-
ponents’ hands rather than assuming uniform or other fixed probability distributions.
Although Monte Carlo techniques may eventually converge to the right answer, selec-
tive sampling converges faster and with less variance. This is essential in a real-time
game like poker.

Finally, another benefit of the simulation-based framework is that the simulation
can be terminated early based on the statistically well-defined concept of an obvious
move instead of using an ad hoc technique as is frequently done in alpha-beta-based

programs.

5.3.2 Simulation trade-offs

As encouraging as the simulation results have been, there is still room for improve-
ment. Simulation can reveal information that results in better betting decisions and
refine the estimate of the evaluation function. Yet, a simulation contains high variance
and it is unclear how the other components of the program impact on its performance.

As was discussed in the previous section, simulation can recover from lack of
knowledge in the evaluation function, produce complex game strategies and refine the
estimated EV of the actions. This feature raises the question: how much knowledge
does simulation require? Every time a new card is dealt in a trial, the hand strength
and hand potential for active hands in the trial are calculated. For each betting
action to be played, a PT generation function is called to generate an action for
the opponents and Loki-2. Thus, during the simulation every trial is an accurate
representation of a real game. However, each trial is a time-consuming process. In
fact, one can exchange the accuracy of each trial for the number of trials performed
in real-time. This tradeoff was explored by replacing the PT generation function
betting strategy with an “always call” betting strategy inside the simulation. An
“always call” betting strategy is probably the simplest betting strategy that can be
provided to the simulation; it always returns call as all of the players’ actions and

all of Loki’s subsequent actions. Therefore, in an “always call” simulation, there is
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no further betting after Loki’s first decision, which is predetermined to be either call
or raise, and every trial only consists of dealing all the cards and determining the
hand that takes the pot. “Always-call” simulation-based Loki-2 wins against Loki-1
by a healthy margin (0.057 sb/hand) and runs 2.5 times faster than Loki-2 using the
PT generation function. However it does not win as much as the full simulation-
based Loki-2 does. Even though simple simulation is better than no simulation at

all, knowledgeable simulation seems to provide better results.

5.3.3 Comparison with alpha-beta

The alpha-beta algorithm [20] has proven to be an effective tool for the design of two-
player, zero-sum, deterministic games with perfect information. Its origins go back
to the beginning of the 1960’s. Since that time the basic structure has not changed
much, although there have been numerous algorithmic enhancements to improve the
search efficiency. The selective-sampling simulation technique is becoming an effec-
tive tool for the design of zero-sum games with imperfect information or conditions
of uncertainty (see Chapter 6). Table 5.1 shows a comparison between the usual

characteristics of both approaches.

Criterion Alpha-beta Selective sampling
simulation

Search Full breadth, Full depth,

but limited depth but limited breadth
[teration Search depth Number of samples taken

(iterative deepening)

Heuristic Evaluation At the leaf nodes At the interior nodes
Interior node alternatives | All, except for those A subset, to reduce
considered logically eliminated the cost of a sample
Statistical support to No Yes
best move choice?

Table 5.1: Comparison between search frameworks

In poker the heuristic evaluation at the interior nodes of the simulation is done
to determine the appropriate opponents’ actions and Loki-2’s actions. The leaf node
evaluations are the amount of money won or lost, since the simulation done for each

sample goes to the end of the game. In deterministic games, the heuristic evaluation is

48



done to estimate the expected utility of the game from a given position (i.e. the value
of the subtree beyond the maximum search depth of the program). A simple leaf node
evaluation for some perfect information games can be the material balance. Figure 5.5
illustrates where the evaluation occurs in the search and simulation approaches and

the game space explored by them.

(a) Alpha-Beta framework (b) Selective sampling framework

Figure 5.5: Search space explored

The alpha-beta algorithm gathers confidence in its move choice by searching
deeper along each line. The deeper the search, the greater the confidence in the
move choice, although diminishing returns quickly takes over. The alpha-beta al-
gorithm is designed to identify a “best” move, and not differentiate between other
moves. Hence, the selection of the best move may be brittle, in that the miseval-
uation of a single node can propagate to the root of the search and alter the best
move choice. Similarly, selective sampling simulation increases its confidence in the
answer as more nodes are evaluated. However, diminishing returns takes over after a
statistically significant number of trials have been performed.

Selective sampling simulation can be compared to selective search or forward prun-
ing techniques in alpha-beta algorithms. These techniques discard some branches to
reduce the size of tree; however, their major drawback is the possibility that the
lookahead process will ignore a key move at a shallow level in the game tree [18]. To
be reliable, forward pruning methods need to reason about the tree traversal to de-
duce which “future branches” can be excluded. On the other side, selective sampling
simulation uses available information about the game and the opponents to explore

the most likely “current branches” of the game tree.
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5.4 Summary

According to the results of self-play experiments, a selective sampling simulation-
based betting strategy for Loki-2 significantly outperforms the static-evaluation based
alternatives. Similar to what has been seen with brute-force search in games like chess,
the effect of the simulation (search) amplifies the quality of the evaluation function,
allowing high performance to be achieved without adding additional expert knowl-
edge. Selective sampling uses the data available about the game and the opponents
to increase the quality of the information obtained with each simulation run. Yet,
the work on selective-sampling simulation in poker is still in its early stages. The
knowledge component and selection methods have to be tuned with the algorithmic
component of the simulation, and the right balance between the different simulation
tradeoffs (cost per trial versus number of trials, random versus systematic approach)

has to be found.
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Chapter 6

Other examples of selective
sampling simulation

The use of stochastic simulation to solve problems where exhaustive methods take
too long is not new to the Artificial Intelligence community. Specifically, stochastic
methods have been developed for performing inference in belief networks and for
decision-making in imperfect information or non-deterministic games.

There are two important advantages of stochastic simulation algorithms. They
have an “anytime” property in the sense that they can be stopped at any time and
will give the best answer available. Given more time, their estimates will improve.
This “anytime” property is especially appropriate for real-time domains like poker.
Also, simulation algorithms are trivial to perform in parallel.

In this chapter, simulation algorithms used in belief networks and games will be
reviewed. The algorithms discussed perform selective sampling on the search space by
using available information about the state of the world to bias the sample selection.
The aim of selective sampling methods is to converge faster than approaches using

uniform sampling.

6.1 Belief networks

Bayesian belief networks (BBNs) are a graphical representation for reasoning under
uncertainty [20]. A BBN is a directed acyclic graph with a conditional probability
distribution for each node. BBNs contain nodes representing domain variables, and

arcs between nodes representing probabilistic dependencies. The basic task for a BBN
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is to compute the posterior probability distribution for a set of query variables, given
exact values for some evidence variables.

Since exact (“brute-force”) algorithms for performing inference on BBNs take
exponential time (in the number of nodes) in the worst case, they cannot handle large
or highly connected networks. Stochastic simulation algorithms have been developed
to give approximate results for a wider variety of belief network topologies. Simulation
algorithms differ from the brute-force approach in that they select only a sample of the
node states, whereas a brute-force strategy selects every state. One of the simulation
algorithms for BBNs, likelihood weighting [22] [11], is similar to the idea of selective
sampling simulation in poker.

Likelihood weighting selects the node states based on their prior probability of
occurrence. By choosing more likely states more often, this algorithm typically is able
to converge much more quickly than equiprobable sampling which randomly chooses
a state for each node in the network [8]. Likelihood weighting chooses a state for
a node by generating a random number between 0 and 1 and using this number to
select a state according to the conditional probability table of the node. For each
simulation trial, the probability of the evidence given the sampled state values is
used to increment the count of each event of interest. The estimated probability
distribution is obtained by normalizing after all the simulation trials are completed.

By using selective sampling simulation in poker, we estimate the expected values
of betting actions instead of estimating the posterior probability distribution for a set

of variables. Both simulation methods have the following characteristics:

1. They select the states to sample (node states or opponents’ hands) on the basis
of their probability of occurrence by using either conditional probability tables

or (in our case) weight tables.

2. Both methods can use heuristics or information available about the world to
modify the tables for choosing states and bias the state selection to the most

likely ones.

02



6.2 Games

In this section, three game-playing programs that use simulations are described.
These programs do not use Monte Carlo sampling to generate instances of the miss-
ing information. They use variations of selective sampling; sampling biased towards
taking advantage of all the available information. They use information about the
game state to skew the underlying probability distribution of the opponents’ moves,
cards or tiles, rather than assuming uniform or other fixed probability distributions.
The general simulation algorithm used by these games to select a move from a set M

of candidate moves is:

1. Construct a set I of instances of the missing information consistent with the
public information about the state of the game and the program’s assumptions

(information) about the opponents.

2. For each move m € M and each instance ¢ € I, evaluate the result of making
the move m in the instance 7. Denote the score obtained by making this move

s(m, ).

3. Return that m for which }>; s(m,¢) is maximal.

6.2.1 Backgammon

In backgammon the unknown outcome of the dice rolls makes the brute-force approach
infeasible by raising the branching factor to several hundreds moves (21 possible dice
combinations, each of them having 20 legal moves). The backgammon program TD-
Gammon [26] [27] uses temporal difference (TD) learning to learn by itself how to
play backgammon at a world-championship level. The TD-Gammon neural network
is trained by self-play simulations. During training, TD-Gammon considers each of
the 21 ways it can play its dice role and the corresponding positions that will result.
Then, the move that leads to the position with the highest estimated value is chosen.
This learning method is used even at the start of the training when the network’s
strategy is random. After playing about 300,000 games against itself, TD-Gammon
0.0 with essentially zero backgammon knowledge learned to play approximately as well

as the best previous backgammon computer program. Self-play training refined with
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some initial backgammon knowledge produced a program that played at a world-class
level.

Recent versions of the program were augmented with a selective two-ply or three-
ply search procedure. A ply is an individual playing action (only one of the players
makes a move). To select moves, these programs look ahead to consider the opponent’s
possible dice rolls and moves. Assuming that the opponent always takes the move that
appeared immediately best for the opponent, the expected value of each candidate
move is computed and the best move is selected. The second ply of search is conducted
only for candidate moves that were ranked high after the first ply. This selective search
procedure affects only the move selection; the learning process proceeds exactly as
before.

Also, simulations are used in backgammon to perform “rollouts” of certain posi-
tions. The rollouts are now generally regarded as the best available estimates for the
equity of a given position. A simulation consists of generating a series of dice rolls,

playing through to the end of the game, and then recording the outcome.

6.2.2 Bridge

In bridge the hidden information consists of the cards that the opponents hold. The
current best bridge program GIB [14] performs simulations in two stages of the game:
during the auction to make a bid and during the actual game to decide which card
to play.

To select a bid, GIB deals cards to the opponents in a way that is consistent with
the bidding observed so far. GIB uses a database to project how the auction will
continue if a certain bid is made, and then computes the result of playing out the
hand. The hands are played in a double dummy variation of bridge (assuming perfect
information — knowledge of all four hands). At the end of the simulation the bid with
the maximal expected value is returned.

During a game, a simulation consists of dealing cards to the opponents in a manner
that is consistent with the bidding and the cards played so far. The score of a move
is determined by playing out the hand in a double dummy mode [12]. Repeated deals
are played until either enough confidence is gained to decide which card to play, or a

maximum number of hands is simulated, or a real-time constraint is met.
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Opponents’ cards are constrained by the information given by each player about
the hand during the bidding. GIB also uses a probability distribution of the possible
cards held by an opponent to bias the card dealings towards the most likely ones.
This probability distribution is adjusted by identifying mistakes the opponents might
make during the game. For example, assume that GIB’s analysis says that 75% of
the time that a player holds a specific card and does not play it in a particular game
situation that an error has occurred. The probability of this opponent holding that
card is modified accordingly after GIB observes that the card was not played.

Simulations have allowed GIB to play hands at a world-class level; however, lim-
itations in the simulation-based approach and the high variance have prompted the
author of GIB, Matt Ginsberg, to look at other solutions (including building the

entire search tree) [13].

6.2.3 Scrabble

A simulation-based approach has been used for a long time in Scrabble programs.
Brian Sheppard, whose Scrabble program Maven defeated Grandmaster Adam Logan
(a top-ranked player in the world) in the AAAI-98 Hall of Champions, coined the term
“simulator” for this type of game-playing program structure.

During the non-endgame stage of a Scrabble game, Maven [24] chooses its moves
using simulation to try to determine which move for the computer leads to the max-
imum number of points. To select a move Maven generates a set of candidate moves,
simulates these moves a specific number of trials and chooses the move whose ex-
pected value is highest. A simulation trial consists of a two to four ply search of the
game tree, except in the pre-endgame where a trial simulates to the end of the game.
Since in Scrabble, the opponent’s tiles are unknown, they need to be generated for
every trial in the simulation and used to play out all the candidates moves. The tile
generation is constrained by the tiles in the computer’s hand and those that have
appeared on the board. Maven does not randomly assign seven of the remaining un-
known tiles to the opponent. Instead, it tries to match the distribution actually seen
in games. To achieve this, it biases its choice to give the opponent a “nice” hand,
since strong players like to have a balanced hand with lots of potential.

Opponent modeling is not performed in Maven, since it does not seem to be a crit-
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ical component in playing strong Scrabble. However, inferences about the opponent’s

tiles can be done based on previous opponent’s moves.
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Chapter 7

Conclusions and future work

Using probability triples as Loki-2’s betting strategy and as the reweighting factor
in its opponent modeling module represents a significant improvement in Loki-2’s
play against previous versions of Loki in self-play experiments and against human
opponents on IRC. Selective sampling simulations show impressive results in self-
play experiments. Against human opponents on IRC, the best results were obtained
when all three enhancements were used. In self-play experiments, the playing style
of the computer players certainly matches the opponents’ actions generated inside
the simulations. Thus, the simulation-based betting strategy successfully exploits all
the weaknesses in the computer opponents’ play. In the more realistic environment
on IRC, the less predictable approach of the simulation-based Loki-2 paid dividends
by making it more difficult for regular opponents to form a correct model of Loki-2’s
play.

Developing Loki is an iterative process. The work concentrates on improving an
aspect of the program until it becomes apparent that another aspect is the main per-
formance bottleneck. That problem is then addressed until it is no longer the limiting
factor, and new weaknesses in the program’s play are revealed. Loki-1’s deterministic
betting strategy was its limiting factor. This bottleneck was overcome in two ways.
Probability triples provide as a probabilistic representation of betting decisions to
increase unpredictability. Simulations add dynamic functionality to static betting
strategies. The PT-generation function also supports better use of the information
available to the Opponent Modeler, and is more tolerant of the uncertainty in the

opponents’ actions. However, the opponent modeling still needs to be refined. In
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fact, it seems that further performance gains will depend on perfecting the oppo-
nent modeling module together with improvements to the simulation-based betting
strategy.

This thesis presents the first steps in using a simulation-based betting strategy
and improving the reweighting process in the Opponent Modeler. These are the initial
steps and there are still many to take. Some avenues to explore in Loki-2’s future

development are:

1. The opponent modeling information can be used to improve the simulations.
Currently, the opponent modeling data is used to select the most likely oppo-
nents’ hands; however, it can also be used to simulate the most likely opponents’

actions.

2. Simulations can also improve the opponent modeling. For example, after doing
a simulation, the expected reaction for each opponent can be recorded. If their
actions frequently differ from what is predicted, then Loki-2 can adjust its

opponent model.

3. Loki-2 can easily collect lots of data about the opponent while playing. The
problem is filtering and utilizing this data. If these problems are not solved,
Loki-2’s opponent modeling will be too slow to react or its betting strategy will

base its decisions on irrelevant information.

4. Other metrics that may be better predictors of an opponent’s style and future
behavior have to be considered. For example, measuring the amount of money

that a player invests per game may be a good predictor of loose/tight play.

5. Using showdown information to re-play a hand and obtain clues about how
an opponent perceived each decision during the hand may help to adaptively
measure important characteristics like aggressiveness, bluffing frequency, pre-

dictability, affinity for draws and so forth.

6. The employment of learning algorithms in Loki-2’s simulation-based strategy
and in its Opponent Modeler may help to make inferences based on limited

data.
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7. Loki-2’s preflop behavior can be improved by using a preflop PT-based betting
strategy.

As experimental results point out, Loki-2 wins more money (plays better) than
last-year’s Loki. However, does the program play world-class level poker? It is not
there yet, but many improvements are being made to its performance and there are

still lots of ideas to try.
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Appendix A

Table of Abbreviations

A AAT American Association for Artificial Intelligence
AT Artificial Intelligence

BBN Bayesian Belief Network

BPP Bayesian Poker Program

EHS Effective Hand Strength

EV Expected Value

GOM Generic Opponent Modeling
HS Hand Strength

IRC Internet Relay Chat

NPOT Negative Potential of a Hand
PPOT Positive Potential of a Hand
PT Probability Triple

rwt Reweight Factor

sb/hand Small bets won per hand
SOM Specific Opponent Modeling

TD Temporal Difference
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