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Abstract

Games have been used to evaluate and advance techniques in the field of Artificial Intelligence since

before computers were invented. Many of these games have been deterministic perfect information

games (e.g. Chess and Checkers). A deterministic game has no chance element and in a perfect

information game, all information is visible to all players. However, many real-world scenarios

involving competing agents can be more accurately modeled as stochastic (non-deterministic), im-

perfect information games, and this dissertation investigates such games. Poker is one such game

played by millions of people around the world; it will be used as the testbed of the research presented

in this dissertation. For a specific set of games, two-player zero-sum perfect recall games, a recent

technique called Counterfactual Regret Minimization (CFR) computes strategies that are provably

convergent to an ε-Nash equilibrium. A Nash equilibrium strategy is very useful in two-player games

as it maximizes its utility against a worst-case opponent. However, once we move to multiplayer

games, we lose all theoretical guarantees for CFR. Furthermore, we have no theoretical guarantees

about the performance of a strategy from a multiplayer Nash equilibrium against two arbitrary op-

ponents. Despite the lack of theoretical guarantees, my thesis is that CFR-generated agents may

perform well in multiplayer games. I created several 3-player limit Texas Hold’em Poker agents

and the results of the 2009 Computer Poker Competition demonstrate that these are the strongest

3-player computer Poker agents in the world. I also contend that a good strategy can be obtained by

grafting a set of two-player subgame strategies to a 3-player base strategy when one of the players

is eliminated.
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Chapter 1

Introduction

1.1 Motivation

Games have been used to evaluate Artificial Intelligence (AI) algorithms and techniques since before

computers were invented. In 1948, Alan Turing began working with a colleague on a chess program

which no computer, at the time, was capable of running. Still, in 1952, lacking a viable computer on

which to run the program, Turing played out a recorded match by hand (by emulating the computer)

but unfortunately lost [13]. Games have some compelling features that make them an excellent

testbed for progress in AI research: finite state and action spaces, metrics for evaluating success,

and human competition of varying skill levels.

A perfect information game corresponds to one in which every player has complete knowledge

of the current game state. Examples of perfect information games include Chess, Checkers, Othello,

and Backgammon. In each of these two-player games, both players have perfect knowledge of

the game state: the positions of all pieces remaining on the board. On the other hand, a game of

imperfect information corresponds to a game in which some information is hidden from a subset

of the players. Examples of imperfect information games include Scrabble and Poker. In Scrabble,

each player’s tiles are hidden from their opponents. Similarly, players’ hole cards are hidden from

the other players in Poker.

Every action in a deterministic game results in a constant and predictable outcome. For exam-

ple, attempting to move a checkers piece onto a vacant square along the top-right diagonal always

results in the exact same outcome: the piece is successfully moved onto that square. Checkers,

Chess, and Othello are all examples of deterministic games. Stochastic (or non-deterministic)

games, however, involve an element of chance. Examples of stochastic games and their source of

chance include Backgammon (dice rolls), Scrabble (tile draws), and Poker (card deals).

Within recent years, computer playing programs have been able to compete with and surpass

world-class human experts in several popular games:

• Checkers. The Chinook project was lead by Jonathan Schaeffer at the University of Alberta.

In 1994, Chinook was declared the Checkers World Champion after the defending Champion,
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Dr. Marion Tinsley, forfeited due to health concerns [21]. Chinook defended its title in 1995.

The Chinook team announced in 2007, after almost two decades of computations, that they

have solved Checkers [20]. Assuming both players play optimally, the game will always end

in a draw.

• Chess. The Deep Blue project was lead by Feng-hsiung Hsu of IBM. In 1997, Deep Blue

defeated the World Chess Champion Garry Kasparov in a six-game match with two wins, one

loss, and three draws [14].

• Othello. The Logistello program was written by Michael Buro from the University of Al-

berta. [5]. Logistello defeated the Othello World Champion, Takeshi Murakami, 6-0 in a 1997

exhibition match.

• Scrabble. The MAVEN program was written by Brian Sheppard of IBM. In 1998, a commer-

cial version of MAVEN defeated the World Scrabble Champion, Joel Sherman, and runner-up,

Matt Graham with a composite score of 6-3 [22].

• Backgammon. The TD-Gammon program was developed by Gerald Tesauro of IBM. Through

self-play and the use of artificial neural nets and temporal difference learning, it has achieved

master-level play competing with some of the best players in the world [26].

• Heads-up Limit Texas Hold’em Poker. The Polaris program was developed by the Com-

puter Poker Research Group (CPRG) at the University of Alberta. In 2008, Polaris defeated

some of the top Poker players in the world including Matt “Hoss TBF” Hawrilenko, Bryce

“Freedom 25”, Nick “stoxtrader” Grudzien, IJay “doughnutz” Palansky, and Kyle “cotton-

seed” Hendon. The final score for the series of matches was three wins, two losses, and one

draw for Polaris [7].

While much research and development has been spent on two-player games, very little research

efforts have, comparably, been dedicated to multiplayer games. In this dissertation, the term “mul-

tiplayer game” refers to a game with three or more players, to differentiate these games from two-

player games. However, many games and real-world problems involve interactions between multiple

individuals or groups; these interactions may include competition, cooperation, or a combination of

both. World-class computer agents (listed above) now exist for several two-player games1, however,

multiplayer computer agents have yet to challenge and defeat a World Champion.

In this dissertation, we present some techniques for generating 3-player limit Texas Hold’em

Poker strategies and compare them (by playing many games) against a set of benchmark agents

including the 2008 Computer Poker Competition multiplayer champion, Poki. We expect that the

techniques used in this study can be applied to other multiplayer games and broader real-world

domains involving three or more parties.
1MAVEN was designed for two-player Scrabble games only
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1.2 Texas Hold’em Poker

Poker is a class of multiplayer card games encompassing over one hundred variants. Several simi-

larities are shared among the variants: they are played with a standard playing card deck (4 suits of

13 ranks, 52 cards total), there are betting rounds where players can wager chips, and the standard

five-card hand ranking system is generally used to determine the winner(s).

Texas Hold’em, often simply shortened to Hold’em, is the most popular Poker variant. It has

exploded in popularity within the past decade, due to several factors: the advent of internet Poker

rooms where players can play in the privacy of their own homes, the increase in televised Poker,

the addition of hole-cameras which allow viewers to see all private cards, and the amateur Chris

Moneymaker’s unlikely victory in the 2003 World Series of Poker Main Event Championship.

1.2.1 Rankings

Poker hands are made up of exactly five cards and use the hand rankings presented below, from best

to worst. An example hand for each ranking is provided in parentheses.

• Royal Flush. Ten through ace of the same suit (A♣ K♣ Q♣ J♣ T♣)

• Straight Flush. Five cards of consecutive rank and the same suit (5♦ 6♦ 7♦ 8♦ 9♦)

• Four of a Kind. Four cards of the same rank (3♥ 3♣ 3♦ 3♠ A♥)

• Full House. Three cards of one rank and two cards of another (5♥ 5♣ 5♦ K♠ K♦)

• Flush. Five cards of the same suit (A♠ J♠ 6♠ 3♠ 2♠)

• Straight. Five cards of consecutive rank (A♣ 2♦ 3♠ 4♣ 5♦)

• Three of a Kind. Three cards of the same rank (2♥ 2♣ 2♦ Q♠ J♣)

• Two Pair. Two cards of one rank and two cards of another (7♥ 7♣ 3♦ 3♠ 9♦)

• One Pair. Two cards of the same rank (4♣ 4♦ A♣ Q♣ 8♠)

• High Card. None of the above (K♦ J♥ T♣ 9♦ 2♠)

If several players have the same hand ranking, the winner is determined by card rank. For

example, if several players have a full house, the player with the highest three of a kind rank wins.

Similarly, if several players have a flush, the player with the highest flush card rank wins.

1.2.2 Rules

The pot is the collection of all bets wagered (usually in the form of chips) during a game. After

each game finishes, a dealer button is moved clockwise by one position around the table. The player

sitting in that position is designated the dealer or the button. The player to the left of the dealer is
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called the small blind. The player to the left of the small blind is called the big blind. The small

blind and big blind must place mandatory bets (labeled the small blind and big blind, respectively)

into the pot before the game begins. These blinds are used to give players an incentive to play hands.

Before the game begins, the dealer deals two cards, called hole cards, face down to each player.

For now we ignore the betting rounds. During these rounds, five face-up public cards, called com-

munity cards, are dealt and shared between all players. After all five community cards have been

dealt and all four betting rounds have finished, all remaining players enter a showdown where their

hands – the best five card combination made from their two hole cards and the five community cards

– are revealed and the player with the highest ranking hand wins the pot. If several players have

equivalent hands, the pot is split evenly among them.

1.2.3 Actions

Each Texas Hold’em game consists of up to four betting rounds. The possible actions in a betting

round include:

• Bet. To place a wager into the pot.

• Raise. To match the outstanding bet and place an extra bet into the pot. The minimum size

of the extra bet is equal to the difference between the two previous bet or raise sizes. For

example, if the action on the current betting round was “bet $2, raise $5 more to $7”, then the

next raise must be at least $12 total ($5 higher than $7).

• Call. To match the amount of all outstanding bets.

• Check. To pass when there is no outstanding bet.

• Fold. To pass and forfeit the current game when there is an outstanding bet. No further actions

can be taken by a player who has folded.

1.2.4 Betting Rounds

• Preflop is the first betting round where the blinds are placed in the pot and each player receives

their hole cards. There are no community cards dealt in this round. The betting begins with

the player to the left of the big blind. Postflop refers to all three remaining (i.e. non-preflop)

betting rounds.

• The flop is the second betting round where three community cards are dealt. The betting

begins with the nearest active (i.e. non-folded) player to the dealer’s left.

• The turn the third betting round where one community card is dealt. The betting begins with

the nearest active player to the dealer’s left.
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• The river is the fourth and final betting round where one community card is dealt. The betting

begins with the nearest active player to the dealer’s left.

1.2.5 Variants

There are several variants of Texas Hold’em Poker. The game often varies in two orthogonal dimen-

sions: the number of players participating and the betting structure.

• The heads-up variant includes only two players. Typically, the dealer is the small blind and

acts first preflop and last postflop. The ring (also called multiplayer) variant includes more

than two players, usually between three and ten.

• Limit, also called fixed-limit, is a variant where the amount of each bet and raise is fixed.

Each wager is equal to the big blind for the preflop and flop rounds and equal to twice the big

blind for the turn and river. For example, when playing a $10/$20 limit game the small blind

is $5, the big blind is $10, bets preflop and on the flop are $10 and bets on the turn and river

are $20. In this case, $10 is called a small bet and $20 is called a big bet. There is often a cap

of four bets per player per round in limit games. No-limit is a variant in which wagers can be

any amount between the size of the big blind and all of a player’s remaining chips. Betting

all remaining chips is called going all-in. Pot-limit is a similar variant which allows a player

to wager any amount between the size of the big blind and the size of the pot. The pot-size

includes the amount needed to match any outstanding bets.

1.3 Computer Poker

Each year, the Annual Computer Poker Competition is held (by AAAI or IJCAI) so that academics

and amateur programmers alike can determine the relative strength of their Texas Hold’em com-

puter Poker agents. This competition began in 2006 and was designed to drive the development of

Artificial Intelligence techniques. In the 2006 AAAI Computer Poker Competition, the only game

included was heads-up limit. The next year, heads-up no-limit was added to the competition. Six-

player ring limit was added to the 2008 AAAI Computer Poker Competition. This year, in the 2009

IJCAI Computer Poker Competition, the ring limit competition switched from 6-player to 3-player.

Each game competition (e.g. heads-up limit) has two sub-competitions where bots are evaluated:

Equilibrium and Bankroll. In the former, agents try not to lose to any other agent; total wins are

counted. In the latter, agents attempt to make as much money (and lose as little) as possible over all

opponents. This requires some balance between equilibrium and exploitative play.

In the 2008 Computer Poker Competition, the CPRG at the University of Alberta had top com-

petitors in the following games:

• Heads-up limit. Hyperborean08Limit, an abstract ε-Nash equilibrium player, won the limit

Equilibrium competition in 2008 and placed second to CMU in the Bankroll competition. An
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improved version of this agent, called Polaris, was used to defeat world-class human players

at the Second Man-Machine Poker Championship, described shortly.

• Heads-up no-limit. Hyperborean08NoLimit, also an abstract ε-Nash equilibrium player, won

both the no-limit Equilibrium and Bankroll competitions in 2008. Designing a competitive

agent in no-limit is much harder than in limit since the game state space is enormous due to

the number of different bets that can be made. For example, if an agent has a stack size of

$200 and the big blind is $2, then an agent can make any of the following bets: $2, $3, . . . ,

$200. Therefore, no-limit requires betting space abstraction in addition to card abstraction.

For example, the interpretation of an opponent’s possible actions could be translated to a

finite set of actions: fold, check/call, pot-sized bet/raise, and all-in. At the present time, the

heads-up no-limit agents can still be defeated by strong amateur Poker players.

• 6-player ring limit. Poki, a learning agent designed in 1999 [3], won the 6-player ring limit

competition in 2008. There was a total of six entrants, some of which were rule-based (expert

knowledge) agents. The fact that a decade-old program won the ring competition is evidence

of little to no progress in multiplayer Poker. The size of the betting space for 6-player limit

is catastrophically large. Therefore, it was decided to reduce the ring game from 6-player to

3-player for 2009 to reduce the betting space size. The 3-player betting space is over 1500

times larger than that of heads-up and the total game state space is over one million times

as large! The hope was that reducing the size of the problem would spur new research in

multiplayer Poker. This change also reduced the number of competition hands required to

determine statistical significance and the number of relative seating permutations. Despite the

fact that Poki won the 2008 competition, it still cannot defeat very strong Poker players.

Knowing that the University of Alberta has the top computer Poker players in the world does not

suggest how well they would perform against world-class humans. Thus, in 2007, the First Man-

Machine Poker Championship was born: a $50,000 challenge to Poker professionals, Phil “The

Unibomber” Laak and Ali Eslami, in a publicized match at AAAI in Vancouver. The championship

consisted of four 500-hand duplicate matches. In each match, whichever hand was dealt to Polaris

in “room A” was dealt to a human in “room B”. Similarly, whichever hand was dealt to the other

human in “room A” was dealt to Polaris in “room B”. The reason for these duplicate matches is

to reduce the element of luck (and thus variance in the results). Although the humans were quite

impressed with Polaris’ play, they still managed to record a victory with 2 wins, 1 draw, and 1 loss.

Still not satisfied, the CPRG improved Polaris in several ways: a better card abstraction was

created, the equilibrium-finding algorithm was improved in terms of both speed and memory, and

the algorithm completed even more iterations than before (thus reducing its exploitability). In 2008,

Polaris competed against a very strong field of human experts in the Second Man-Machine Poker

Championship at the 2008 Gaming Life Expo in Las Vegas. A total of six 500-hand duplicate
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matches were played and Polaris made history by winning the championship (3 wins, 2 losses, and

1 draw).

1.4 Contributions of This Thesis

Counterfactual Regret Minimization (CFR) is a recently developed technique used to find ε-Nash

equilibria in stochastic, imperfect information games [29]. This technique is very powerful since

it requires much less memory than existing techniques: the memory scales with the number of

information sets instead of the number of game states [15]. CFR was used to generate the strategy

for Polaris, the current world champion of heads-up limit Texas Hold’em in both the most recent

machine-machine and man-machine competitions.

In this dissertation, we will demonstrate that CFR can be used to generate competitive multi-

player agents which out-perform Poki, the existing multiplayer computer Poker champion. Namely,

we will show through empirical results that:

• A very abstract multiplayer agent, Multi2, generated by CFR out-performs Poki. The

3-player Limit Texas Hold’em game is very large, much larger than heads-up. Even using

abstractions, the 3-player game require enormous amounts of computational resources (mem-

ory and time) to generate a strategy. Thus, one of the simplest abstractions possible – two

hand strength buckets per round (i.e.the agent only knows whether its hand is above or below

average) – was used to generate a strategy with CFR. Yet this very abstract agent, Multi2, still

out-performs Poki in the full game.

• A master agent comprised of a base player and a team of heads-up experts (HUEs) out-

performs both Poki and Multi2. As mentioned, the 3-player Limit Texas Hold’em game and

associated abstractions are very large. This is mainly due to all of the betting sequences which

involve all three players. In practice, however, many hands reduce to a heads-up subgame in

the preflop round where one of the players has folded. Examples of such subgames include:

the button folds and only the small blind and big blind remain or the button raises and the small

blind folds. CFR was used to find ε-Nash equilibria for several of these abstract subgames, the

resulting agents are called HUEs. The master agent, Exp Multi2, can be viewed as a “coach”

that determines when it should substitute in each of its agents. The coach uses a base player

for all 3-player scenarios and substitutes in a HUE if their corresponding subgame is reached

(based on the betting sequence preflop).

• Trading off perfect recall of hand strength on previous rounds with more strength buck-

ets per round produces a much stronger 3-player agent. Multi2 has only two strength

buckets per round but remembers which bucket its hand belonged to for every previous bet-

ting round. A new agent, IR16, has 16 strength buckets (where higher buckets correspond to
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stronger hands) but forgets how strong its hand was on all previous betting rounds. With this

trade-off, IR16 out-performs Exp Multi2 and the other benchmark agents.

• Two of the agents created for this research, IR16 and Exp IR16, are currently the strongest

3-player computer Poker players in the world. IR16 placed first in both of the ring limit

competitions, Equilibrium and Bankroll, of the 2009 Computer Poker Competition. Exp IR16

(a master agent using IR16 as the base player) placed second in both of the ring limit compe-

titions.
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Chapter 2

Background and Related Work

2.1 Extensive Form Games

An extensive form game (or simply extensive game) is a representation of a game as a directed

tree (often called a game tree). The unique initial game state is represented by the root of the tree.

Each player’s possible decision points are represented by nonterminal nodes called choice nodes.

The directed edges leaving a choice node represent the legal actions which can be taken by the

corresponding player. Terminal nodes represent the end of the game and contain the payoffs or

utilities of all players reaching that point.

The description of an extensive form game, thus far, is sufficient for deterministic games such

as Chess and Checkers. However, this description is not sufficient for stochastic games involving

chance. For these games, we conveniently represent the chance events (consider the dice rolls in

Backgammon or the card deals in Poker) as choice nodes, called chance nodes, for a new player

called the chance player. The directed edges leaving a chance node represent the possible chance

outcomes. For example, in a game where the chance player represents the roll of a single die then

the possible outcomes include rolling 1, 2, 3, 4, 5, or 6, each with an equal probability of 1
6 .

In imperfect information games, there are often several game states that a player cannot differ-

entiate since the opponents have hidden information (such as their hole cards in Poker). The set

of all indistinguishable game states is called an information set for that player. Each choice node,

in an imperfect information extensive form game, corresponds to the corresponding information set

(instead of including a node for every game state). In Poker, there are many more game states than

information sets.

2.1.1 Definitions

Definition 1 [19, p. 200] a finite extensive game with imperfect information has the following

components:

• A finite set N of players.
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• A finite set H of sequences, the possible histories of actions, such that the empty sequence

is in H and every prefix of a sequence in H is also in H . Z ⊆ H are the terminal histories

(those which are not a prefix of any other sequences). A(h) = {a : (h, a) ∈ H} are the

actions available after a nonterminal history h ∈ H ,

• A function P that assigns to each nonterminal history (each member of H\Z) a member of

N ∪{c}. P is the player function. P (h) is the player who takes an action after the history h.

If P (h) = c then chance determines the action taken after history h.

• A function fc that associates with every history h for which P (h) = c a probability measure

fc(·|h) onA(h) (fc(a|h) is the probability that a occurs given h), where each such probability

measure is independent of every other such measure.

• For each player i ∈ N a partition Ii of {h ∈ H : P (h) = i} with the property that

A(h) = A(h′) whenever h and h′ are in the same member of the partition. For Ii ∈ Ii
we denote by A(Ii) the set A(h) and by P (Ii) the player P (h) for any h ∈ Ii. Ii is the

information partition of player i; a set Ii ∈ Ii is an information set of player i.

• For each player i ∈ N a utility function ui from the terminal states Z to the reals R. If N =

{1, 2} and u1 = −u2, it is a zero-sum extensive game. Define4u,i = maxz ui(z) −minz
ui(z) to be the range of utilities to player i.

Definition 2 A strategy of player i σi in an extensive game is a function that assigns a distribution

over A(Ii) to each Ii ∈ Ii, and Σi is the set of strategies for player i. A strategy profile σ consists

of a strategy for each player, σ1, σ2, . . . , with σ−i referring to all the strategies in σ except σi.

Let πσ(h) be the probability of history h occurring if players choose actions according to σ.

We can decompose πσi (h) =
∏
i∈N∪{c} π

σ
i (h) into each player’s contribution to this probability.

Hence, πσi (h) is the probability that if player i players according to σ then for all histories h′ that

are a proper prefix of h with P (h′) = i, player i takes the corresponding action in h. Let πσ−i(h)

be the product of all players’ contribution (including chance) except player i. For I ⊆ H , define

πσ(I) =
∑
h∈I π

σ(h), as the probability of reaching a particular information set given σ, with

πσi (I) and πσ−i(I) defined similarly.

The overall value to player i of a strategy profile is then the expected payoff of the resulting

terminal node, ui(σ) =
∑
h∈Z ui(h) πσ(h).

2.1.2 Best Response

A best response is a strategy which obtains the highest utility possible against the set of all other

strategies in a strategy profile, σ. In Poker, this corresponds to the strategy which wins the most

money against all of the other players given that their entire strategies have been revealed and remain

static (i.e. they do not change). An abstract game best response is simply a best response to an
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abstract game given that the best response is confined to playing in the abstract game (as opposed to

the real game). Section 2.4 describes a technique which can be used to calculate abstract game best

responses. In heads-up games, a best response is sometimes called a worst-case opponent.

2.1.3 Nash Equilibrium

Informally, a Nash equilibrium is a strategy profile, σ, in which no player can increase their utility

by unilaterally changing their strategy. That is, if each player is provided with the static strategies of

all the other players and still cannot gain by changing their strategy, then they are all playing a Nash

equilibrium. Notice that each player in a Nash equilibrium is a best response to the set of all other

players. More formally, a strategy profile for n players, σ = (σ1, . . . , σn), is a Nash equilibrium if

it satisfies the following constraints:

u1(σ) ≥ max
σ′1∈Σ1

u1(σ′1, σ2, . . . , σn)

u2(σ) ≥ max
σ′2∈Σ2

u2(σ1, σ
′
2, . . . , σn)

...

un(σ) ≥ max
σ′n∈Σn

un(σ1, σ2, . . . , σ
′
n) (2.1)

Thus, we see that, in a Nash equilibrium, there is no strategy for player i in Σi that yields a higher

utility against σ−i than its strategy, σi, in σ. In fact, in a two-player zero-sum game, each player

who plays a Nash equilibrium strategy has the same value regardless of which Nash equilibrium

strategy each player plays. In other words, there is no advantage to playing a strategy from one

Nash equilibrium over a strategy from a different Nash equilibrium. Unfortunately, however, this is

not the case for multiplayer games. The payoffs for each player in one multiplayer Nash equilibrium

can differ from the corresponding players’ payoffs in another multiplayer Nash equilibrium [18].

Computing an exact Nash equilibrium for a large heads-up game such as Poker (or even an

abstraction) is infeasible. Thus, we are often limited to, yet still interested in, finding approximations

to Nash equilibria. An ε-Nash equilibrium is a strategy profile, σ, in which no player can increase

their utility by more than ε by unilaterally changing their strategy. More formally, a strategy profile

for n players is an ε-Nash equilibrium if it satisfies the following constraints:

u1(σ) + ε ≥ max
σ′1∈Σ1

u1(σ′1, σ2, . . . , σn)

u2(σ) + ε ≥ max
σ′2∈Σ2

u2(σ1, σ
′
2, . . . , σn)

...

un(σ) + ε ≥ max
σ′n∈Σn

un(σ1, σ2, . . . , σ
′
n) (2.2)
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Thus, we see that, in an ε-Nash equilibrium, there is no strategy for player i in Σi that yields

a gain of ε more utility against σ−i than its strategy, σi, in σ. An ε-Nash equilibrium is said to be

ε-suboptimal or exploitable by ε.

2.2 Abstraction

Real-world Poker games are extremely large. In fact, even the smallest full-scale Poker game,

heads-up limit Texas Hold’em, is too large to solve1 with modern technology. Heads-up limit Texas

Hold’em has
(

52
2

)(
50
2

)(
48
3

)(
45
1

)(
44
1

)
≈ 5.56×1013 chance outcomes. Taking into account the betting

sequences, this game has about 1018 game states. For comparison, the largest unabstracted Poker

game solved to date is Rhode Island Hold’em with 109 game states. This game was solved by Gilpin

and Sandholm [10].

Adding one more player (i.e. 3-player limit Texas Hold’em) results in
(

43
2

)
= 903 times as many

chance nodes as the heads-up equivalent:
(

52
2

)(
50
2

)(
48
2

)(
46
3

)(
43
1

)(
42
1

)
≈ 5.02 × 1016. Adding this

player also increases the number of betting sequences by a factor of over 1500 resulting in a game

with approximately 1024 game states. Thus, increasing the number of players from two to three

increases the size of the game by a factor of over one million!

Aside from the enormous amount of memory required to store a strategy solution (several

petabytes for heads-up limit) [15], solving full-scale Poker games is still intractable. Fortunately

though, there are many ways to reduce the size of the game while still maintaining the underlying

structure; these reductions are called abstractions. Different abstractions vary in the amount that

they reduce the size of the game state space and differ in how well solution strategies to the abstract

game perform in the full-scale game.

2.2.1 Suit Equivalence Isomorphisms

In Poker, since all four suits have equal strength, we can define an arbitrary ordering of the suits

enabling us to map every hand to a canonical hand representation. For example, A♣ K♣ is strate-

gically equivalent to A♥K♥ and J♣ J♥ is strategically equivalent to J♦ J♠. Exploiting these suit

symmetries results in no information loss and a reduction of at most 4! = 24. Due to self symmetry

(e.g. Q♦ Q♠ is equivalent to Q♠ Q♦, simply reordered), a reduction factor of 24 is not attainable.

However, with some cleverly constructed indexing schemes, Gilpin et al. were able to reduce the

memory used by a factor of 23.1 [11].

Rank equivalence can also be used to reduce the size of the game with no information loss. For

example, with community cards A♥ K♠ Q♣ J♦ T♥, every set of hole cards results in exactly the

same 7-card hand ranking (an Ace-high straight).

1We use this term loosely to describe finding an ε-Nash equilibrium solution for a sufficiently small ε
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2.2.2 Betting Round Reduction

In most limit Texas Hold’em games, there is a cap of four bets per player per round. One simple

and natural abstraction is to reduce the size of the cap. As a consequence, the branching factor (cor-

responding to the continuing betting sequences) is reduced on every round. For example, reducing

the bets per round in limit Texas Hold’em from four to three reduces the branching factor from nine

to seven postflop. After experimentally discovering that two bets per round was unsafe, Billings et

al. chose an abstraction with three bets per round for their agent, PsOpti [2]. They claimed that this

reduction did not appear to substantially affect play nor the players’ expected values.

In a later study, Zinkevich et al. found an ε-Nash equilibrium strategy for an abstract heads-up

limit Texas Hold’em game with a two-bet-cap preflop, a three-bet-cap postflop, and bucketing as

described below (which reduces card information). The solution was 11 mb/h2 exploitable by a best

response agent in its own abstract game. It was also 27 mb/h exploitable in the abstract game which

maintains bucketing but relaxes the betting restriction to the normal four-bet-cap [28].

One caveat regarding multiplayer Poker games is that betting round reduction could potentially

produce atrocious players. In heads-up, a player has the ability to control the maximum number of

bets placed into the pot on each round. More specifically, the opponent can only raise a maximum

of one more bet each turn. For example, if a player would like to put in at most three bets on a given

round then that player should raise to no more than two bets (allowing the player to call a third bet

if the opponent reraises). In multiplayer, however, a player can be squeezed (also called sandwiched

or whipsawed) between two or more players who keep raising. This gives players no control over

the maximum pot size when playing multi-way pots.

Sometimes an abstract player will fall off-tree: the player encounters a situation or decision point

which is not defined in its abstract game. In such cases, a default play such as check-and-fold or

always-call is often employed.

2.2.3 Bucketing

One of the most effective ways to reduce the size of a Poker game to a more tractable abstract

game involves bucketing hands. Hands can be partitioned into buckets with the intent that hands

belonging to the same bucket share strategic similarities. Hands belonging to the same bucket are

all played identically in the abstract game.

There are many ways to partition hands into buckets. The CPRG has found that evaluating the

“strength” of each hand against a uniformly random distribution of hands is a very effective metric.

More formally, we define hand strength (HS) as the probability of a hand winning a showdown

against a uniformly random hand. The 7 card hand rank is used as a hand strength metric when

there are still cards to be dealt (i.e. the round is not the river) [2]. This metric involves rolling out all

2The units used in limit computer Poker are most often small bets per hand (sb/h) or millibets per hand (mb/h). A millibet
is 0.001 of a small bet.
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undealt community cards and evaluating the probability of a hand winning against a random hand;

the metric is called expected hand strength, E[HS], since it is the expectation value of the hand

strength. E[HS] is a number in the range [0, 1] since it is an expectation value of probabilities.

A simple example demonstrating hand bucketing is an abstract game with 2 buckets per round.

Since we are using E[HS] as our metric, a logical way of bucketing our hands would be to put all of

the “above average” hands into the top bucket and all of the “below average” hands into the bottom

bucket. That is, we enumerate all possible two-card holdings, sort them based on E[HS] on each

round, and then place the strongest half of holdings into the top bucket and the rest into the lower

bucket.

Percentile bucketing corresponds to bucketing hands with an approximately equal number of

hands in each bucket. As we increase the number of buckets with this bucketing method, we decrease

the number of hands in each bucket. However, we are not restricted to placing an equal number of

hands in each bucket. Another method involves uniformly partitioning [0, 1] into buckets and is

called uniform bucketing. For example, with N buckets, we could place all hands with E[HS] in

the [0, 1/N ) range together, all hands with E[HS] in the [1/N , 2/N ) range together, and so on.

In Poker, there are many hands that are not very strong on a given round but have the potential

of making a very strong hand on a future round (e.g. a straight or flush). It turns out that a very

effective alternative metric to E[HS] which intrinsically incorporates potential is called expected

hand strength squared, E[HS2] [15]. This metric, which is also in [0, 1], involves taking the

expected value of the square of the hand strength. The CPRG has used this metric with great success:

it is used in the abstractions of their strongest computer Poker agents. The new agents created for

and described in this dissertation used percentile bucketing of expected hand strength squared.

A bucket sequence corresponds to the sequence of buckets a hand belonged to on each round.

Because Poker involves chance events (i.e. deals between rounds), the strength of a hand can vary

from one round to another. History bucketing, currently used by the CPRG, is a method of buck-

eting hands based on their bucket sequences. The number of history buckets on each round grows

exponentially: with a N -bucket-per-round abstraction, we have N history buckets preflop, N2 his-

tory buckets on the flop, N3 history buckets on the turn, and N4 history buckets on the river. This

bucketing method is quite effective as the distribution of possible holdings can be deductively nar-

rowed down based on the transitions along the bucket sequence.

2.2.4 Recall

In perfect recall games, there is an assumption that no previously acquired information is forgotten

by the players. Thus, in Poker, a player with perfect recall will not forget private cards, public cards,

position, or the betting sequence (history of actions). In imperfect recall games, the assumption

that no previously acquired information is forgotten does not hold. For instance, players can forget

their hole cards, actions they have taken (or those taken by their opponents), and so on.
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In theory, the guarantees associated with the techniques used by the CPRG to solve abstract

Poker games apply only to perfect recall. In practice, however, the strongest agents created by the

group have been produced for abstract imperfect recall games (where some history buckets from

previous rounds are forgotten). Some of the agents used in this research involve perfect recall (with

full history bucketing) and imperfect recall (with incomplete history bucketing).

2.3 Strategy-Knitting

Billings et al. discuss several abstraction techniques involving reducing the number of betting rounds [2].

For instance, an abstraction to the 4-round game could be a 3-round preflop model where the river

is truncated. In this example, there are several ways in which we could truncate the round: the pot

could be awarded to the player with the best hand on the turn, the pot could be distributed amongst

the players assuming there is no more betting (the remaining players simply check on the river), or

the pot could be distributed amongst the players assuming they put in one bet each on the river. The

last two methods described for distributing the pot between players involve computing the expected

value of the hands based on a roll-out of all possible river cards.

A similar technique to truncating rounds involves having a postflop model where the earlier

rounds are bypassed and a solution is generated starting at one of the postflop rounds. For example,

a 3-round postflop model bypasses the preflop round and starts on the flop. Billings et al. also

present the natural idea of having independent betting rounds as an abstraction but discuss how this

turns out not to be a good assumption in Poker due to the importance of the information associated

with the path that lead to that round (i.e. the betting sequence).

Billings et al. were forced to use preflop and postflop models, at the time, due to computational

resources since even a bucketed 4-round game was too large. Fortunately, a new technique called

Counterfactual Regret Minimization, described in the next section, provides a solution to this bot-

tleneck. However, studying Billings et al.’s previous approaches to knitting strategies together might

provide us with some insight into solving heads-up subgames of the 3-player game. This approach

of using heads-up experts was considered due to the enormous size of abstract 3-player games and

is described in Chapter 4.

The simplest approach to knitting strategies together involves appending a postflop model onto

a preflop model wherein the agent plays according to the preflop model until it reaches the flop and

then uses the postflop model. PsOpti0 used an always-call policy preflop and an appended 3-round

postflop model assuming uniform distributions postflop. PsOpti1 used a 1-round preflop model and

an appended postflop model solved for a given pot-size – there are four pot-sizes that reach the

flop corresponding to the number of raises – and assuming a uniform distribution of hands for both

players. Finally, PsOpti2 used the distributions on the flop from a 3-round preflop model as input

to seven 3-round postflop models (corresponding to the seven preflop betting sequences reaching

the flop). As shown by experimental data, PsOpti1 out-performed PsOpti2 which out-performed
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PsOpti0. However, the authors point out several bugs in PsOpti2 were discovered after the data was

collected. The authors claim that a bugless PsOpti2 should result in the strongest player among the

three presented.

In any case, knitting independent strategies together can cause problems. In Chapter 4, we

strategy-knit in the 3-player game and must face these issues.

2.4 Counterfactual Regret Minimization

Regret, also called opportunity cost, is the difference between the highest utility attainable (over all

actions) and the utility of the action that was actually taken. Average overall regret is defined as

RTi =
1
T

max
σ∗

i
∈Σi

T∑
t=1

(ui(σ∗i , σ
t
−i)− ui(σt)) (2.3)

where T is the number of games played and σti ∈ Σi is player i’s strategy on game t [29].

Counterfactual regret minimization (CFR) is an iterative algorithm that minimizes a form

of regret, positive immediate counterfactual regret, at each information set [29]. In this paper,

Zinkevich et al. show that minimizing positive immediate counterfactual regret, in turn, minimizes

the average overall regret. In a two-player zero-sum game, minimizing both players’ average overall

regret leads to an ε-Nash equilibrium strategy profile [29]. Details on the implementation of CFR

for general two-player zero-sum perfect recall games and for heads-up Poker can be found in [29]

and [15].

CFR was a breakthrough for computing ε-Nash equilibrium strategy profiles for imperfect infor-

mation games since the memory scales with the number of information sets instead of the number of

game states, as happens with sequence form solvers [16]. Due to these savings, Zinkevich et al. were

able to solve abstract Poker games two orders of magnitude larger than previously solved [29]. Fur-

thermore, another added benefit to using CFR is its ability to parallelize a computation by dividing

the game tree into a set of subtrees (e.g. subtrees beginning on the flop, divided based on their unique

preflop betting sequences). Another very useful property of CFR is that it can compute an abstract

game best responses against a static opponent [15]. CFR can also compute an abstract game best

response against multiple static opponents.

While the theoretical guarantees of CFR are somewhat limited (to two-player zero-sum perfect

recall games), experiments conducted by the CPRG have demonstrated that CFR seems to be quite

robust in generating strong strategy profiles in two-player games with no guarantees. There are

no theoretical guarantees for two-player zero-sum imperfect recall games. However, the CPRG’s

strongest heads-up limit Texas Hold’em agents are created with imperfect recall (where only partial

information about previous round buckets is remembered). There are also no theoretical guarantees

for two-player nonzero-sum perfect recall games. However, the CPRG has created very strong heads-

up limit Texas Hold’em agents for nonzero-sum games where the agent obtains bonuses for winning
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hands. These agents have been found to have little exploitability and to actually perform better

against human players (due to the agents’ tendency to be aggressive and human players’ tendency to

fold too often). For example, the agents that played in both of the Man-Machine competitions were

computed with CFR for nonzero-sum abstract games [7].

CFR also has no theoretical guarantees for multiplayer zero-sum games and, before this study,

no research had been conducted on applying CFR to large multiplayer games. As will be shown in

later chapters, CFR is also capable of generating world-class computer Poker agents for multiplayer

games. Specifically, we generated a 3-player perfect recall agent and a 3-player imperfect recall

agent that performed well.

2.5 Agent Evaluation

When new agents are created, we would like to evaluate them so as to provide us with some insight

into the effectiveness of the techniques used for their creation. There are several ways to evaluate

the performance of agents in Poker games and we will examine some of them here.

2.5.1 Best Response Agents

Best responses provide a metric of the exploitability of an agent. The more exploitable a Poker

agent is, the more money a best response strategy will win against it. Abstract game best responses

can be computed fairly easily with CFR for heads-up limit Texas Hold’em. However, abstract game

best responses for multiplayer Poker games are not as easy to compute due to their enormous size.

Generating a best response strategy in CFR takes N CFR runs for an N -player game. Performing

just one CFR run (for a relatively low number of iterations) on a 3-player game takes on the order

of months. Therefore, we need another method of evaluating our new agents.

2.5.2 Benchmark Agents

To evaluate an agent against other agents, thousands or even millions of hands can be played between

them with their corresponding winrates (winnings/losses over hands) recorded. There are plenty of

heads-up limit Texas Hold’em agents (of varying skill level) which can be used as benchmarks

against which to compare new agents. However, relatively little research has been dedicated to

multiplayer Poker games and, thus, there are very few benchmark agents.

Poki is an artificially intelligent agent produced by the CPRG and it is capable of playing heads-

up and multiplayer games [1]. In fact, Poki is the reigning champion of the 2008 Computer Poker

Competition in multiplayer limit. Poki uses a collection of technologies including an expert system

preflop, a formula for mapping hand strength and potential to actions postflop, and Monte Carlo

simulations designed to estimate the most profitable action to take against an opponent model.

A chump is an agent that disregards its cards and simply takes an action based on the same

distribution at every decision point. We can represent a player’s distribution over actions as a prob-
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ability triple, (f, c, r), where f is the probability of folding, c is the probability of checking or

calling, r is the probability of betting or raising, and where f + c + r = 1. Since Poki is the only

benchmark agent we have available for multiplayer, we will also use chumps to evaluate our newly

created agents. Hopefully we can avoid the embarrassing result of losing to a player that does not

even look at its cards!

An Always-Fold chump has a probability triple of (1, 0, 0) and always folds on its first action.

An Always-Call chump has a probability triple of (0, 1, 0) and always checks if there is no outstand-

ing bet and calls otherwise. An Always-Raise chump has a probability triple of (0, 0, 1) and always

bets if there is no outstanding bet and raises otherwise. The final chump we will use for evaluating

our 3-player agents is called Probe and it has a probability triple of (0, 0.5, 0.5) so it chooses equally

between check/call and bet/raise at every action.

2.5.3 Variance Reduction

Duplicate Bridge is a method of playing tournament Bridge in which the same hands are dealt on two

different tables. This method is used to reduce the amount of luck by comparing the scores obtained

by the teams receiving the same hands. An analogous approach, called duplicate matches, has also

been applied to Poker.

In heads-up Poker, duplicate matches involves pre-generating all cards (based on a given seed)

that will be dealt until and including the river. Player 1 receives hand A and player 2 receives hand

B. After the hand is played out, the players switch positions, their memories are erased (assuming

they are artificially intelligent agents), and then player 1 receives hand B and player 2 receives hand

A. In addition, the community cards are the same as the previous hand.

By keeping track of the sum of the winnings on both hands for each player, the variance of

the outcome of a match of duplicate hands will be lower than simply playing the same number of

non-duplicate hands. This is because both players are placed in the exact same situations and their

plays are compared to their opponent’s plays. Note that the variance will not be reduced completely

as the two players will not necessarily end each hand on the same round. For example, one player

might choose to fold a very poor hand on the flop based on a probability triple (0.5, 0.5, 0), while

the opponent sees the turn card in the same situation with the same probability triple. If the turn is

particularly lucky then the player who made the second play is rewarded (even though the strategies

at that information set are equal since they had the same probability triple).

In heads-up limit Texas Hold’em, using duplicate matches provides a reduction in the standard

deviation per hand by almost four-fold: a typical standard deviation is about±6 sb/h [1, p. 13] while

it has been empirically measured at ±1.6 sb/h using duplicate matches [1, p. 17].

Duplicate Poker does not only apply to heads-up; we can generalize it to multiplayer games.

Specifically, with N players, we require N ! positional permutations so that all positions and relative

positions are experienced by all of the players (where the cards are pre-generated and fixed by po-
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sition). For example, a 3-player game with players A, B, and C has 3! = 6 positional permutations:

ABC, BCA, CAB, ACB, CBA, BAC. In the labeled permutations, the first character arbitrarily rep-

resents the position of the button, the second character represents the position of the small blind, and

the third and final character represents the position of the big blind. The winnings are averaged over

all permutations to obtain a total winrate for the pre-generated sequence of cards.
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Chapter 3

The 3-Player Game

3.1 Problems with Multiplayer Games

Two player zero-sum games have convenient theoretical guarantees. For instance, all Nash equilibria

have exactly the same value, a strategy from a Nash equilibrium strategy profile is guaranteed to not

lose and break even in the worst case scenario (for games with symmetry like Poker where the

positions alternate). Unfortunately, these theoretical guarantees do not apply to multiplayer.

3.1.1 Performance of an Equilibrium Player in a Multiplayer Game

In a two player zero sum game, if one player plays a strategy from a Nash equilibrium strategy

profile, there is no strategy that the other player can select that reduces the first player’s utility.

However, in a multiplayer game, if one player plays a strategy from a Nash equilibrium strategy

profile, the other players may play strategies that reduce the first player’s utility. Consider the

following simple game:

• Three players ante 1 unit each

• Each player has a penny and privately chooses heads or tails

• After all three players have chosen a side, they reveal their penny at showdown

• If all three players have chosen the same side, they take back their initial ante

• If exactly two players have chosen the same side, they win and take back their initial ante and

split the loser’s ante

One of the Nash equilibrium strategy profiles for this modified matching-pennies game involves

all three players choosing randomly between heads and tails. Each player in this game acts simul-

taneously and antes the same amount so, with no loss of generality, we can demonstrate that all

players playing uniformly random is an equilibrium by fixing two of the players and showing that

the other player cannot gain by unilaterally changing its strategy.
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Let us represent player i’s strategy as σi = (P (H), P (T )) where P (H) is the probability of

choosing heads, P (T ) is the probability of choosing tails and where P (H) + P (T ) = 1. Let us

arbitrarily fix σ1 = σ2 = ( 1
2 ,

1
2 ) and let σ3 = (p, 1 − p). Regardless of what player 3 chooses, the

possible outcomes from players 1 and 2 are {HH, TT, HT, TH} each with an equal probability of 1
4 .

If player 3 chooses heads, it has an expected value of 0 for HH, -1 for TT, +0.5 for HT, and +0.5 for

TH. The expected value of player 3 choosing heads is

EV (H) =
1
4

(0) +
1
4

(−1) +
1
4

(+0.5) +
1
4

(+0.5)

= 0

Similarly, the expected value of player 3 choosing tails is

EV (T ) =
1
4

(−1) +
1
4

(0) +
1
4

(+0.5) +
1
4

(+0.5)

= 0

Given that player 3 chooses heads with probability p and tails with probability 1− p, a value of

EV = p× EV (H) + (1− p)× EV (T )

= p(0) + (1− p)(0)

= 0

is obtained. Thus, we see that, regardless of the strategy chosen by player 3, the same value is

obtained. More specifically, deviating from σ3 = ( 1
2 ,

1
2 ) does not unilaterally improve player 3’s

utility (or expected value).

However, consider the situation where player 3 chooses the uniformly random strategy, σ3 =

( 1
2 ,

1
2 ), and both opponents (players 1 and 2) play the static strategies of always-heads, σ1 = σ2 =

(1, 0). In this case, there are only two possible outcomes, HHH and HHT, with equal probabilities of
1
2 . When player 3 chooses heads (i.e. all three players play heads), player 3 does not gain anything

(all three players take back their antes). On the other hand, one ante is lost by player 3 when it

chooses tails. Therefore, player 3’s value is given by

EV =
1
2

(0) +
1
2

(−1)

= −1
2

while the value of always choosing heads is 0. It is easy to see that all three players playing always-

heads is also a Nash equilibrium. From this simple example, we can see that playing the strategy

( 1
2 ,

1
2 ) which is part of a Nash equilibrium strategy profile can be a disastrous choice if both of the

opponents change their strategies, regardless of their intentions.

21



3.1.2 Collusion

In multiplayer Poker games, it is possible for some of the players to form partnerships or alliances

with the intent of increasing their combined utility. For example, imagine two players in a 3-player

game who decide that they will evenly split their combined winnings after the game has finished.

The two players in this situation, said to be in collusion, can greatly increase their utility – and, in

turn, decrease the utility of their single opponent – by squeezing the opponent between them when

one of the colluding players has a strong hand.

Collusion can also involve players sharing private information: imagine two players playing

online Poker at the same table while also physically being in the same location informing each other

of their hole cards. Both examples involve explicit collusion where players have made explicit

agreements and such collusion is forbidden (i.e. considered illegal, cheating, and/or against terms of

service). However, there is a common form of accepted collusion is called implicit collusion. For

example, in a Poker tournament wherein several players call an all-in from a player with few chips

and check until showdown, they increase the probability of the short stack’s elimination (and thus

increase all remaining players’ tournament utilities).

None of the agents created for this research project explicitly use collusion. It is also assumed

that none of the participants in the Annual Computer Poker Competition employ any form of ex-

plicit collusion (if players are suspected of foul-play then their play will be reviewed and they will

potentially be disqualified). While collusion and its consequences is an interesting topic, it has not

been studied in this research.

3.2 Other Multiplayer Game Research

Techniques, involving extensions of fictitious play, have already been used to compute ε-Nash equi-

libria for a 3-player Poker game in [8] and [9]. However, the techniques require the ability to

efficiently compute best responses. Ganzfried and Sandholm were able to find jam/fold ε-Nash

equilibria for 3-player no-limit Texas Hold’em. A jam/fold game is a one-round Poker game where

each player has two options: fold or bet all remaining chips (jam or go all-in). Due to the reduced

action and betting space, the 3-player jam/fold game is fairly small and best responses can be com-

puted efficiently. Unfortunately, even an abstracted version of the 3-player limit Hold’em game is

too large to use Ganzfried and Sandholm’s algorithms.

Buro et al. claim to have created an expert-level Skat computer player, Kermit (although they

admit that the results are not statistically significant) [6]. Skat is a 3-player trick-based card game

where two partners play against the other player. Kermit uses several techniques including state

evaluation, inference, and search. Skat can be fairly safely abstracted as a two-player game due to

the partnership between two of the players.

Sturtevant generalized several two-player search algorithms to multiplayer [25]. He generalized

22



two-player minimax to its analog, maxn, for multiplayer. He also presented an algorithm called

paranoid where each player assumes that all other players are ganging up against them; this cor-

responds to a worst-case scenario. These algorithms were used to create state-of-the-art programs

in Hearts and Chinese Checkers. However, Sturtevant states that the issues of opponent modeling

and handling imperfect information in Poker “dominate over the more traditional search techniques

presented” [25, p. 25].

3.3 CFR Results for Multiplayer Toy Games

Running CFR on abstract Poker games for sufficiently long1 often takes on the order of days to

weeks. Thus, smaller games are often necessary because computational game theorists like to test

and evaluate new algorithms or methods relatively quickly. In Poker, we still require that these

smaller games maintain some of the underlying properties of larger Poker games (such as stochas-

ticity, hidden information, and utility based on actions). The two most common simplified heads-up

Poker games are Kuhn and Leduc Hold’em. We will generalize these heads-up games to 3-player

and determine whether CFR might be a viable option for generating robust multiplayer strategy

profiles. There is no theoretical guarantee that CFR will generate a multiplayer ε-Nash equilib-

rium strategy profile. As illustrated by the matching-pennies game in the previous section, even if

CFR could compute a multiplayer equilibrium strategy profile, there is no guarantee that any of the

strategies would be robust against arbitrary opponents.

3.3.1 3-Player Kuhn

A very simple one-round one-card Poker game was invented in 1950 by Kuhn [17] so that the

optimal solution, computed by hand, could be studied. Here, we have extended the definition of

Kuhn to three players:

• Each player antes 1 unit each before the cards are dealt.

• Each player is dealt one private card.

• The deck consists of 4 cards (T, J, Q, K) with ranking K > Q > J > T.

• There are no split pots (ties) due to the strict ranking above.

• There is only one betting round with a 1-bet cap.

• When there is no outstanding bet, a player can check or bet 1 unit.

• When there is an outstanding bet, a player can fold or call.

1“Sufficiently long” has been determined empirically in the past by obtaining a small enough ε for the abstract game that
is ε-Nash solved using CFR.
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The betting tree for 3-player Kuhn is depicted graphically in Figure 3.1. The edges denote the

actions (k = check, f = fold, b = bet, c = call) taken by the player given at the left of the figure (P1 is

player 1, P2 is player 2, P3 is player 3). The nodes display the number of bets currently in the pot

(the initial pot of 3 units is due to the antes). The terminal nodes are coloured based on the number of

active players after the betting finishes. Blue represents a player winning without showdown (when

the other two players fold) and always has a pot size of 4 units. Green represents one player folding

to a bet and the other two entering a showdown and always has a pot size of 5 units. Finally, red

represents all three players entering a showdown which always results in a pot size of 6 units (unless

all three players check in which case the pot size is 3 units).
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4 4 5 4 5 5 6
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Figure 3.1: The 3-player Kuhn betting tree. Edges mark the actions and nodes display the number
of units in the pot. Details are provided in Section 3.3.1.

3.3.2 3-Player Leduc Hold’em

Kuhn intrinsically includes many important aspects of Poker such as bluffing, inducing bluffs, and

value betting. However, many important aspects such as multi-round play, community cards, rounds

with differing bet sizes, split pots, and the ability to raise are still missing. A small heads-up game,
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called Leduc Hold’em, which includes all of these important properties was invented by the CPRG

and is described in [24]. Here, we have extended the definition of Leduc2 to three players:

• Each player antes 1 unit before the cards are dealt.

• Each player is dealt one private card.

• The deck consists of 4 ranks and 2 suits (Td, Tc, Jd, Jc, Qd, Qc, Kd, Kc) with ranking K > Q

> J > T. Note that suits are arbitrary and do not affect the strength of the hand.

• There can be split pots if two players individually hold cards of the same rank and their hand

is stronger than the third player’s hand at showdown.

• There are two betting rounds with a 2-bet cap each.

• Each of the betting rounds (let us call the first preflop and the second the flop) have different

bet sizes: preflop bets are 2 units and flop bets are 4 units.

• One community card is dealt before the flop betting.

• Once the flop betting has finished, all active players enter a showdown and the best hand wins

the pot (or is split between two winners, as described above). Players either pair their private

card or remain unpaired with a high card. A paired hand beats an unpaired hand and flushes

and straights do not exist.

3.3.3 Evaluation of 3-Player CFR-Generated Strategies

Let σ = (σ1, σ2, . . . , σN ) be the N -player strategy profile generated by running the CFR algorithm

for sufficiently long. Recall from Definition 2 that σ−i is the set of all strategies in σ except σi. That

is, for a 3-player game, we have

σ−1 = {σ2, σ3}

σ−2 = {σ1, σ3}

σ−3 = {σ1, σ2}

(3.1)

where player 1 acts first, player 2 acts second, player 3 acts third, and the actions cycle in the

same order.

If σ is a strategy profile of an ε-Nash equilibrium, then no player, i, can gain more than ε by

deviating from their strategy, σi, while σ−i remains fixed. By fixing every strategy in σ−i, CFR can

2Leduc Hold’em is henceforth called Leduc for brevity.
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generate a best response, σBRi , to σ−i from player i’s position. Doing so for every player position

results in a best response, σBR = (σBR1 , σBR2 , σBR3 ), to the CFR strategy profile, σ.

The following method can be employed to examine whether a strategy profile generated by CFR

(for these 3-player toy games) is an ε-Nash equilibrium:

1. Generate a strategy profile σ = (σ1, σ2, σ3) by running CFR for 108 iterations

2. Compute a best response strategy, σBR1 , to σ−1 using CFR for 108 iterations

3. Compute a best response strategy, σBR2 , to σ−2 using CFR for 108 iterations

4. Compute a best response strategy, σBR3 , to σ−3 using CFR for 108 iterations

5. Combine the three computed best responses into a best response strategy profile, σBR =

(σBR1 , σBR2 , σBR3 )

6. Compute the expected values in each position with three σ’s playing against each other

7. Compute the expected values of the best response in each position with one σBR playing

against two σ’s

8. Compare σBR’s expected value in each position to those obtained by σ to determine how

much extra σBR wins

9. If the best response, σBR, cannot improve by more than ε when averaged over all positions

by deviating from σ, then σ is an ε-Nash equilibrium

The CPRG has chosen 108 iterations as a sufficient number for running CFR on 5-bucket heads-

up limit Hold’em games. Since there is no penalty for choosing a very large number of iterations3

and since each CFR run only takes on the order of several hours for these toy games, we have

chosen 108 iterations. Unfortunately, for multiplayer games, there is no theoretical guarantee of

convergence for CFR. Although in practice CFR derives an ε-Nash equilibrium strategy for 3-player

Kuhn, we cannot show that CFR derives an ε-Nash equilibrium strategy for 3-player Leduc.

Player 1 EV Player 2 EV Player 3 EV
CFR -0.0544877 -0.0418710 0.0963587
BR -0.0543373 -0.0414071 0.1008150

Improvement 0.0001504 0.0004639 0.0044563

Table 3.1: Expected value of each position in 3-player Kuhn (in antes/h). The final row shows the
improvement obtained by the best response.

Tables 3.1 and 3.2 show the expected values obtained by following the 9-step method described

above for 3-player Kuhn and Leduc. A tool which walks the whole game tree and determines the

3In fact, for an ε-Nash equilibrium, increasing the number of iterations decreases the value of ε
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Player 1 EV Player 2 EV Player 3 EV
CFR -0.243451 -0.1960510 0.439502
BR -0.124749 -0.0656892 0.550788

Improvement 0.118702 0.1303618 0.111286

Table 3.2: Expected value of each position in 3-player Leduc (in antes/h). The final row shows the
improvement obtained by the best response.

exact value of each position was used to compute the values. The “CFR” row simply consists of

playing three σ strategies against each other. The “BR” row consists of playing the best response,

σBR, against two σ strategies (where the expected value is given for the best response). The final

row is the difference between the value obtained by the best response and the CFR strategy.

Notice that in Kuhn, the best response cannot gain very much at all by deviating from the CFR

solution and is an ε-Nash equilibrium with ε = 0.0017257667. This is a positive result since there

is currently no theory suggesting that CFR should produce an equilibrium for multiplayer games.

However, the hope that this result generalizes to larger games is short-lived as we can see that CFR

does not produce an ε-Nash equilibrium for Leduc. Is it possible that the CFR Leduc strategy is still

quite strong against two arbitrary opponents? Of course! We do not have any 3-player benchmark

agents for Leduc to answer this question, but we do have benchmark agents for multiplayer limit

Texas Hold’em.

3.4 3-player Limit Hold’em

Recall that we have a set of benchmark agents with which to compare (or play) against. Most of

these benchmark agents are chumps who do not consider their hand (and its strength) but simply

take actions with some predetermined frequency at every possible decision point. Namely, our set

of benchmark agents is comprised of

• Always-Call. With no outstanding bets, this chump always checks. With outstanding bets,

this agent always calls.

• Probe. This chump will check or call (depending on whether there is an outstanding bet or

not) half of the time and raise the other half.

• Always-Raise. This chump bets or raises at every opportunity.

• Poki. This agent can play with any [legal] number of players. Poki is the reigning multiplayer

champion of the 2008 Computer Poker Competition.

We require at least one CFR-generated agent to test against our set of benchmark agents. We

have generated two types of strategies with CFR: a perfect recall agent and an imperfect recall agent.

Note that for the remainder of this dissertation, it is implied that the abstractions use percentile
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bucketing of the E[HS2] metric (calculated against one random hand). The reason for this decision

and possible improvements are provided in Section 6.1.3.

3.4.1 Perfect Recall CFR Agent

Due to the enormous size of the 3-player limit Hold’em game tree, there are very few options

available in terms of hand strength bucketing (with current computational resources). In fact, it

takes over 32 GB of RAM to store the game tree with no betting abstractions and only two buckets

per round. That is, on every round, the agent can only tell if its hand strength compared to a random

hand is above or below average! Intuitively, we believed that this would correspond to an agent

whose play is very poor but, with no known alternatives, we decided to try it anyway.

We ran CFR on a 2-bucket perfect recall abstraction for 20 million iterations on a 32 GB RAM

machine and called the agent Multi2. However, we were required to reduce the betting on the river

from a 4-bet cap to a 3-bet cap to fit the abstraction into memory. In the event that Multi2 falls

off-tree while playing the real game (i.e. the betting is capped on the river), Multi2 will simply call.

The 20 million iteration CFR computation took about three weeks to run. Since 100 million (108)

iterations would require 15 weeks of computation and since we only had limited access to the 32 GB

RAM machine, only 20 million iterations were completed. Section 3.5.3 describes our evaluation of

Multi2.

3.4.2 Imperfect Recall CFR Agent

In perfect recall, the number of bucket sequences increases exponentially with the number of betting

rounds. With N buckets per round, we have N bucket sequences preflop, N2 bucket sequences

on the flop, N3 bucket sequences on the turn, and N4 bucket sequences on the river. Even with

a 2-bucket abstraction, this results in 24 = 16 bucket sequences on the river. Since the point of

using abstractions is to reduce the memory requirements to something manageable, using some

form of imperfect recall seems like it might be a viable option (to reduce the memory requirements).

Specifically, the buckets of all previous rounds are forgotten and only the betting sequence and

current betting round’s bucket is remembered. There are no guarantees that CFR will converge to an

equilibrium with an imperfect recall abstraction in the two player game. However, in practice, the

CPRG has found that the strongest heads-up limit Hold’em agents have been created using imperfect

recall. With multiplayer games, we have no guarantee that CFR will converge with perfect recall so

using imperfect recall does not reduce our non-existent theoretical guarantees.

Due to the exponential growth of the bucket sequences per round, most of the memory used for

an imperfect recall limit Hold’em game corresponds to that used on the river. With a 2-bucket perfect

recall abstraction, there are 16 bucket sequences on the river corresponding to a game approximately

the size of a 16-bucket imperfect recall abstraction. Thus, we decided to create a 16-bucket imperfect

recall abstraction (the abstraction is aptly named IR16) for the 3-player game to compare the strength
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of these two similar-sized abstractions.

We ran CFR on this abstraction for 20 million iterations (to correspond to the number of it-

erations used for Multi2) and named the resulting agent IR16 20M. We also continued the CFR

computation until (and beyond) the 2009 Computer Poker Competition. One of the agents submit-

ted to the 2009 CPC completed 43 million iterations and was unimaginatively named IR16 43M.

With access to a new 64 GB RAM machine, we were able to include a 4-bet cap on the river as

compared to Multi2’s 3-bet cap. The CFR computation took on the order of one month to reach 43

million iterations. Section Section 3.5.3 describes our evaluation of IR16.

3.5 Evaluation of CFR-Generated Strategies in 3-Player Limit
Hold’em

Although computing best responses in very small games is quite feasible and provides a metric

for how much each player could improve by unilaterally deviating from their strategy, doing so

for full-scale Poker games is often infeasible. Even if the best response computation was feasible,

it would be of limited use as it provides no indication of the strength4 of an agent against two

arbitrary opponents. Thus, the method of evaluating the strength of the agents created in this thesis

will involve playing millions of Poker hands against benchmark agents as well as the other newly

created agents. This method of using tournament play (or cross-play) to rank agents is also used in

the Annual Computer Poker Competition.

3.5.1 Positional Permutations and Duplicate Matches

Suppose we have a match between three players A, B, and C. To reduce variance, we would like each

player to play in the same situation (i.e. same position and cards) as the others. We would also like

to exhaust all possible relative position orderings; there are only two of them in 3-player games with

unique agents. Hence, we have 3! = 6 permutations of players for every set of pre-generated cards

since there are three positions (button, small blind, big blind) and two relative position orderings:

ABC

BCA

CAB

ACB

CBA

BAC

We can average each player’s winrate over all of the above permutations to get a winrate for that

particular matchup.
4We loosely define a 3-player agent being stronger than another if it has a higher winrate than the other against two

arbitrary opponents
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3.5.2 Tournament and Competitions

The strength of agents can be evaluated in several different ways. Here, we evaluate the strength of

agents in exactly the same way agents are evaluated in the Annual Computer Poker Competition. A

3-player tournament with N agents (or entrants) consists of
(
N
3

)
distinct 3-player matchups where

each agent plays against
(
N−1

2

)
pairs of opponents.

• Bankroll Competition. In this competition, all players are simply ranked based on their total

winrate against all pairs of opponents. The aim of this competition is to determine which

agent exploits its opponents by the most.

• Equilibrium Competition. Also called the instant run-off bankroll competition, this compe-

tition is determined by removing the worst-ranked player from the bankroll competition and

determining a new bankroll ranking assuming the worst-player had not entered. This process

continues recursively (always eliminating the worst remaining player) until exactly three play-

ers remain in which case they are ranked by winrate in that single matchup. The aim of this

competition is to determine which agent is the most robust or least exploitable.

The outcome of both of the above competitions can be determined with exactly the same set

of tournament hand data (i.e. it is not necessary to run two separate tournaments). It is also not

necessary to run a new competition once a player is eliminated from the Equilibrium competition as

we can simply compute new winrates after removing all matchups involving the eliminated player.

3.5.3 Experimental Results

A tournament with all of our 3-player limit Hold’em agents

• Always-Call (AC)

• Probe

• Always-Raise (AR)

• Poki

• Multi2

• IR16 20M

• IR16 43M

was devised. This tournament consisted of
(

7
3

)
= 35 matchups where each player played against(

6
2

)
= 15 pairs of opponents. Each matchup consisted of 1.2 million hands (6 positional permuta-

tions of 200,000 hands).

Results are displayed in cross-tables as seen in Figures 3.2 to 3.6 with one player in each row

and two players in each column. The winrate of the row player versus the two column players is

provided as an entry at their intersection. The winrates of all three players sum to zero (and the
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sum of all winrate entries in the table is zero). The final column represents the overall winrate of

the row player against all pairs of opponents; this is the metric used to evaluate and rank the agents.

Note that matchups without three distinct players are greyed out. Positive winrates are highlighted

in green and negative winrates are highlighted in red. All winrates are provided in units of small

bets per hand (sb/h). For comparison, the Always-Fold strategy loses 0.500 sb/h in a 3-player game.

We computed 95% confidence intervals for each matchup. The size of the confidence intervals

varied from 0.014 to 0.079 sb/h. However, ± 0.039 (i.e. interval size of 0.078) only occurred in the

matches with Always-Raise and Probe present. Most of the confidence intervals were within ± 0.01

sb/h.

From Figure 3.2, we see that the rankings of the agents in the bankroll competition are (reading

from bottom row up):

1. Multi2

2. IR16 20M

3. IR16 43M

4. Poki

5. Always-Raise

6. Probe

7. Always-Call

From Figure 3.6, we can determine the rankings of the top three agents in the Equilibrium com-

petition. The fourth-ranked agent is the last player to be eliminated and we continue this process

until the first agent eliminated is ranked last. Here are the final rankings for the Equilibrium compe-

tition:

1. IR16 43M

2. IR16 20M

3. Multi2

4. Poki

5. Probe

6. Always-Raise

7. Always-Call

Notice that all three of our new CFR-generated agents are ranked top three in both competitions

and out-perform the 2008 CPC multiplayer champion (the world’s strongest multiplayer computer

Poker agent). Multi2 is clearly the best exploitative player in this tournament and is able to really

beat up on chumps. However, when only one chump (Probe) remains, Multi2 is exploited by the

IR16 agents and falls behind the IR16 agents in the run-off. The IR16 agents are definitely the least
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Figure 3.5: A cross-table showing the results of the remaining 4 agents in a 3-player Equilibrium
competition with 7 agents after eliminating the three worst players. The descending rows are ordered
by increasing total bankroll winrates. Units are provided in sb/h. The total winrates (final column)
are within ± 0.005 sb/h with 95% confidence.

Figure 3.6: A cross-table showing the final three agents in a 3-player Equilibrium competition with
7 agents after eliminating the worst player. The descending rows are ordered by increasing total
bankroll winrates. Units are provided in sb/h. The winrates are within ± 0.009 sb/h with 95%
confidence.

exploited agents in this tournament, only ever losing chips in one matchup (the case where they

are sandwiched between Always-Raise and Probe). Poki also loses the most against Always-Raise

and Probe. On the other hand, Multi2 is the only agent to win in this matchup and does so by a

substantial amount.

It turns out that the intuitive assumption that the 2-bucket abstraction plays very poorly was

incorrect. It is also worth noting that even after 20 million iterations, a fairly strong 3-player agent

can be created (recall that 100 million iterations are typically used for a 5-bucket heads-up limit

Hold’em abstraction). After about twice as many iterations, there seems to be little gain. Perhaps

the agent is trading off exploitative default play with more robust or unexploitable play.

There are several other observations we can make from Table 3.2 (this table contains results from

every matchup). Notice that even though all agents in the matchup between Always-Call, Always-

Raise, and Probe showdown every hand, the winrates are not zero. This is not a mistake; the reason

is that the pot sizes will not be the same over all duplicate matches due to relative positions between

the players. Always-Call ends up losing more than if it had folded every single hand and does not

have a positive winrate in any of the matchups. The most amount won in any matchup was by Poki

playing against Always-Call and Always-Raise by over one small bet per hand (also accomplished

by Multi2 but not by as much)!

3.5.4 Self-Play and 3-Player Standard Deviations

A typical standard deviation for heads-up limit Hold’em is about 6 sb/h and is reduced to 1.6 sb/h

by using duplicate matches [4]. To determine duplicate match typical standard deviations for 3-
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player limit Hold’em games, we ran self-play matches consisting of three of the same agents playing

against each other. Each of the seven matchups involved 200,000 hands. Since these were duplicate

matches, the winrate of each player was exactly zero5.

Agent Standard Deviation (sb/h)
Always-Call 1.39

Poki 3.36
IR16 20M 4.65
IR16 43M 4.66

Multi2 4.98
Probe 21.75

Always-Raise 33.32

Table 3.3: The duplicate match standard deviation per hand for matchups between three identical
agents (via self-play). These were computed based on 6 permutations of 200,000 hands giving 1.2
million hands total.

Table 3.3 shows some duplicate match standard deviations for our set of seven 3-player agents.

The variance for three Always-Call agents is quite low since each player is always putting in one

small bet preflop (calling the big blind) and then checking until showdown postflop. The variance for

Probe and Always-Raise is much higher since there is so much raising (for instance, Always-Raise

caps every betting round for a total investment of 24 small bets per hand). Examining the standard

deviations of the competent agents (i.e. non-chumps) and some standard deviations from the tour-

nament matchups described in the previous section, a typical duplicate match standard deviation for

3-player limit Hold’em is around 4 to 5 sb/h for competent players. Naturally, however, the standard

deviation is higher when several aggressive chumps are playing.

5This is only partially true: since Poki has its own random seed, it was not exactly zero but very close. However, the rest
of the agents had winrates of exactly zero.
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Chapter 4

A Master Agent Using Heads-Up
Experts

Chapter 3 provided evidence that CFR is capable of generating very strong 3-player limit Hold’em

agents even though they used very coarse-grained abstractions. Abstractions using both perfect

and imperfect recall were used to create agents stronger than Poki, the strongest known multiplayer

computer Poker agent in the world. The heads-up limit Hold’em agent, Polaris, created by the

CPRG now plays at a world-class level. Heads-up situations arise quite frequently in 3-player limit

Hold’em when one of the players folds. In fact, the hand will end up heads-up more than half of the

time in many 3-player games when none of the players are novices or chumps. This chapter aims to

exploit the fact that most hands end up heads-up before the flop.

4.1 Self-Play Preflop Folding Frequencies

We know that Poki and our CFR-generated agents play very well (at least compared to computer

agents). Perhaps by looking at common preflop betting sequences in games between these agents, we

can gain some insight into which subtrees of the game are visited most frequently. More specifically,

we would like to see how frequently hands end up heads-up before the flop since CFR has nice

theoretical guarantees for heads-up zero-sum perfect recall games.

Tables 4.1 to 4.4 show empirical frequencies of different bet sequences with a preflop fold action.

A raise is denoted by ‘r’, a call denoted by ‘c’, and a fold denoted by ‘f ’. The frequencies given in

each table were computed from 200,000 hands of self-play between three of the same agents. The

agents used for self-play include Poki, Multi2, IR16 20M, and IR16 43M. The entries have been

rounded to two decimal places; the frequencies reading “0.00%” have actually occurred a non-zero

yet very infrequent percentage of the time.

Notice that about 50% to 70% of the hands played result in heads-up play before the flop. The

most frequent bet sequences with a preflop fold include f, rf, rrf, rcf, cf, crf. Creating experts for

these common subgame situations should provide great improvements. Before delving into more
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Bet Sequence Frequency (%)
f 20.67
cf 16.43
rf 9.55
crf 3.35
rcf 1.52
rrf 0.54

crcf 0.00
ccrf 0.00
crrf 0.00

Total 52.05

Table 4.1: Empirical frequencies of bet sequences observed with a preflop fold action in 1.2 million
hands of self-play between three Poki agents.

Bet Sequence Frequency (%)
f 29.27
rf 25.60
rcf 9.96
rrf 1.51
cf 0.02
crf 0.01

rcrcrf 0.00
Total 66.38

Table 4.2: Empirical frequencies of bet sequences observed with a preflop fold action in 1.2 million
hands of self-play between three Multi2 agents.

details about heads-up subgames, however, let us first define some notational conventions.

4.2 Nomenclature

Notational conventions for representing isomorphic Poker hands have been adopted by most Texas

Hold’em Poker literature [23]. These conventions will also be used here. Namely,

• Each of the 13 card ranks are represented by a single character. In increasing order, they are

{2, 3, 4, 5, 6, 7, 8, 9, T, J, Q, K, A}.

• Each of the four suits are also represented by a single character. In alphabetical order, they

are {c, d, h, s} which represent {♣, ♦, ♥, ♠} respectively.

• Hands fall into one of three categories preflop: pairs, offsuit hands, and suited hands. Pairs

correspond to both hole cards having the same rank. Offsuit hands consist of two hole cards

of different rank and suit. Finally, suited hands are comprised of two hole cards with the same

suit but different rank. A suffix of ‘s’ is used to denote suited hands, ‘o’ to denote offsuit

hands, and no suffix is used for pairs.

• Hole cards are sorted with highest rank appearing first (e.g. 9♦K♠ is represented by K9o).
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Bet Sequence Frequency (%)
f 36.03
rf 26.40
rrf 6.64
rcf 0.66
cf 0.09
crf 0.04
rrrf 0.01

ccrcf 0.00
crrf 0.00
ccrrf 0.00
rcrrf 0.00
rcrf 0.00

Total 69.88

Table 4.3: Empirical frequencies of bet sequences observed with a preflop fold action in 1.2 million
hands of self-play between three IR16 20M agents.

Bet Sequence Frequency (%)
f 36.14
rf 26.37
rrf 6.61
rcf 0.65
cf 0.04
crf 0.02
rrrf 0.01
crrf 0.00
ccrrf 0.00
ccrcf 0.00
rcrrf 0.00
rcrf 0.00

Total 69.85

Table 4.4: Empirical frequencies of bet sequences observed with a preflop fold action in 1.2 million
hands of self-play between three IR16 43M agents.

For example, AKs ∈ {AcKc, AdKd, AhKh, AsKs} = {A♣K♣, A♦K♦, A♥K♥, A♠K♠}.

Similarly, TT ∈ {TcTd, TcTh, TcTs, TdTh, TdTs, ThTs} and KJo ∈ {KcJd, KcJh, KcJs, KdJc,

KdJh, KdJs, KhJc, KhJd, KhJs, KsJc, KsJd, KsJh}. For conciseness, non-pairs can often be grouped

together if they are played in precisely the same way (e.g. JT represents JTs or JTo).

As seen in the above examples, with no loss of generality, there are 6 combinations of each pair,

4 combinations of each suited hand, and 12 combinations of each offsuit hand. There are exactly 169

unique preflop hands: there are 13 pairs (one corresponding to each rank),
(

13
2

)
= 78 suited hands,

and
(

13
2

)
= 78 offsuit hands. By multiplying the number of hand types by their corresponding

combinations, we can verify the total number of preflop hands: 13×6+78×4+78×12 = 1326 =(
52
2

)
.

Given that we have now defined some convenient notation, we can easily graphically represent

a preflop strategy with a preflop hand matrix as seen in Figures 4.2 to 4.4. There are 13× 13 = 169
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hands in the table corresponding to every unique preflop hand isomorphism. Pairs appear on the

diagonal from the top left to the bottom right. All suited hands appear above the diagonal and all

offsuit hands appear below the diagonal. We have arbitrarily chosen to denote raising hands in green,

calling hands in yellow, and folding hands in red.

4.3 Heads-Up Experts

As was previously stated and later shown empirically, most 3-player hands end up heads-up before

the flop. Since the resulting heads-up subgame is two-player, zero-sum, and perfect recall, we can

use CFR and are guaranteed to find an ε-Nash equilibrium in the subgame. Moreover, since the

heads-up subtree is much smaller (in terms of game states) than the corresponding 3-player tree,

strategies using much larger abstractions can be used. We call the agents resulting from the CFR

solution to these heads-up subgames heads-up experts (HUEs).

Figure 4.1 shows an example of a partial preflop 3-player tree with HUE subtrees coloured in

red (the bet sequences leading to these nodes are f, rf, rrf, rcf, cf, crf ). Actions are labeled along the

branches. Nodes contain a value denoting the number of buckets (out of five) that the parent node

propagates to that node via the action-labeled edge connecting them.

Figures 4.2 and 4.3 show Poki’s preflop strategy on the button depending on the number of hands

it plays, tight versus loose. Tight means that it is more conservative or plays less hands while loose

means that it is more liberal in the hands that it chooses to play. Notice that the raising hands for both

settings are exactly the same and the only way the loose Poki changes its distribution is by changing

some of the folding hands into calling hands. The Poki used in this dissertation refers to the loose

version and it was chosen because it out-performed the tight version in tests against chumps and it

won the 2008 Computer Poker Competition.

Figure 4.4 shows the preflop strategy suggested for the button by Nick “stoxtrader” Grudzien

and Geoff Zobags in their limit Hold’em book [12]. The authors suggest a raise-or-fold strategy

where players do not call preflop. Their suggestions involve raising 40% of hands and folding

the remaining 60%. If we wished to represent a button strategy similar to this one in a 5-bucket

abstraction, we could have the agent raise the 2 strongest buckets (40%) and fold the 3 weakest

buckets (60%).

This is the basic idea of creating HUEs: assume some distributions of buckets propagated to a

HUE subtree by each of the players. Once the heads-up subtree is reached, solve the corresponding

heads-up subgame. Later, substitute this agent or its strategy in place of the 3-player agent when

the HUE subtree is reached in-game. Hopefully, if the assumed distributions are reasonable, this

method will provide an improvement to the winrate of the 3-player agent. Notice the similarity

between HUEs and the method used for PsOpti described in Section 2.3.
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Figure 4.1: Partial representation of a 3-player preflop tree and an example of a possible seeded
bucket strategy. Heads-up expert (HUE) subtrees are coloured in red (f, rf, rrf, rcf, cf, crf ).
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Figure 4.2: The button strategy played by (tight) Poki displayed in a preflop hand matrix. Raising
hands are highlighted in green, calling hands in yellow, and folding hands in red.

!! !"# !$# !%# !&# !'# !(# !)# !*# !+# !,# !-# !.#
!"/ "" "$# "%# "&# "'# "(# ")# "*# "+# ",# "-# ".#
!$/ "$/ $$ $%# $&# $'# $(# $)# $*# $+# $,# $-# $.#
!%/ "%/ $%/ %% %&# %'# %(# %)# %*# %+# %,# %-# %.#
!&/ "&/ $&/ %&/ && &'# &(# &)# &*# &+# &,# &-# &.#
!'/ "'/ $'/ %'/ &'/ '' '(# ')# '*# '+# ',# '-# '.#
!(/ "(/ $(/ %(/ &(/ '(/ (( ()# (*# (+# (,# (-# (.#
!)/ ")/ $)/ %)/ &)/ ')/ ()/ )) )*# )+# ),# )-# ).#
!*/ "*/ $*/ %*/ &*/ '*/ (*/ )*/ ** *+# *,# *-# *.#
!+/ "+/ $+/ %+/ &+/ '+/ (+/ )+/ *+/ ++ +,# +-# +.#
!,/ ",/ $,/ %,/ &,/ ',/ (,/ ),/ *,/ +,/ ,, ,-# ,.#
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!./ "./ $./ %./ &./ './ (./ )./ *./ +./ ,./ -./ ..

Figure 4.3: The button strategy played by (loose) Poki displayed in a preflop hand matrix. Raising
hands are highlighted in green, calling hands in yellow, and folding hands in red.
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Figure 4.4: A button strategy displayed in a preflop hand matrix suggested by stoxtrader’s book.
Raising hands are highlighted in green while folding hands are highlighted in red.

4.4 Solution Technique

The technique used to generate strategies for HUEs involves using CFR with special features: forc-

ing actions and seeding players with strategies.

4.4.1 Forced-Action and Strategy-Seeded CFR

Typically, with 3-player CFR, there are no assumptions about the strategies of the three players. The

players begin by playing completely randomly and iteratively adjust the frequencies with which they

take certain actions based on how much regret was associated with those actions in the past. Each

hand, the players are dealt their private hole cards, play according to their current distribution over

the possible actions, and then update their regret.

If we like, however, we could seed one or more of the players with an initial or static strategy.

With an initial strategy, the player begins with the given strategy (instead of random) and iteratively

modifies the strategy based on the regret. With a static strategy, the strategy is never updated based

on regret.

Another feature which can be added to CFR is forced actions1, an action sequence we would like

to force beginning at the root node. With forced actions, only iterations in which the pre-specified

action sequence occurs are used to update regret, otherwise the iteration is discarded. On each new

iteration, private hole cards are dealt to each player who takes an action based on the hole cards

and the corresponding bucket’s action probabilities (beginning with the button). For example, if

the forced action was raise-fold (rf), after being dealt cards, the button takes an action based on its

current strategy. If the action taken is fold or call instead of raise then the iteration is discarded and

a new hand is dealt. If the action taken is raise, however, then the small blind takes an action based

on its current strategy. If the action taken by the small blind is call or raise instead of fold, then

the iteration is discarded. If the action taken is fold, then the remainder of the hand is played out
1While we call these “forced actions”, they can be interpreted as “preferred actions” since we force CFR to discard any

iteration where preferred actions are not taken.
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between the button and the big blind based on their strategies and regrets are updated at the end of

the hand.

4.4.2 Heads-Up Subgame Solution

Let us call a CFR computation using both of the forced actions and strategy seeding (initial or static)

features forced-action strategy-seeded counterfactual regret minimization (FASSCFR). Notice

that if the forced action sequences used are suffixed by a fold action, then the hand becomes heads-

up between the two active players. This situation always includes the same initial pot size and can

be solved as a two-player zero-sum game. This is quite convenient as we have theoretical guarantees

(for perfect recall) that we will find an ε-Nash equilibrium.

Although we are guaranteed to find an equilibrium for the HUE subgame, the resulting subgame

strategy may not be part of the 3-player equilibrium since we must seed the strategy. However, this

does not suggest that the HUE strategy cannot provide an improvement over the base player strategy.

Remember that the 3-player game is over one million times as large as a heads-up game! This means

that much larger abstractions can be used for the HUEs than were used to generate the base player’s

3-player strategy.

There are infinitely many strategies with which to seed a HUE. Two natural ways to seed the

HUEs are

• Uniform strategy-seeding. This naive approach to seeding assumes that the players take all

of the actions in the forced action sequence 100% of the time. That is, the distribution over

hands or buckets of all active players is completely uniform. For example, if the forced action

was raise-call-fold (rcf) then we would seed the button with a strategy of raising 100% of the

time, the small blind with calling 100% of the time, and the big blind with folding 100% of

the time.

• Expert knowledge strategy-seeding. Instead of uniformly seeding the strategies, we could

devise a sensible preflop strategy based on expert knowledge (advice from Poker professionals

and/or based on strong computer agents such as those generated in Chapter 3). For example,

we could seed the button with a strategy of raising 40% of the time (top two buckets in a

5-bucket abstraction) and folding 60% of the time (bottom 3 buckets) to correspond with the

expert knowledge from professional Poker players provided in Table 4.4. Thus, when the

action is raise-fold (rf) then the big blind can deduce that the button is only playing the top

40% of hands. It should be noted, however, that if an opponent plays a drastically different

distribution than that assumed, poor play could result.

The next subsection contains the strategies used to seed the HUEs in this dissertation. In Sec-

tion 4.6 of this chapter, we will present experimental tournament results for HUEs generated with

5-bucket perfect recall abstractions using both uniform and expert knowledge strategy-seeding. The
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base players using uniform strategy-seeding will have their names prefixed by “Uni ” while the base

players using expert knowledge strategy-seeding will have their names prefixed by “Exp ”. The

expert knowledge strategy-seeding did not include preflop strategies used by the agents from Chap-

ter 3 because the preflop strategy distributions for the 3-player CFR-generated strategies were not

available when the HUE strategies were generated.

4.4.3 Heads-Up Expert Strategies

The heads-up experts (HUEs) generated for this dissertation were not intended to be perfect, by any

means. The intention of incorporating and testing the HUEs was to determine whether fairly abstract

and naively created strategies could be used to improve play; they were simply a proof of concept.

Thus, for convenience, we constructed HUEs with the following properties:

• When using a one-dimensional metric to bucket hands, it is conventional to place hands with

higher metric values in higher numbered buckets. We adopt this convention here; namely, we

have a bucket ranking 5 > 4 > 3 > 2 > 1 for our 5-bucket E[HS2] abstraction.

• We have used pure prior distributions: the probability of taking an action in a bucket is either

0 or 1.

• The highest (i.e. strongest) buckets are used for raise actions, the next highest buckets are used

for call actions, and the lowest buckets are folded.

Something to consider for future work is that using mixed strategy priors and not having a strict

ordering of buckets corresponding to actions (e.g. raise buckets > call buckets > fold buckets) may

lead to better play. These changes would be able to better take into account bluffing (playing weak

hands strongly) and slow-playing (playing strong hands weakly).

Figures 4.2 to 4.4 show examples of strategies in the full game; however, in practice, we must use

strategies from an abstract game. Tables 4.5 to 4.7 show some abstract game strategies that can be

used to seed HUEs. The titles of the last three columns represent the positions (button, small blind,

and big blind) and the entries correspond to the buckets for which the player takes the corresponding

row-action. For example, the way to interpret the “rrf” column in Table 4.6 is that the button will

raise (‘r’) with buckets 3-5, the small blind will reraise (‘r’) with bucket 5, and the big blind will

fold (‘f’) buckets 1-4.

Table 4.5 was used for the uniform strategy-seeded HUEs and Table 4.6 was used for the expert

knowledge strategy-seeded HUEs. Table 4.7 represents some possible strategies to seed future 5-

bucket HUEs. The priors for actions shared between different betting sequences is more consistent

with these strategies. For instance, notice that in Table 4.6 that the button raises buckets 4-5 in the

“rf” betting sequence yet raises buckets 3-5 in “rrf” and “rcf”.
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Bet Sequence BTN SB BB
f 1-5 – –
rf 1-5 1-5 –
rrf 1-5 1-5 1-5
rcf 1-5 1-5 1-5
cf 1-5 1-5 –
crf 1-5 1-5 1-5

Table 4.5: The uniform strategy used in this dissertation to seed the six 5-bucket heads-up experts.

Bet Sequence BTN SB BB
f 1-2 – –
rf 4-5 1-4 –
rrf 3-5 5 1-4
rcf 3-5 4 1-2
cf 3 1-2 –
crf 3 5 1-2

Table 4.6: The expert knowledge strategy used in this dissertation to seed the six 5-bucket heads-up
experts.

4.5 Master Agent

Once a set of HUEs has been generated using FASSCFR, we require a way to piece their correspond-

ing subgames back together so that the heads-up strategies can be played in the 3-player game. We

want to play a 3-player base strategy until we encounter a heads-up scenario that we have pre-solved

using FASSCFR. To do this, we’ll use a master agent whose sole purpose is to summon differ-

ent agents depending on the bet sequence of the current hand. The master agent can be likened

to a coach who decides when to field or bench a player (except that the decisions are much more

automatic in this case).

4.5.1 Implementation

There are two basic ways in which the master agent can be implemented, each with its own advan-

tages and disadvantages:

• The master agent loads the base player and all HUEs into memory. The base player is always

played when there are three active players. If, however, one of the HUE’s priming bet se-

quence occurs (and thus one of the players has folded), that HUE is summoned and is played

for the remainder of the hand.

• The master agent simply becomes a conceptual idea as the HUE strategies actually replace

the corresponding subgame strategies of the base player in a new strategy file.

The advantage of using the first method is being able to use a base player for which we have

no explicit strategy file (i.e. the base player acts as a sort of “black box” where the input is the

game state and the output is its corresponding action). The disadvantages of using this method
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Bet Sequence BTN SB BB
f 1-2 – –
rf 4-5 1-3 –
rrf 4-5 5 1-3
rcf 4-5 4 1-2
cf 3 1-2 –
crf 3 5 1-2

Table 4.7: A potential expert knowledge strategy to seed the six 5-bucket heads-up experts as seen
in Figure 4.1.

include the requirement for sufficient memory to preload all of the agents and that actual gameplay

involving the master agent will be slower as it needs to query the strategy of different players quite

often. The second method does not suffer from slower play or memory issues (as long as there is

enough memory to load the base player) but does not allow for “black box” agents as base players.

The first method was implemented for the master agents discussed in this thesis simply due to the

convenience of its implementation and its ability to allow us to use Poki as the base player.

4.6 Experimental Results

A tournament similar to Section 3.5.3 was set up to evaluate the HUE agents. More specifically,

there were exactly 7 entrants and each of the
(

7
3

)
= 35 three-player matchups consisted of running

6 positional permutations of 200,000 hands (1.2 million hands total). However, this tournament

did not include any chumps (Always-Call, Always-Raise, and Probe) as entrants. There were two

main reasons for this decision: removing chumps should create a playing field more comparable to

those in the Annual Computer Poker Competition and including just three more entrants results in(
10
3

)
= 120 three-player matchups as opposed to 35 matchups with 7 entrants. The set of agents

entered into the tournament include

• Poki

• Multi2

• Uni Multi2 (Uni M2)

• Exp Multi2 (Exp M2)

• IR16

• Uni IR16

• Exp IR16

Only IR16 43M was entered into this tournament since the results of IR16 20M and IR16 43M

were quite similar in Section 3.5.3 and including both of the IR16 agents in the tournament would

create many more matchups. All three of the IR16 agents listed above implicitly use IR16 43M as

the base player.
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Figure 4.8: A cross-table showing the results of the remaining 4 agents in a 3-player HUE Equilib-
rium competition with 7 agents after eliminating the three worst players. The descending rows are
ordered by increasing total bankroll winrates. Units are provided in sb/h. The total winrates (last
column) are within ± 0.005 with 95% confidence.

Figure 4.9: A cross-table showing the final three agents in a 3-player HUE Equilibrium competition
with 7 agents after eliminating the worst player. The descending rows are ordered by increasing
total bankroll winrates. Units are provided in sb/h. The winrates are within ± 0.008 with 95%
confidence.

Tables 4.5 to 4.9 show the results for the tournament. All individual matchup winrates are within

± 0.009 sb/h with 95% confidence. The confidence intervals of the total winrates are provided in

the captions. For comparison, the Always-Fold strategy loses 0.500 sb/h in a 3-player game. The

rankings for the Bankroll competition are

1. IR16

2. Exp IR16

3. Uni IR16

4. Exp Multi2

5. Uni Multi2

6. Multi2

7. Poki

There are several things that we can notice from these results. The rankings for both the Equilib-

rium and Bankroll competitions are identical. In the tournament results from Chapter 3, we saw that

Multi2 did very well in the Bankroll competition as it exploited chumps more than any other agent.

In this tournament, however, only strong agents were included. We can see that the top two bankroll

players (IR16 and Exp IR16) win in every single matchup they participate in while the opposite is

true for the worst two bankroll players (Poki and Multi2).

Although Poker is a nontransitive game, it is interesting to examine the relative trends in results

from Table 4.5. Namely, as you move down the rows of a given column (corresponding to higher-

ranked bankroll players), the winrates increase monotonically with a few exceptions. In addition
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to this trend, as we move across the columns of a given row (generally corresponding to higher-

ranked bankroll players although exactly), the winrates decrease. Notice that having all AI agents

(instead of including chumps) causes the results to be much more predictable. Another trend –

related to those just described – is that every agent loses the most against the top two bankroll

players (excluding themself) and every agent wins the most against the worst two bankroll players

(excluding themself). The regularity of these trends seems to be the reason we obtain the same

rankings from both the Equilibrium and Bankroll competitions.

Note also that the expert knowledge strategy-seeded HUEs did better than the uniform strategy-

seeded HUEs when either Multi2 or IR16 were used as the base player. This result is not too

surprising as the assumption that the opponent can hold a completely random hand after several

betting actions have taken place is a rather poor one.

It is interesting that Multi2’s performance has been improved by adding HUEs while IR16 per-

forms worse when HUEs are added. This result demonstrates just how effective using CFR can be

for generating very abstract, imperfect recall, 3-player agents despite having no theoretical guaran-

tees. Although adding the expert strategy-seeded HUEs did not improve play over IR16, we can still

see that expert seeding was significantly better than the uniform strategy-seeding HUEs.

Notice the similarities between the HUEs used here and the PsOpti agents described in Sec-

tion 2.3 and in [2]. The uniform strategy-seeding is similar to the way PsOpti1 knits strategies

together: a subgame strategy generated assuming a uniform distribution over hands is appended to

a preflop strategy (in this case whichever base player is playing). The expert knowledge strategy-

seeding is similar to the way PsOpti2 knits strategies together: a preflop strategy is used to provide

conditional probabilities as input to generate the subgame strategy.

Since the HUEs and base players were being generated simultaneously with CFR, we were

unable to use the base players’ strategies to seed the HUEs. We believe that strategy-seeding based

on IR16’s preflop play would out-perform IR16, and this is left as future work (Section 6.1).
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Chapter 5

Computer Poker Competition
Results

The Annual Computer Poker Competition started in 2006 and has since been held once per year.

The objective of the competition is that Artificial Intelligence research will benefit from using Poker

– a stochastic imperfect information game resembling real-world situations – as its testbed.

The competition currently consists of three Texas Hold’em variants: heads-up limit, heads-up

no-limit, and ring limit. For each game type, there are two competitions (or sub-competitions) eval-

uated with duplicate matches: Bankroll and Equilibrium. The goal of the Bankroll competition is

to win as many chips as possible rewarding exploitative play. The goal of the Equilibrium competi-

tion is to win as many chips as possible against stronger and stronger sets of opponents. That is, the

worst-ranked player from the Bankroll competition is eliminated and the players are re-ranked based

on their winrates against all players but the worst. This process continues until all players have been

eliminated.

In this chapter, we will present the limit ring results from the 2008 and 2009 Computer Poker

Competitions.

5.1 2008 AAAI Computer Poker Ring Competition

The results of the 2008 Computer Poker Competition were announced at the AAAI conference on

July 15, 2008 in Chicago, Illinois. In total there were 12 competitors from 6 different countries

and 19 agents submitted (distributed amongst the three sub-competitions: heads-up limit, heads-up

no-limit, ring limit).

The ring limit competition was a 6-player limit Hold’em format. There were 6 agents submitted

from 5 different teams (Technical University Darmstadt submitted two). Due to just having sufficient

numbers of players for one table, there was only a Bankroll competition and no way to run an

Equilibrium competition (as the agents were not required to be able to play in a format with less

than 5 players).
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Results are presented in Table 5.1 in small bets per hand (sb/h) with the top-ranked player at

the top. A total of 440,000 hands were played with random permutations of the relative positions.

Unfortunately, standard deviations for the winrates were not provided with the results of this com-

petition. For comparison, the Always-Fold strategy loses 0.250 sb/h in a 6-player game.

Figure 5.1: The ranking and results of competitors in the limit ring 2008 Computer Poker Competi-
tion. Units are presented in small bets per hand (sb/h).

5.2 2009 IJCAI Computer Poker Ring Competition

The results of the 2009 Computer Poker Competition were announced at the IJCAI conference on

July 15, 2009 in Pasadena, California. In total, there were 14 competitors (10 universities and

4 independents) from 7 different countries and 25 agents submitted (13 for heads-up limit, 5 for

heads-up no-limit, and 7 for ring limit).

The ring limit competition this year was reduced from a 6-player to 3-player limit Hold’em

format since the 3-player game is a challenging enough problem. Each 3-player matchup involved

660,000 hands (6 position permutations by 110 matches of 1000 hands). There were 7 agents sub-

mitted from 5 different teams. Matchups including two agents from the same team were not used in

determining the winners of the competitions.

In alphabetical order, the competitors of the 3-player 2009 Computer Poker Competition in-

cluded

• akuma

• Bluechip (Blue)

• CMURingLimit (CMU)

• dcu3pl (dcu)

• dpp

• Hyperborean-BR (H-BR)

• Hyperborean-Eqm (H-Eqm)

The akuma and dpp competitors were part of the same team, Technical University Darmstadt.

Hyperborean-BR and Hyperborean-Eqm were submitted by the author as part of the University

of Alberta CPRG team. Hyperborean-BR was the Exp IR16 agent described in Chapter 4 and

Hyperborean-Eqm was the IR16 43M agent described in Chapter 3.
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The 7-competitor cross-table has been divided into separate tables, Tables 5.2 to 5.6, for each of

the five teams and are presented in the order of their ranking in the Bankroll competition. Results are

provided in small bets per hand (sb/h). For comparison, the Always-Fold strategy loses 0.500 sb/h

in a 3-player game. Standard deviation values were given for each matchup but were not included in

the tables (due to space). However, the minimum and maximum 95% confidence interval sizes have

been provided in each table’s caption.

Figure 5.2: The 3-player 2009 Computer Poker Competition results for the University of Alberta
agents, Hyperborean-BR and Hyperborean-Eqm, against all pairs of opponents (from different
teams). Units are presented in small bets per hand (sb/h). All results are within ± 0.006 to 0.008
with 95% confidence.

Figure 5.3: The 3-player 2009 Computer Poker Competition results for the Technical University
Darmstadt agents, akuma and dpp, against all pairs of opponents (from different teams). Units are
presented in small bets per hand (sb/h). All results are within± 0.006 to 0.010 with 95% confidence.

Figure 5.4: The 3-player 2009 Computer Poker Competition results for the CMURingLimit agent.
Units are presented in small bets per hand (sb/h). All results are within ± 0.006 to 0.010 with 95%
confidence.

The rankings for the Bankroll competition are

1. Hyperborean-Eqm

2. Hyperborean-BR

3. dpp

4. akuma

5. CMURingLimit

6. dcu3pl

7. Bluechip

The rankings for the Equilibrium competition are

1. Hyperborean-Eqm
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Figure 5.5: The 3-player 2009 Computer Poker Competition results for the dcu3pl agent. Units are
presented in small bets per hand (sb/h). All results are within± 0.006 to 0.008 with 95% confidence.

Figure 5.6: The 3-player 2009 Computer Poker Competition results for the Bluechip agent. Units are
presented in small bets per hand (sb/h). All results are within± 0.008 to 0.012 with 95% confidence.

Figure 5.7: The 3-player 2009 Computer Poker Competition results for the Bankroll competition
and the Equilibrium competition with 7 players left. Units are presented in small bets per hand
(sb/h). All results are within ± 0.004 with 95% confidence.

Figure 5.8: The 3-player 2009 Computer Poker Competition results for the Equilibrium competition
with 6 players left. Units are presented in small bets per hand (sb/h). All results are within ± 0.006
with 95% confidence.

Figure 5.9: The 3-player 2009 Computer Poker Competition results for the Equilibrium competition
with 5 players left. Units are presented in small bets per hand (sb/h). All results are within ± 0.008
with 95% confidence.
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2. Hyperborean-BR

3. akuma

4. dpp

5. CMURingLimit

6. dcu3pl

7. Bluechip

Notice that the only difference between the rankings for the Bankroll and Equilibrium com-

petitions is that akuma and dpp switch places in third and fourth. The reason for terminating the

equilibrium competition run-off at 5 players was due to the University of Alberta and Technical

University Darmstadt each having two remaining agents. Since agents from the same team were

not included in the tournament, the top 5 rankings for the Equilibrium competition were determined

from the rankings with 5 players left.
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Chapter 6

Conclusions

In this thesis, we’ve shown that

• CFR was used to generate a very abstract perfect recall 3-player agent, Multi2, that out-

performs Poki, the 2008 ring limit Computer Poker Competition champion. Although

there are no theoretical guarantees for CFR regarding multiplayer games, we showed that

CFR can still be used to generate very strong agents (even for a very abstract game). Multi2

uses a 2-bucket E[HS2] abstraction. This work represents the first research performed with

CFR on multiplayer games.

• CFR was used to generate two-player ε-Nash equilbria, called heads-up experts (HUEs),

corresponding to 3-player subgames wherein one of the players folds preflop. Over one

half of 3-player hands among competent players result in one player folding preflop. Since

the resulting subgame is a two-player zero-sum game, we can create a heads-up expert by

computing an ε-Nash equilibrium with CFR. We constructed HUEs using a 5-bucket E[HS2]

abstraction using different strategies to seed play until a fold occurs. We seeded one strategy

with a uniform distribution (i.e. we assume the players hold a random hand), prefixed with

“Uni ” and seeded a second strategy with expert knowledge, prefixed by “Exp ”.

• Master agents, Uni Multi2 and Exp Multi2, using Multi2 as a base player out-perform

Multi2. A master agent acts as a sort of “coach” that fields players where appropriate. In

our case, the master agent always fields a base player when there are three active players and

substitutes a HUE if its defining bet sequence occurs preflop (one of f, rf, rrf, rcf, cf, crf ).

Using both uniform and expert knowledge strategy seeding with Multi2 as the base player

improved the winrate of the master agent over the base player alone.

• CFR was used to generate a very abstract imperfect recall 3-player agent, IR16, that out-

performs Poki and all of the agents that use Multi2 as a base player. An agent, IR16, with

approximately the same size of game state space as Multi2 was constructed. This agent forgets
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its previous round buckets and has a 16-bucket E[HS2] abstraction. This is the strongest agent

described in this dissertation.

• Two of the agents created, IR16 and Exp IR16, are currently the best 3-player computer

Poker agents in the world. The Annual Computer Poker Competition (CPC) has two ring

limit competitions: Bankroll and Equilibrium. The 2009 CPC’s ring games had a 3-player

format (compared to 6-player in 2008). The submitted agents placed first and second, respec-

tively, in both competitions: IR16 placed first in both and Exp IR16 placed second in both.

6.1 Future Work

Since the experiments required for this work were very time-consuming (due to the size of the

3-player game) and were often dependent on the completion of other experiments, many design

decisions had to be made early. However, now that all of these experiments have been completed and

the agents have been evaluated, we can examine areas where there might be room for improvement.

We describe possibilities for future work here.

6.1.1 Test the New 3-Player Agents Against Humans

Soon after the CPRG created its first artificially intelligent Poker agents, those agents were played

against human opposition. There are several advantages to testing new agents against humans. One

advantage is that the skill level of humans varies greatly; this allows us to test against beginners and

professionals alike. Another advantage is that feedback provided by more experienced players can

provide us with better insight into the strengths and weaknesses of the agent. For instance, the CPRG

has modified its card abstractions in the past based on human feedback. Finally, simply obtaining

more data (e.g. hand histories and winrates) allows us to evaluate and compare new agents.

The CPRG generates many different heads-up limit Texas Hold’em agents with CFR. For sim-

plicity, when any of these agents are played against humans, they are usually named Polaris. In

2007, Polaris played against professional Poker players, Phil “The Unibomber” Laak and Ali Es-

lami, in The First Man-Machine Poker Competition [7]. Even though Polaris lost the competition, it

came very close and the Poker players were quite impressed. The next year, the 2008 Man-Machine

Poker Competition was held in Las Vegas. This time around, a new-and-improved Polaris played

against some of the best heads-up limit Texas Hold’em players in the world and won!

Now that two-player Poker agents have surpassed the human world-class level, it would be nice

to attain the same feat for 3-player Poker. In the future, it would be both exciting and useful to test

our new 3-player agents against humans (perhaps a master agent with improved HUEs as discussed

in Section 6.1.2). However, there is a complication with the 3-player game that does not arise in two-

player Hold’em. There are two configurations that could occur between our agents and humans: two

agents and one human or two humans and one agent. When two humans are playing against one
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agent, we must ensure that the humans do not collude against the agent. One approach may be

to place the two humans in separate rooms and anonymize the players’ screen names so that they

cannot determine which other player is the AI agent.

6.1.2 Improve the Performance of Heads-Up Experts

In Chapter 4, we saw that a master agent using HUEs provided an improvement over simply using the

base player strategy Multi2. In fact, just using uniform strategy-seeded HUEs (i.e. assume players

hold random hands) added to Multi2’s winrate! However, when the HUEs were used in conjunction

with IR16, the master agent suffered a loss in winrate as compared to the base player.

It is encouraging that expert knowledge strategy-seeding out-performed uniform strategy-seeding

for both base players, Multi2 and IR16. This result demonstrates that the winrate is sensitive to the

seeded strategy (i.e. a priori distribution of hole cards). In future work, we would like to create

stronger expert-knowledge HUEs. In particular, we would like to seed HUEs with the preflop strat-

egy of the base player that will be used with them. We feel, intuitively, that doing so would result

in stronger play since the HUEs strategies would be much more consistent with the base player

strategy.

In addition to improving HUEs with better strategy-seeding, we would also like to improve them

via abstractions. In theory, refining an abstraction does not necessarily reduce the exploitability of a

strategy profile [27]. However, in practice, using a more refined (i.e. larger) abstraction for sizable

abstract Poker games results in a reduction of exploitability and a winrate improvement against a

cross-table of opponents. All of the HUEs generated in this work have used a 5-bucket E[HS2] ab-

straction whereas abstractions several orders of magnitude larger have been used to generate heads-

up strategies by the CPRG. The reason for using a 5-bucket abstraction was because HUEs were

simply a proof of concept and, thus, we wanted to be able to generate their strategies quickly. Thus,

in the future, we would like to create 8- or 10-bucket E[HS2] abstractions as we believe this would

result in stronger HUEs.

6.1.3 Create New Abstractions for 3-player

Two abstractions were used for the 3-player agents described in this dissertation. Multi2 uses a

2-bucket E[HS2] perfect recall abstraction and IR16 uses a 16-bucket E[HS2] imperfect recall

abstraction. However, hands were ranked based on their probability of winning against one random

hand. There were several reasons for the decision to use this hand ranking. As we have seen in

Chapter 4, between 50% and 70% of 3-player self-play hands resulted in a two-player subgame

where one player folded preflop. By the time a showdown is reached, many more betting sequences

will have only two players. Thus, using a hand ranking based on two-player hand strengths should

still provide fairly sensible play.

One of the main reasons for using a two-player hand ranking instead of a 3-player hand ranking

59



is the computational time required to generate the hand rankings. A two-player ranking can be

generated in about a day or less. A 3-player preflop ranking generated by Ganzfried and Sandholm

took a month on 16 processors [8]. Note that a preflop ranking (where all 5 community cards have

been rolled out) takes less time than a ranking that includes hand strengths for all four rounds.

One possibility for a new hand ranking (given sufficient time to generate it) is a 3-playerE[HS2]

ranking where the expected hand strength squared of each hand is computed against two uniformly

random hands. In this case, CFR should dynamically use a ranking corresponding to the number of

active players. For example, use the 3-player E[HS2] ranking when no players have folded and the

2-player E[HS2] ranking when one player has folded.

Alternatively, we should test an abstraction which uses an estimate of the probability of winning

against N opponents, (E[HS])N [1, p. 46]. This is an estimate since it makes the incorrect assump-

tion that opponent hands are independent. It also ignores hand potential. However, in practice, this

may provide a useful metric, (E[HS])2, when there are 3 active players since the exponent is the

number of opponents, not total players. The advantage to this estimated metric is that it still uses a

two-player hand ranking meaning that it can be generated much faster than a 3-player hand ranking.

60



Bibliography

[1] D. Billings. Algorithms and assessment in computer poker. PhD thesis, Computing Science
Department, University of Alberta, Edmonton, 2006.

[2] D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg, and D. Szafron.
Approximating game-theoretic optimal strategies for full-scale poker. In International Joint
Conference on Artificial Intelligence, volume 18, pages 661–668, 2003.

[3] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. The challenge of poker. Artificial
Intelligence, 134(1):201–240, 2002.

[4] D. Billings and M. Kan. A tool for the direct assessment of poker decisions. The International
Association of Computer Games Journal, 29(3):119–142, 2006.

[5] M. Buro. The Othello match of the year: Takeshi Murakami vs. Logistello. ICCA Journal,
20(3):189–193, 1997.

[6] M. Buro, J.R. Long, T. Furtak, and N. Sturtevant. Improving state evaluation, inference, and
search in trick-based card games. In Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI2009), 2009.

[7] The Second Man-Machine Poker Competition. http://poker.cs.ualberta.ca/man-machine/.

[8] S. Ganzfried and T. Sandholm. Computing an approximate jam/fold equilibrium for 3-player
no-limit Texas Hold’em tournaments. In Proceedings of the 7th international joint confer-
ence on Autonomous agents and multiagent systems-Volume 2, pages 919–925. International
Foundation for Autonomous Agents and Multiagent Systems Richland, SC, 2008.

[9] S. Ganzfried and T. Sandholm. Computing Equilibria in Multiplayer Stochastic Games of
Imperfect Information. In Proceedings of the International Joint Conference on Artificial In-
telligence (IJCAI), 2009.

[10] A. Gilpin and T. Sandholm. Optimal Rhode Island Hold’em poker. In PROCEEDINGS OF
THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, volume 20, page 1684.
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005.

[11] A. Gilpin, T. Sandholm, and T.B. Sorensen. Potential-aware automated abstraction of sequen-
tial games, and holistic equilibrium analysis of Texas Hold’em poker. In PROCEEDINGS OF
THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, volume 22, page 50.
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

[12] N. Grudzien and G. Herzog. Winning in Tough Hold ’em Games: Short-Handed and High-
Stakes Concepts and Theory for Limit Hold ’em. Two Plus Two Publishing, 2007.

[13] A. Hodges. Alan Turing: the enigma. Walker & Company, 2000.

[14] F.H. Hsu. Behind Deep Blue: Building the computer that defeated the world chess champion.
Princeton University Press, 2002.

[15] M.B. Johanson. Robust strategies and counter-strategies: Building a champion level computer
poker player. Master’s thesis, Computing Science Department, University of Alberta, Edmon-
ton, 2007.

[16] D. Koller, N. Megiddo, and B. Von Stengel. Efficient computation of equilibria for extensive
two-person games. Games and Economic Behavior, 14(2):247–259, 1996.

61



[17] H.W. Kuhn. A simplified two-person poker. Contributions to the Theory of Games, 1:97–103,
1950.

[18] J.F. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences of the United States of America, pages 48–49, 1950.

[19] M.J. Osborne and A. Rubinstein. A course in game theory. MIT press, 1994.

[20] J. Schaeffer, N. Burch, Y. Bjornsson, A. Kishimoto, M. Muller, R. Lake, P. Lu, and S. Sutphen.
Checkers is solved. Science, 317(5844):1518, 2007.

[21] J. Schaeffer, R. Lake, P. Lu, and M. Bryant. Chinook: The world man-machine checkers
champion. AI Magazine, 17(1):21–29, 1996.

[22] B. Sheppard. World-championship-caliber Scrabble. Artificial Intelligence, 134(1-2):241–276,
2002.

[23] D. Sklansky. The Theory of Poker. Two Plus Two Publishing, 1999.

[24] F. Southey, M. Bowling, B. Larson, C. Piccione, N. Burch, D. Billings, and C. Rayner. Bayes-
bluff: Opponent modelling in poker. In Proceedings of the 21st Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI), pages 550–558, 2005.

[25] N.R. Sturtevant. Multi-player games: Algorithms and approaches. PhD thesis, Computer
Science Department, University of California, Los Angeles, 2003.

[26] G. Tesauro. Temporal difference learning and TD-Gammon. Communications of the ACM,
38(3):58–68, 1995.

[27] K. Waugh, D. Schnizlein, M. Bowling, and D. Szafron. Abstraction pathology in extensive
games. In Proceedings of the Eighth International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), 2009.

[28] M. Zinkevich, M. Bowling, and N. Burch. A new algorithm for generating strong strategies
in massive zero-sum games. In Proceedings of the Twenty-Seventh Conference on Artificial
Intelligence (AAAI), 2007.

[29] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione. Regret minimization in games with
incomplete information. In Neural Information Processing Systems, volume 21, 2008.

62


