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Abstract
Extensive-form games are a powerful tool for represent-
ing complex multi-agent interactions. Nash equilibrium
strategies are commonly used as a solution concept for
extensive-form games, but many games are too large for
the computation of Nash equilibria to be tractable. In
these large games, exploitability has traditionally been
used to measure deviation from Nash equilibrium, and
thus strategies are aimed to achieve minimal exploitabil-
ity. However, while exploitability measures a strategy’s
worst-case performance, it fails to capture how likely
that worst-case is to be observed in practice. In fact, em-
pirical evidence has shown that a less exploitable strat-
egy can perform worse than a more exploitable strat-
egy in one-on-one play against a variety of opponents.
In this work, we propose a class of response functions
that can be used to measure the strength of a strat-
egy. We prove that standard no-regret algorithms can
be used to learn optimal strategies for a scenario where
the opponent uses one of these response functions. We
demonstrate the effectiveness of this technique in Leduc
Hold’em against opponents that use the UCT Monte
Carlo tree search algorithm.

Introduction
Extensive-form games are a commonly-used, natural repre-
sentation for sequential decision-making tasks. Their ability
to model multiple agents, chance events, and imperfect in-
formation makes them applicable to a wide range of prob-
lems. In these games, Nash equilibrium strategies are of-
ten used as a solution concept. Efficient algorithms exist
for finding Nash equilibria in two-player zero-sum games,
but these fail to scale to the very large games that result
from many human interactions (e.g., two-player limit Texas
hold’em poker, which has approximately 1018 game states).
In such large games, a variety of techniques are used to find
a strategy profile which approximates a Nash equilibrium.
In order to evaluate these techniques, researchers would like
to be able to measure the similarity of the resulting approxi-
mation with a Nash equilibrium.

Traditionally, performance against a worst-case adver-
sary, or exploitability, of a strategy is used as a proxy mea-
sure for this similarity. For examples, see Waugh et al.
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(2009a), Johanson et al. (2011), and Ganzfried, Sandholm,
and Waugh (2012). In a two-player zero-sum game, a Nash
equilibrium strategy is guaranteed to achieve maximal ex-
pected performance in the worst case. Thus, it is natural to
regard strategies with low exploitability (better performance
against a worst-case opponent) as being closer to a Nash
equilibrium than strategies with high exploitability (worse
performance against a worst-case opponent). However, as
Ganzfried, Sandholm, and Waugh identified, there are issues
with using exploitability as a measure of strategy strength or
with trying to find a strategy that is optimal with respect to
exploitability (2012).

Exploitability of a strategy is calculated by evaluating
the utility of the strategy playing against an opponent us-
ing a best-response function. In this paper, we show how
any response function can be used to define a real-valued
function for evaluating strategies. Johanson et al. modi-
fied an equilibrium-finding algorithm to instead find a strat-
egy which achieves maximal performance against a best-
response opponent (2012). We extend that approach to al-
ternative response functions with the algorithm CFR-f . We
prove that CFR-f converges for an intuitive family of re-
sponse functions. We further prove that CFR-f can be ex-
tended to non-deterministic response functions.

Using CFR-f , we can learn optimal static strategies for
playing against adaptive opponents. We show the value of
this technique by using it to learn strategies designed to beat
opponents who are responding to us with the UCT algo-
rithm. UCT is a Monte Carlo tree search algorithm which
makes use of regret minimization techniques from the multi-
armed bandit setting (Kocsis and Szepsvari 2006), and it has
been shown to be effective in complex games such as Go
(Gelly and Wang 2006). As a Monte Carlo algorithm, the
strength of UCT directly correlates with the number of sam-
ples it has of the opponent’s strategy. In a small poker game,
we are able to generate strategies which have better perfor-
mance when playing against UCT opponents than a Nash
equilibrium against the same opponents.

Background
An extensive-form game is a formalism for modeling se-
quential decision-making tasks. It uses a game tree repre-
sentation, where each node is a history h ∈ H , and each
edge is a player action or chance event. A player function
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P (h) assigns which player acts next at history h, by map-
ping each history either to a player i ∈ N or to c, a chance
player which mixes over actions according to a predefined
probability distribution. Each leaf of the tree is a termi-
nal history z ∈ Z at which each player i is assigned a
utility by a utility function as ui(z). If the game satisfies∑
i∈N ui(z) = 0 for every terminal history z, then it is said

to be zero-sum. The game is said to exhibit imperfect in-
formation if some actions or chance events are not observed
by all players. In such games, histories are grouped into in-
formation sets, where histories in the same information set
are indistinguishable by the player assigned to act at those
nodes.

A (behavioral) strategy for player i, σi ∈ Σi, is a function
which maps every information set at which i acts to a prob-
ability distribution over the actions i can play at the infor-
mation set. A strategy profile σ ∈ Σ is a set which contains
one strategy σi for each player i ∈ N . The subset of σ which
contains the strategies for all players except i is denoted σ−i.
The probability of reaching each terminal history is fully de-
termined by a strategy profile, so we can write the expected
utility for player i as ui(σ), or equivalently ui(σi, σ−i).

A Nash Equilibrium is a strategy profile in which no
player has incentive to deviate to a strategy that is not part
of the profile. Formally, σ is a Nash equilibrium if

ui(σ) ≥ ui(σ′i, σ−i),∀σ′i ∈ Σi,∀i ∈ N.
An ε-equilibrium is a strategy profile in which no player
can gain more than ε in expected utility by deviating.

In two-player zero-sum games, a result known as the min-
imax theorem holds:

v1 = max
σ1∈Σ1

min
σ2∈Σ2

u1(σ1, σ2) = min
σ1∈Σ1

max
σ2∈Σ2

u1(σ1, σ2).

v1 is called the game value for player 1. Because the game
is two-player and zero-sum, v2 = −v1 is the game value for
player 2. If σ is a Nash equilibrium in a two-player zero-sum
game, then ui(σ) = vi for i = 1, 2.

In an iterated game, regret refers to the difference in how
much an agent would have gained by playing a particular
fixed strategy at all time steps, minus their actual observed
utility. Given each player i plays strategy σti at time step t,
the average overall regret for player i at time T is

RTi =
1

T
max
σ∗
i ∈Σi

T∑
t=1

(
ui(σ

∗
i , σ

t
−i)− u1(σti , σ

t
−i)
)

Counterfactual Regret Minimization (CFR) is a state-of-
the-art algorithm for finding ε-equilibria in extensive-form
games (Zinkevich et al. 2007). CFR uses iterated self-play,
and works by minimizing a form of regret at each informa-
tion set independently.

Although CFR has been applied to games with approx-
imately 1011 information sets (Jackson 2012), it requires
memory linear in the number of information sets, and there
exist large games of interest that cannot be solved by any
equilibrium-finding algorithm with current computing re-
sources. Such games are typically approached using ab-
straction, in which a mapping is established from the infor-
mation sets in the large game to information sets in a smaller,

abstract game. The abstract game is solved with a technique
such as CFR, and the resulting strategy is mapped back to the
full game. A full treatment of abstraction in extensive-form
games, and particularly poker, can be found in (Johanson et
al. 2013).

CFR-BR is a modified form of CFR for use in abstract
games (Johanson et al. 2012). Instead of using self-play,
CFR-BR uses the CFR algorithm in the abstraction for one
player, while the other player is replaced with an opponent
that plays a best response to the CFR player in the full game.
Whereas running CFR in an abstract game converges to an
equilibrium for that abstraction, CFR-BR will converge to
the strategy that is least exploitable (in the full game) out of
all the strategies that can be expressed in the abstract game.

Using Exploitability to Evaluate Strategies
A best-response strategy is a strategy that achieves maximal
expected performance against a particular set of opponent
strategies. σi is a best-response to σ−i if

ui(σi, σ−i) ≥ ui(σ′i, σ−i), ∀σ′i ∈ Σi

In a two-player zero-sum game, the exploitability of a strat-
egy is how much expected utility a best-response opponent
can achieve above the game value:

exploit(σi) = max
σ∗
−i∈Σ−i

u−i(σi, σ
∗
−i)− v−i

= vi − min
σ∗
−i∈Σ−i

ui(σi, σ
∗
−i).

In large games, the game value may be intractable to com-
pute, so we instead consider the average exploitability of a
strategy profile:

exploit(σ) =
1

2
(exploit(σ1) + exploit(σ2))

=
1

2

(
max
σ∗
2∈Σ2

u2(σ1, σ
∗
2) + max

σ∗
1∈Σ1

u1(σ∗1 , σ2)

)
.

In a Nash equilibrium, each strategy must be a best-
response to the rest of the profile (or else the player would
have incentive to deviate to a best-response). Thus, a Nash
equilibrium σ has exploit(σ) = 0. The difference in ex-
ploitability between strategy profiles can be used as a metric
to compare them. Because we can use this metric to com-
pare a strategy profile to a Nash equilibrium even when we
know none of the action probabilities of the equilibrium, it
is a useful tool for measuring strategy strength in domains
where we can’t compute an equilibrium. However, there are
limitations to using the exploitability metric.

It is not possible to compute a best-response in all do-
mains. While best-response computation is simpler than
equilibrium computation, it is still intractable in many large
games. Only recent algorithmic advances have allowed the
computation of best-responses in limit Texas Hold’em poker
(approximately 1018 game states), and computation still
takes 76 cpu-days (Johanson et al. 2011). In much larger
games, like the variant of no-limit Texas Hold’em poker
which is used in the Annual Computer Poker Competi-
tion (approximately 1076 game states), computing a best-
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response is hopeless. In addition, no efficient algorithm ex-
ists for computing a best-response in games exhibiting im-
perfect recall. In games with imperfect recall, players can
forget information that they had previously known about the
game state. Such games are commonly used when creating
abstractions (Waugh et al. 2009b).

There are also issues with the quality of exploitability as
a measure of strategy strength. Exploitability measures the
worst-case performance of a strategy, but not how easy it is
for the worst case to be found. In the large games we are
most concerned with, computing a best response is likely to
be too resource-intensive for the opponent to do online, even
if she has access to our full strategy. If she doesn’t have ac-
cess to our strategy and must learn it during game play, the
situation is even more bleak. Thus, as long as our strategy is
private, it is not clear that we need to worry about opponents
learning to maximally exploit it. However, some strategies
might be easier to exploit than others. A strategy that loses
the maximum whenever the opponent makes a particular ac-
tion at her first information set will be evaluated the same
under exploitability as a strategy that loses the same maxi-
mum, but only when the opponent plays one particular strat-
egy. It seems clear that it will be easier for an intelligent
opponent to learn to exploit the first strategy rather than the
second one.

These drawbacks have been observed in practice, as em-
pirical evidence suggests that exploitability is not a good
measure of strategy strength in one-on-one play. Waugh per-
formed an experiment with a pool of strategies in Leduc
Hold’em (a toy poker domain played with six cards and two
rounds of betting). Each pair of strategies was played against
each other to determine the expected utility for each strategy,
and then the strategies are ranked in two fashions: In the to-
tal bankroll ranking, strategies are ordered by their average
expected utility against all other strategies, and in the instant
runoff setting, the strategy with the worst expected utility is
iteratively removed until one winner remains. Waugh found
a correlation coefficient between exploitability and ranking
of only 0.15 for total bankroll and 0.30 for instant runoff
(2009). Johanson et al. evaluated several of the strategies
submitted to the limit Texas Hold’em event at the 2010 An-
nual Computer Poker Competition. The winner of the com-
petition by instant runoff ranking was more exploitable than
three of the strategies it defeated, and tended to have bet-
ter performance than these less exploitable strategies when
playing against the other agents (Johanson et al. 2011). Jo-
hanson et al. found that a strategy produced with CFR-
BR had worse one-on-one performance than a strategy pro-
duced with CFR in the same abstraction, despite the CFR-
BR strategy being less exploitable (2012). Bard, Johanson,
and Bowling found that when the size of an abstract game
is varied for only one player’s information sets, exploitabil-
ity and one-on-one performance are inversely correlated in
limit Texas Hold’em (2014).

Pretty-Good Responses
Given the limitations of exploitability, we propose new met-
rics for evaluating the strength of a strategy. In order to ad-
dress the shortcomings of exploitability, these new metrics

should be able to measure how difficult a strategy is to ex-
ploit. If σ is harder to exploit than σ′, there must be some op-
ponent that can effectively exploit σ′ but not σ. We thus pro-
pose using a response function f : Σ1 → Σ2 (without loss of
generality, we will assume player 2 is exploiting player 1 for
the remainder of this paper), so if the strategy being tested
is σ1, the opponent will play f(σ1). This response function
naturally induces a real-valued function which we call the
response value function. The response value function for f
is vf (σ1) = u1(σ1, f(σ1)). If f is an exploitive function, a
higher value for vf (σ1) implies that σ1 does better against an
opponent which tries to exploit it, so vf (σ1) should directly
correlate with some dimension of strategy strength for σ1.

It is unclear if one response value function is sufficient to
measure how difficult a strategy is to exploit. For instance,
consider response functions f1 and f2 which both exploit
the opponent, but f1 is better at exploiting opponents that
are harder to exploit. Consider applying these responses to
strategies σ1

1 , σ2
1 , and σ3

1 which have the same exploitabil-
ity, but σ1

1 is harder to exploit than σ2
1 , which is harder to

exploit than σ3
1 . It might be the case that vf1 cannot differ-

entiate between σ2
1 and σ3

1 because it achieves the maximum
against each strategy, and it might also be the case that vf2
cannot differentiate between σ1

1 and σ2
1 because it cannot

learn to exploit either strategy. In this case we need mul-
tiple response functions to fully evaluate the strategies. We
thus propose that instead of replacing exploitability with one
response function f , we instead use a set of response func-
tions. The response functions all attempt to exploit their op-
ponents, but with varying strength. On one end of the spec-
trum, we could have a response function that always plays
a static strategy, and on the other, we could have a best-
response function.

If vf (σ1) correlates with some dimension of strategy
strength, we would naturally like to be able to find a σ1 ∈ Σ1

that maximizes the value of vf (σ1). Inspired by how CFR-
BR minimizes the exploitability metric which arises from
the best-response function, we propose a new algorithm
CFR-f for generic response functions f . CFR-f is an it-
erated algorithm, where on iteration t the learning player
(the CFR-agent) plays σt1 as specificed by the CFR algo-
rithm. The other player (the response-agent) plays f(σt1).
The CFR-f algorithm is not guaranteed to converge to the
σ1 which maximizes vf (σ1) for every choice of f . We now
present a family of response functions for which CFR-f will
converge.
Definition 1. A function f : Σ−i → Σi is called a pretty-
good response if ui(σ−i, f(σ−i)) ≥ u1(σ−i, f(σ′−i)) for
all σ−i, σ′−i ∈ Σ−i. f is a δ-pretty-good response if
ui(σ−i, f(σ−i)) + δ ≥ u1(σ−i, f(σ′−i)) for all σ−i, σ′−i ∈
Σ−i.

A pretty-good response is a function that maximizes
the responder’s utility when she correctly hypothesizes
and responds to her opponents’ actual strategies. Every
pretty-good response f for player i can be associated with
a subset of strategies Σfi ⊆ Σi such that f(σ−i) =
argmaxσi∈Σf

i
ui(σ−i, σi). Any best-response function is a

pretty-good response (where Σfi = Σi). In addition, any re-
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sponse function that returns a best response in some abstract
game is also a pretty-good response in the full game.

If we are attempting to optimize with regards to vf , con-
sidering only pretty-good response functions makes intuitive
sense. In the two-player zero-sum case, if f is a pretty-good
response, then vf (σ1) will be a lower bound on our util-
ity when we play against any opponent that uses f , even if
that opponent can’t fully observe our strategy. With other
functions, no such guarantee holds. If an opponent using a
response function f that is not a pretty-good response mis-
takenly believes we are playing σ′1, she could play f(σ′1) and
cause us to lose utility. We now consider what is required for
CFR-f to converge to an optimal strategy with respect to vf .
Definition 2. Let f : Σ1 → Σ2 be a response function and
define σt2 = f(σt1) for t = 1, ..., T . f is called no-regret
learnable if for every sequence of strategies σ1

1 , σ
2
1 , ..., σ

T
1 ∈

Σ1 such that RT1 ≤ ε (where ε > 0), we have that

u1(σT1 , f(σT1 )) + ε ≥ max
σ∗
1∈Σ1

u1(σ∗1 , f(σ∗1))

where σT1 is the mixed strategy that mixes equally between
each of σ1

1 , ..., σ
T
1 . f is called no-regret δ-learnable if for

every sequence of strategies σ1
1 , σ

2
1 , ..., σ

T
1 ∈ Σ1 such that

RT1 ≤ ε (where ε > 0), we have that

u1(σT1 , f(σT1 )) + ε+ δ ≥ max
σ∗
1∈Σ1

u1(σ∗1 , f(σ∗1)).

Notice that if f is no-regret learnable, then σT1 is within
ε of achieving the maximal value of vf . Because CFR is a
regret-minimizing algorithm, we know thatRT1 converges to
zero if σ1

1 , ..., σ
T
1 are the strategies chosen by CFR. Thus if f

is no-regret learnable, the average strategy σT1 produced by
CFR-f will converge to the strategy achieving the maximal
value of vf . We show that pretty-good responses fulfill this
condition.
Theorem 1. Every f : Σ1 → Σ2 that is a pretty-good re-
sponse is no-regret learnable. Every f : Σ1 → Σ2 that is a
δ-pretty-good response is no-regret 2δ-learnable.

Proof.

max
σ∗
1∈Σ

u1(σ∗1 , f(σ∗1)) =
1

T
max
σ∗
1∈Σ1

T∑
t=1

u1(σ∗1 , f(σ∗1))

≤ 1

T
max
σ∗
1∈Σ1

T∑
t=1

(
u1(σ∗1 , f(σt1)) + δ

)
≤ 1

T

T∑
t=1

u1(σt1, f(σt1)) + ε+ δ

≤ 1

T

T∑
t=1

(
u1(σt1, f(σT1 )) + δ

)
+ ε+ δ

= u1(σT1 , f(σT1 )) + ε+ 2δ

We have established a family of deterministic response
functions which we can optimize our performance against.

However, we would also like to handle non-deterministic re-
sponse functions. Monte Carlo algorithms are good candi-
dates for the exploitive response functions we discussed at
the start of the section. As a Monte Carlo algorithm receives
more samples of its opponent, its ability to exploit that op-
ponent increases. Thus, if we use a set of Monte Carlo algo-
rithms which have a varying number of opponent samples,
they will also have varying exploitive strength against that
opponent. In order to handle such algorithms, we must ex-
tend our ideas to non-deterministic response functions. Such
a function maps a strategy σ1 to a probability distribution
over Σ2. Equivalently, we can work with a probability distri-
bution over response functions F ∈ ∆{f : Σ1→Σ2}. The idea
of a response value function still holds for such distributions:
vF (σ1) = Ef∼F [u1(σ1, f(σ1))]. The CFR-f algorithm can
be extended to a CFR-f algorithm which samples a response
function ft ∼ F on each iteration. We must also extend our
notions of pretty-good response and no-regret learnable.
Definition 3. Let F ∈ ∆{f : Σ−i→Σi} be a probability dis-
tribution over response functions. We say that F is an ex-
pected pretty-good response if

Ef∼F [ui(σ−i, f(σ−i))] ≥ Ef∼F [ui(σ−i, f(σ′−i))] (1)

for all σ−i, σ′−i ∈ Σ−i. We say that F is an expected δ-
pretty-good response if

Ef∼F [ui(σ−i, f(σ−i))] + δ ≥ Ef∼F
[
ui(σ−i, f(σ′−i))

]
(2)

for all σ−i, σ′−i ∈ Σ−i.
Definition 4. Let F ∈ ∆{f : Σ1→Σ2} be a probability distri-
bution over response functions, and define σt2 = ft(σ

t
1) for

t = 1, ..., T , where each ft ∼ F is chosen independently. F
is called no-regret learnable if for every sequence of strate-
gies σ1

1 , σ
2
1 , ..., σ

T
1 ∈ Σ1 such that RT1 ≤ ε, we have that

Ef∼F
[
u1(σT1 , f(σT1 ))

]
+ε ≥ max

σ∗
1∈Σ1

Ef∼F [u1(σ∗1 , f(σ∗1))]

F is called no-regret δ-learnable if we choose f1, ..., fT ∼
F independently and for every sequence of strategies
σ1

1 , σ
2
1 , ..., σ

T
1 ∈ Σ1 such that RT1 ≤ ε, we have that

Ef∼F
[
u1(σT1 , f(σT1 ))

]
+ε+ δ

≥ max
σ∗
1∈Σ1

Ef∼F [u1(σ∗1 , f(σ∗1))]

Let umax = maxσ1∈Σ1,σ2∈Σ2
u1(σ1, σ2) be the maxi-

mum expected utility that player 1 can achieve, umin =
minσ1∈Σ1,σ2∈Σ2 u1(σ1, σ2) be the minimum expected util-
ity that player 1 can achieve, and ∆1 = umax − umin be
the range of expected utilities. We now show that expected
pretty-good responses are no-regret learnable.
Theorem 2. Every F that is an expected δ-pretty-good re-
sponse is no-regret (2δ + γ)-learnable with probability at
least 1− 2 exp(−T

2γ2

2∆2
1

), where γ is a free parameter.

Proof. Let σ∗1 ∈ argmaxσ1∈Σ1
Ef∼F [u1(σ1, f(σ1))]. If we

assume each of the following:

Ef∼F

[
1

T

T∑
t=1

u1(σ∗1 , f(σt1))

]
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≤ 1

T

T∑
t=1

u1(σ∗1 , ft(σ
t
1)) +

1

2
γ (3)

1

T

T∑
t=1

u1(σt1, ft(σ
t
1))

≤ Ef∼F

[
1

T

T∑
t=1

u1(σt1, f(σt1))

]
+

1

2
γ (4)

then it follows that F is no-regret (2δ + γ)-learnable:

max
σ∗
1

Ef∼F [u1(σ∗1 , f(σ∗1))]

=
1

T

T∑
t=1

Ef∼F [u1(σ∗1 , f(σ∗1))]

≤ 1

T

T∑
t=1

Ef∼F
[
u1(σ∗1 , f(σt1))

]
+ δ

= Ef∼F

[
1

T

T∑
t=1

u1(σ∗1 , f(σt1))

]
+ δ

≤ 1

T

T∑
t=1

u1(σ∗1 , ft(σ
t
1)) + δ +

1

2
γ

≤ 1

T

T∑
t=1

u1(σt1, ft(σ
t
1)) + ε+ δ +

1

2
γ

≤ Ef∼F

[
1

T

T∑
t=1

u1(σt1, f(σt1))

]
+ ε+ δ + γ

≤ Ef∼F

[
1

T

T∑
t=1

u1(σt1, f(σT1 ))

]
+ ε+ 2δ + γ

= Ef∼F
[
u1(σT1 , f(σT1 ))

]
+ ε+ 2δ + γ

Thus we can bound the overall probability that F is not no-
regret (2δ+γ)-learnable by the probability that either (3) or
(4) is false. Because f1, ..., fT are chosen independently, we
can do this using Hoeffding’s Inequality.

Pr

[
Ef∼F

[
1

T

T∑
t=1

u1(σ∗1 , f(σt1))

]

− 1

T

T∑
t=1

u1(σ∗1 , ft(σ
t
1)) >

1

2
γ

]
≤ exp

(
−T

2γ2

2∆2
1

)

Pr

[
1

T

T∑
t=1

u1(σt1, ft(σ
t
1))

−Ef∼F

[
1

T

T∑
t=1

u1(σt1, f(σt1))

]

≥ 1

2
γ

]
≤ exp

(
−T

2γ2

2∆2
1

)
The probability that either event is true is no more than their
sum, which gives us the result.

Even if F is not a pretty-good response in expectation, it
can be no-regret learnable if there is only a low probability
p that it is not a pretty-good response. In this case, however,
CFR-f does not converge fully to the optimal strategy ac-
cording to vF , but is only guaranteed to converge to a strat-
egy that is within 2p∆1 of optimal.

Theorem 3. Let F ∈ ∆{f : Σ1→Σ2} be a probability distri-
bution over response functions such that for any σ1, σ

′
1 ∈

Σ1, we have that u1(σ1, f(σ1)) ≤ u1(σ1, f(σ′1)) with
probability at least 1 − p given that f ∼ F . Then F is
no-regret (2p∆1 + γ)-learnable with probability at least
1− 2 exp(−T

2γ2

2∆2
1

), where γ is a free parameter.

Proof.

Ef∼F [u1(σ1, f(σ1))]

≤ Ef∼F [u1(σ1, f(σ′1))|u1(σ1, f(σ1)) ≤ u1(σ1, f(σ′1))]

∗ Pr [u1(σ1, f(σ1)) ≤ u1(σ1, f(σ′1))]

+ umax (1− Pr [u1(σ1, f(σ1)) ≤ u1(σ1, f(σ′1))])

= Ef∼F [u1(σ1, f(σ′1))]

− Ef∼F [u1(σ1, f(σ′1))|u1(σ1, f(σ1)) > u1(σ1, f(σ′1))]

∗ (1− Pr [u1(σ1, f(σ1)) ≤ u1(σ1, f(σ′1))])

+ umax (1− Pr [u1(σ1, f(σ1)) ≤ u1(σ1, f(σ′1))])

≤ Ef∼F [u1(σ1, f(σ′1))]

− umin (1− Pr [u1(σ1, f(σ1)) ≤ u1(σ1, f(σ′1))])

+ umax (1− Pr [u1(σ1, f(σ1)) ≤ u1(σ1, f(σ′1))])

≤ Ef∼F [u1(σ1, f(σ′1))] + ∆1 (1− (1− p))
= Ef∼F [u1(σ1, f(σ′1))] + p∆1

Thus F is an expected p∆1-pretty-good response, and the
result follows by Theorem 2.

Using CFR-f , we can learn static strategies that are close
to optimal for playing against certain adaptive opponents.
However, there are widely used response agents that don’t
fit within the framework of pretty-good responses. We now
show experimentally that CFR-f can generate empirically
strong strategies against one such agent that has been used
to construct effective strategies in several domains, but does
not fit into the framework of the above theory.

Experimental Results
We tested the technique of CFR-f in the game of limit Leduc
Hold’em. Leduc Hold’em is a small poker game, which is
played with a deck containing two cards each of three dif-
ferent suits. Each player is randomly dealt one private card
and there is a betting round. Then a community card is dealt
publicly, and another betting round occurs. The player with
the best two card poker hand using his private card and the
public card wins the game. For full details, see Waugh et al.
(2009a).

For the response function in CFR-f , we used the UCT al-
gorithm, resulting in an algorithm we refer to as CFR-UCT.
For each iteration t of CFR-UCT, we ran a CFR update for
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the CFR-agent to create strategy σt1, then we used UCT to
train a response to σt1. On each iteration the UCT-agent cre-
ated an entirely new game tree, so the response depended
only on σt1. We gave the UCT-agent k iterations of the UCT
algorithm, each of which correspond to one sample of σt1,
where k is a parameter of CFR-UCT. Through the UCT it-
erations, the UCT-agent formed an observed single-player
game tree, which we then used to form a static response
strategy ft(σt1).

Because of the Monte Carlo nature of UCT, it will return
a fully random response strategy when k = 0, and as k goes
to infinity it will converge to a best-response. Empirically
UCT transitions smoothly between these extremes as k in-
creases (Kocsis and Szepsvari 2006). Because of this rela-
tionship, we can generate a collection of responses that ex-
ploit σ1 to varying degrees by training UCT with various val-
ues of k. This makes UCT potentially useful as a source of
response functions for evaluating strategy strength, and thus
we would like to use CFR-UCT to generate strategies that
are optimal against UCT opponents. However, UCT does not
fit nicely into the pretty-good response framework, since we
have no guarantees on the utility of the strategy it generates.
We therefore have no theoretical guarantees on the quality
of the strategy that CFR-UCT outputs.

We trained CFR-UCT(k) strategies for a range of k val-
ues. We also trained a ε-equilibrium with CFR, resulting in a
strategy that is exploitable for .002 bets/game. Against each
of these strategies, we used UCT to train counter-strategies
with a variety of k values and played the strategies against
the counter-strategies. Because UCT is a Monte Carlo algo-
rithm and inherently noisy, we averaged the values over 100
independent runs of UCT.

Figure 1 shows the results of playing CFR-UCT(1000),
CFR-UCT(10000), CFR-UCT(100000), and the ε-
equilibrium against UCT counter-strategies trained using a
range of k values. Figure 2 shows similar data, but now with
more k values for CFR-UCT represented on the x-axis, and
also shows how the CFR-UCT strategies do in one-on-one
play against the ε-equilibrium and against a best response.

From the results we can see that for any k2 ≤ k1, the strat-
egy produced by CFR-UCT(k1) will achieve higher value
than an ε-equilibrium in one-on-one play against UCT(k2).
We have thus shown that using CFR-f , we can learn to
do better against adaptive opponents than we would do by
playing an optimal strategy for the game. In addition, we
have shown that CFR-f can converge to an effective strat-
egy against an opponent not covered by the pretty-good re-
sponse theory. Despite being highly exploitable, the CFR-
UCT strategies lose only a small amount in one-on-one play
against an ε-equilibrium, and do not lose to the weaker UCT
counter-strategies which are actively trying to exploit them,
indicating that they are difficult to exploit, a strength not
shown via the exploitability metric. The UCT(k2) strategies
where k2 is much larger than the k1 value used to train CFR-
UCT(k1) are able to successfully exploit the CFR-UCT(k1)
strategies, whereas UCT(k) strategies for smaller k are not
able to do so, which lends credence to our conjecture that us-
ing a range of k values gives us a set of response functions
which are able to exploit the opponent with varying strength.

-0.5

 0

 0.5

 1

 1.5

1 10 100 1000 10000 1000001000000

V
al

ue
 A

ga
in

st
 U

C
T 

C
ou

nt
er

-S
tra

te
gy

 (b
et

s/
ga

m
e)

UCT Counter-Strategy Iterations

CFR-UCT(1000)
CFR-UCT(10000)

CFR-UCT(100000)
ε-equilibrium

Figure 1: Performance of CFR-UCT strategies and an ε-
equilibrium against UCT counter-strategies, as the counter-
strategy uses more UCT iterations.
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Figure 2: Performance of CFR-UCT(k) strategies against a
variety of opponents as the k value is increased.

Conclusion
We have demonstrated that the exploitability metric leaves
much to be desired as a measure of strategy strength. By
using other metrics to complement it, we can measure not
only a strategy’s worst-case performance, but also how dif-
ficult the strategy is to exploit. We have shown how such
metrics can arise from the response value functions induced
by response functions, and we examined a family of such
response functions that we can learn to optimize with re-
gards to. We demonstrated the validity of our CFR-f algo-
rithm for optimizing against an opponent that is adaptive and
exploitive by using it to learn strategies to defeat UCT op-
ponents in the domain of Leduc Hold’em poker. Our results
also reinforced the notion that exploitability is incomplete as
a measure of strategy strength, and that how difficult a strat-
egy is to exploit is a key factor in its performance in actual
one-on-one competition.
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