Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search

Paper by Rémi Coulom, CG 2006

Presented by Markus Enzenberger.
Go Seminar, University of Alberta.

June 20, 2006
Introduction

Algorithm Structure

Selectivity
 Background
 Crazy Stone’s Algorithm

Backup Method
 Value Backup
 Uncertainty Backup

Random Simulations
 Urgencies
 Useless Moves
 Performance

Game Results

Conclusion
Introduction

- 9×9 Go less complex than chess, but:
Introduction

- 9×9 Go less complex than chess, but:
 - Difficulty of creating a static position evaluator
 - No easy way to use quiescence search
 - Most positions are very dynamic
Introduction

- **9×9 Go less complex than chess**, but:
 - Difficulty of creating a static *position evaluator*
 - No easy way to use *quiescence search*
 - Most positions are very *dynamic*

- **Monte-Carlo evaluation** as an alternative
Introduction

- \(9 \times 9\) Go less complex than chess, but:
 - Difficulty of creating a static position evaluator
 - No easy way to use quiescence search
 - Most positions are very dynamic

- Monte-Carlo evaluation as an alternative
 - Choose random actions; average outcomes
 - Can be improved with tree search
 - Pruning methods (→ Bouzy)
 - Methods with better asymptotic behaviour for MDPs (→ Chang, Fu, Marcus)
Introduction

- 9×9 Go less complex than chess, but:
 - Difficulty of creating a static position evaluator
 - No easy way to use quiescence search
 - Most positions are very dynamic
- Monte-Carlo evaluation as an alternative
 - Choose random actions; average outcomes
 - Can be improved with tree search
 - Pruning methods (→ Bouzy)
 - Methods with better asymptotic behaviour for MDPs (→ Chang, Fu, Marcus)
- This paper presents a new algorithm for combining Monte-Carlo evaluation with tree search
Algorithm Structure

- Simulations produce tree stored in memory
Algorithm Structure

- Simulations produce tree stored in memory
 - Nodes store average and variance of final score
 - Store only nodes with parent visited more than once
 - Nodes with visit counts above a threshold are internal nodes
Algorithm Structure

- Simulations produce tree stored in memory
 - Nodes store average and variance of final score
 - Store only nodes with parent visited more than once
 - Nodes with visit counts above a threshold are internal nodes

- Sampling of positions
Algorithm Structure

- Simulations produce a tree stored in memory
 - Nodes store average and variance of final score
 - Store only nodes with parent visited more than once
 - Nodes with visit counts above a threshold are internal nodes

- Sampling of positions
 - Internal nodes according to value (selectivity)
 - Other positions according to urgency
Algorithm Structure

- Simulations produce tree stored in memory
 - Nodes store average and variance of final score
 - Store only nodes with parent visited more than once
 - Nodes with visit counts above a threshold are internal nodes
- Sampling of positions
 - Internal nodes according to value (selectivity)
 - Other positions according to urgency
- Approach similar to algorithm of Chang, Fu, Marcus

Advantages over Bouzy’s method:
Algorithm Structure

- Simulations produce **tree** stored in memory
 - Nodes store **average** and **variance** of final score
 - Store only nodes with parent visited **more than once**
 - Nodes with visit counts above a threshold are **internal nodes**
- **Sampling of positions**
 - Internal nodes according to value (**selectivity**)
 - Other positions according to **urgency**
- **Approach similar to algorithm of Chang, Fu, Marcus**
- **Advantages** over Bouzy’s method:
 - **Anytime** algorithm
 - **Converges** to optimal move

Paper by Rémi Coulom, CG 2006

Efficient Selectivity and Backup Operators in MC Tree Search
Selectivity

- Allocate simulations at every node
- Search good looking moves deeper; bad moves less
Most selectivity algorithms in Monte-Carlo rely on central limit theorem (error σ^2/N)
Most selectivity algorithms in Monte-Carlo rely on central limit theorem (error σ^2/N)
→ but in tree search probabilities are altered
Most selectivity algorithms in Monte-Carlo rely on central limit theorem (error σ^2/N)
→ but in tree search probabilities are altered

Don't let sampling go to zero
Introduction

Algorithm Structure

Selectivity

Backup Method

Random Simulations

Game Results

Conclusion

Background

Most selectivity algorithms in Monte-Carlo rely on central limit theorem (error σ^2/N)
→ but in tree search probabilities are altered

Don’t let sampling go to zero

n-armed bandit problems

minimize selection of non-optimal moves during simulations
Most selectivity algorithms in Monte-Carlo rely on central limit theorem (error σ^2/N) → but in tree search probabilities are altered

Don’t let sampling go to zero

- n-armed bandit problems minimize selection of non-optimal moves during simulations → not required in tree search
Most selectivity algorithms in Monte-Carlo rely on the central limit theorem (error σ^2/N)
but in tree search probabilities are altered

Don't let sampling go to zero

n-armed bandit problems
minimize selection of non-optimal moves during simulations
\rightarrow not required in tree search

Discrete stochastic optimization
optimize final decision
Most selectivity algorithms in Monte-Carlo rely on central limit theorem (error σ^2/N) → but in tree search probabilities are altered

- Don’t let sampling go to zero
 - n-armed bandit problems
 minimize selection of non-optimal moves during simulations → not required in tree search
 - Discrete stochastic optimization
 optimize final decision
 → only wanted for root node in tree search
Crazy Stone’s Algorithm

Objective: obtain **accurate backed-up value**.
Crazy Stone’s Algorithm

Objective: obtain accurate backed-up value.

Sample according to probability of being better than current best move.
Crazy Stone’s Algorithm

- **Objective:** obtain accurate backed-up value.
- **Sample according to probability of being better than current best move**

\[u_i = \exp(-2.4 \frac{\mu_0 - \mu_i}{\sqrt{2(\sigma_0^i + \sigma_i^i)}}) + \epsilon_i \]

- **Assume Gaussian distributions**
- **Resembles Boltzmann distributions** often used in \(n \)-armed bandit problems
Crazy Stone’s Algorithm

- ϵ_i is an empirical constant to avoid that probability goes to zero

$$
\epsilon_i = \frac{0.1 + 2^{-i} + a_i}{N}
$$
\(\epsilon_i \) is an empirical constant to avoid that probability goes to zero

\[
\epsilon_i = \frac{0.1 + 2^{-i} + a_i}{N}
\]

\(a_i = \begin{cases}
1 & \text{move } i \text{ is atari} \\
0 & \text{otherwise}
\end{cases} \)

Increase sampling of atari moves, because they require a follow-up move and their true value might be underestimated.
Backup method for external nodes

\[\mu = \frac{\Sigma}{S} \]

\[\sigma^2 = \frac{\Sigma_2 - S\mu^2 + 4P^2}{S + 1} \]

\(P \) points on board; \(\Sigma_2 \) sum squared values of this node;
\(\Sigma \) sum values; \(S \) number simulations

High prior variance for rarely explored nodes
Backup Method

What is the best backup method for internal nodes?
Backup Method

- What is the best backup method for internal nodes?
- Mean
Backup Method

- What is the best backup method for internal nodes?
- Mean
 - Use same method as for external nodes
 - Best move dominates in the long term
 - Simple, but inefficient
 - For random variables, expected maximum is not sum of values weighted by probability to be the best
 - Underestimates node value
Backup Method

- What is the best backup method for internal nodes?
 - **Mean**
 - Use same method as for external nodes
 - Best move dominates in the long term
 - Simple, but inefficient
 - For random variables, expected maximum is not sum of values weighted by probability to be the best
 - Underestimates node value
 - **Max**
Backup Method

- What is the best backup method for internal nodes?

 - Mean
 - Use same method as for external nodes
 - Best move dominates in the long term
 - Simple, but inefficient
 - For random variables, expected maximum is not sum of values weighted by probability to be the best
 - Underestimates node value

 - Max
 - Low number of simulations \rightarrow noisy values
 - Move with best value is likely to be most lucky move
 - Overestimates node value
- Update probability distributions
Update probability distributions

- Assumes independence of distributions
 → not true in tree search
- Update probability distributions
 - Assumes independence of distributions
 → not true in tree search
- Robust max
- Update probability distributions
 - Assumes independence of distributions
 \[\rightarrow \text{not true in tree search} \]

- Robust max
 - Backup value with maximum number of games
 - Most of the time it is move with best value
 - Otherwise better not backup less searched move
Update probability distributions

- Assumes independence of distributions
 → not true in tree search

Robust max

- Backup value with maximum number of games
- Most of the time it is move with best value
- Otherwise better not backup less searched move

Mix
Update probability distributions
 Assumes independence of distributions
 → not true in tree search

Robust max
 Backup value with maximum number of games
 Most of the time it is move with best value
 Otherwise better not backup less searched move

Mix
 Linear combination between Robust max and Mean
 Refinements for situations where mean is superior to max
Mix algorithm

```c
float MeanWeight = 2 * WIDTH * HEIGHT;
if (Simulations > 16 * WIDTH * HEIGHT)
    MeanWeight *= float(Simulations) / (16 * WIDTH * HEIGHT);

float Value = MeanValue;
if (tGames[1] && tGames[0])
{
    float tAveragedValue[2];
    for (int i = 2; --i >= 0;)
        tAveragedValue[i] =
            (tGames[i] * tValue[i] + MeanWeight * Value) / (tGames[i] + MeanWeight);

    if (tGames[0] < tGames[1])
    {
        if (tValue[1] > Value)
            Value = tAveragedValue[1];
        else if (tValue[0] < Value)
            Value = tAveragedValue[0];
    } else
        Value = tAveragedValue[0];
else
    Value = tValue[0];
return Value;
```

Fig. 1. Value-backup algorithm. The size of the goban is given by “WIDTH” and “HEIGHT”. “Simulations” is the number of random games that were run from this node, and “MeanValue” the mean value of these simulations. Move number 0 is the best move, move number 1 is the second best move or the move with the highest number of games, if it is different from the two best moves. tValue[i] are the the backed-up values of the moves and tGames[i] their numbers of simulations.
Backup experiments

- Run number of simulations (S) for different backup methods
- Compute mean error and mean squared error
- “True value”: value with best backup method at $2S$ simulations
Results

<table>
<thead>
<tr>
<th>Simulations</th>
<th>Mean</th>
<th>Max</th>
<th>Robust Max</th>
<th>Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sqrt{\langle \delta^2 \rangle}$</td>
<td>$\langle \delta \rangle$</td>
<td>$\sqrt{\langle \delta^2 \rangle}$</td>
<td>$\langle \delta \rangle$</td>
</tr>
<tr>
<td>128</td>
<td>6.44</td>
<td>-3.32</td>
<td>41.70</td>
<td>37.00</td>
</tr>
<tr>
<td>256</td>
<td>7.17</td>
<td>-4.78</td>
<td>25.00</td>
<td>22.00</td>
</tr>
<tr>
<td>512</td>
<td>7.56</td>
<td>-5.84</td>
<td>14.90</td>
<td>12.70</td>
</tr>
<tr>
<td>1,024</td>
<td>6.26</td>
<td>-4.86</td>
<td>9.48</td>
<td>7.91</td>
</tr>
<tr>
<td>2,048</td>
<td>4.38</td>
<td>-3.15</td>
<td>6.72</td>
<td>5.37</td>
</tr>
<tr>
<td>4,096</td>
<td>2.84</td>
<td>-1.55</td>
<td>4.48</td>
<td>3.33</td>
</tr>
<tr>
<td>8,192</td>
<td>2.23</td>
<td>-0.62</td>
<td>2.78</td>
<td>1.47</td>
</tr>
<tr>
<td>16,384</td>
<td>2.34</td>
<td>-0.57</td>
<td>2.45</td>
<td>0.01</td>
</tr>
<tr>
<td>32,768</td>
<td>2.15</td>
<td>-0.52</td>
<td>2.19</td>
<td>0.10</td>
</tr>
<tr>
<td>65,536</td>
<td>2.03</td>
<td>-0.50</td>
<td>1.83</td>
<td>0.23</td>
</tr>
<tr>
<td>131,072</td>
<td>2.07</td>
<td>-0.54</td>
<td>1.80</td>
<td>0.25</td>
</tr>
<tr>
<td>262,144</td>
<td>1.85</td>
<td>-0.58</td>
<td>1.49</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Paper by Rémi Coulom, CG 2006 | Efficient Selectivity and Backup Operators in MC Tree Search
Uncertainty Backup

- Use data of backup experiments
- Approximate with

\[
\frac{\sigma^2}{\min(500, S)}
\]
Random Simulations

- **Simplest** method:
 select moves *uniformly* at random, if legal and not eye-filling
Random Simulations

- **Simplest** method: select moves uniformly at random, if legal and not eye-filling.

- **Improvement:** probability distribution uses domain specific knowledge. Assign urgencies and select moves with probability proportional to urgency.
Urgencies

- **Illegal or completely surrounded** by own stones (not atari)
 → urgency = 0 (final)
 (full false-eye detection to slow)
Urgencies

- Illegal or completely surrounded by own stones (not atari)
 → urgency = 0 (final)
 (full false-eye detection to slow)
- otherwise: → urgency = 1
Urgencies

- **Illegal or completely surrounded** by own stones (not atari)
 → urgency = 0 (final)
 (full false-eye detection to slow)
- otherwise: → urgency = 1
- **only liberty of own block** (size S)
 → urgency += $1000 \times S$
 unless hopeless extension
 - at most one contiguous empty point
 - no opponent string in atari
 - no own string not atari
▶ only liberty of opponent block
→ urgency += 10000 × S
unless hopeless extension
Urgencies

- only liberty of opponent block
 → urgency += 10000 \times S

unless hopeless extension
if opponent block adjacent to own block in atari
 → urgency += 100000 \times S
Useless Moves

Some moves are, if selected, replaced by a different move

- **Create eye**: if surrounded by own stones of a single string and one empty point, which is liberty of the same string
 → play on this liberty
Useless Moves

Some moves are, if selected, replaced by a different move

- **Create eye**: if surrounded by own stones of a single string and one empty point, which is liberty of the same string → play on this liberty

- **Surrounded by opponent stones and one empty point**, move does not change atari status of opponent blocks → play on empty point
Move creates string in atari (more than one stone)
 - if urgency ≥ 1000:
 \rightarrow urgency = 1, repeat move selection
 - string had a string in atari adjacent
 \rightarrow capture string in atari instead
 - string had two liberties before move
 \rightarrow play other liberty instead
Performance

- Athlon 3400+
- 64-bit GCC 4.0.3
- 17000 games/sec on empty 9×9
Game Results

<table>
<thead>
<tr>
<th>Player</th>
<th>Opponent</th>
<th>Winning Rate</th>
<th>Komi</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrazyStone (5 min / game)</td>
<td>Indigo 2005 (8 min / game)</td>
<td>61% (±4.9)</td>
<td>6.5</td>
</tr>
<tr>
<td>Indigo 2005 (8 min / game)</td>
<td>GNU Go 3.6 (level 10)</td>
<td>28% (±4.4)</td>
<td>6.5</td>
</tr>
<tr>
<td>CrazyStone (4 min / Game)</td>
<td>GNU Go 3.6 (level 10)</td>
<td>25% (±4.3)</td>
<td>7.5</td>
</tr>
<tr>
<td>CrazyStone (8 min / Game)</td>
<td>GNU Go 3.6 (level 10)</td>
<td>32% (±4.7)</td>
<td>7.5</td>
</tr>
<tr>
<td>CrazyStone (16 min / Game)</td>
<td>GNU Go 3.6 (level 10)</td>
<td>36% (±4.8)</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Table 2. Match results, with 95% confidence intervals
Conclusion

- New efficient **backup method** for MC tree search
Conclusion

- New efficient **backup method** for MC tree search
- **Good performance** in 9×9 Go tournaments
Conclusion

- New efficient backup method for MC tree search
- Good performance in 9×9 Go tournaments
- Future research
Conclusion

- New efficient backup method for MC tree search
- Good performance in 9×9 Go tournaments
- Future research
 - Improve selectivity and uncertainty backup
Conclusion

▶ New efficient backup method for MC tree search
▶ Good performance in 9×9 Go tournaments
▶ Future research
 ▶ Improve selectivity and uncertainty backup
 ▶ Use stochastic optimization algorithms at root node
Conclusion

- New efficient backup method for MC tree search
- Good performance in 9×9 Go tournaments
- Future research
 - Improve selectivity and uncertainty backup
 - Use stochastic optimization algorithms at root node
 - Overcome tactical weaknesses by game specific knowledge in random simulations
Conclusion

- New efficient backup method for MC tree search
- Good performance in 9×9 Go tournaments
- Future research
 - Improve selectivity and uncertainty backup
 - Use stochastic optimization algorithms at root node
 - Overcome tactical weaknesses by game specific knowledge in random simulations
 - Scale to 19×19
 Use high-level goals instead of global search