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Life in the Game of Go 

DAVID B. BENSON* 

ABSTRACT 

The Oriental game of Go contains a unique method by which pieces, called stones, are 
captured and made safe from capture. A group of stones safe from capture is called safe, 
uncon~tion~y alive, or similar terms. Life or its lack can be determined by lookahead 
through the game tree, at some expense. We present a graph-theoretic static anaiysis of the 
board arrangement which determines unconditional life or its lack, together with proofs 
of its equivalency to look ahead. An algorithm for the static evaluation is given and we argue 
that it is the preferable method for computer Go play. These results constitute the fust 
realistic theorems in the theory of Go. 

1. INTRODUCTION 

The Oriental game of Go has been analyzed by Thorp and Walden [ 13,141 
to determine precise rules, thereby making possible computer studies of the 
game. There is some interest in using Go to study problems of artificial intelli- 
gence, or just to play Go on the computer for its own sake. Dowsey [l] reviews 
the current situation. 

One of the dift%xlties for both human and computer players of Go is deter- 
mining when a group of pieces, called stones, is impossible to capture by the 
opponent, although the player makes no move to save them. This situation is 
called unconditional life, and its determination is crucial for intelligent play. 
The rules of the game [ 14,4] , while completely determinate in this regard, give 
such latitude of play that the determ~ation of unconditional life may tax the 
computational abilities of human or machine. 

One method to determine unconditional life is to carry out the game tree 
lookahead with restrictions on the possible moves. In spite of these severe 
restrictions, even the simplest unconditional life situations may require looking 
at 30 subsequent arrangements. (The terminology follows Thorp and Walden 
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[ 141). This is a difficult task for human players, and while feasible on a computer, 
it is such a small part of the overall strategy and tactics of the game, although 
very important, that a better algorithm is called for. 

The second method is to determine derived graph properties of the arrange- 
ment. If certain conditions hold, then the group has unconditional life. It is 
obvious from my own experience and from the literature on Go (Haruyama and 
and Nagahara (21, Segoe [ 1 l] , and the other citations in the bibliography) that 
this pattern-recognition approach, as well as lookahead, is used by human players. 

This note formalizes this static determination of unconditional life and proves 
that the conditions stated are equivalent to safety. The computational tract- 
ability of the static determination for unconditional life, together with other 
properties of the game obtained along the way, appear to make it preferable to 
lookahead in computer play. 

2. NOTATION AND RULES 

Our notation generally follows that of Thorp and Walden [ 141. We have 
avoided using common Go terms in certain cases, since the imprecise common 
terminology does not exactly fit our analysis. The main difficulty is with the 
terms eye and group or army. These are used so disparately that we felt it best 
to avoid them. Unfortunately, no substitute for eye is obviously appropriate, so 
we give it a technical meaning related to the common terminology. 

The aspects of Go important here will be formalized via graphs. A board is a 
M X N array of intersections. Each intersection is a vertex of the board graph. 
There is an edge between two intersections just in case ei,ther the x coordinates 
are equal and they coordinates differ by one, or they coordinates are equal 
and the x coordinates differ by one. For M = 2 and N = 3 the board graph is 
given in Fig. 1. 

III 
Fig. 1 

In the usual way, two intersections are adjacent if there is a single edge between 
them. An arrangement is a function from the set of intersections I to the set of 
possible states of each intersection, Y = {black, white, empty} . Denote arrange- 

mentsbya:Z+ .Y.Foreachxe Y,a-’ (x) is the set of intersections in state 
x. Two intersections, not necessarily distinct, are state-connected if they are in 
the same state and there is a path between them, possibly of length zero, such 
that every intersection in the path is in the same state. State-connectedness is an 
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equivalence relation partitioning I into blocks. For each x E V let B(x) be the 
set of blocks for state x, i.e., every intersection in every block of B(x) is in state 
x. A block of stones, that is a block in state black or a block in state whife, is 
frequently called a group or army. However, these latter two terms also have 
other meanings in the Go literature and will not be used here. Figure 2 shows 
an arrangement of two black, one white and four empty blocks. 

Fig. 2 

A region is any set of intersections forming a connected subgraph of the 
board. For every pair of intersections in a region, there is a path between them 
lying entirely within the region. Clearly every block is a region. An intersection 
is in the interior of a region R if every adjacent intersection is in the region, 
symbolized Znt (R). Otherwise, an intersection of R is on the border. The imme- 
diate exterior of a region R, Ext (R), is the set of all intersections not in R 
which are adjacent to any intersection in R. 

Let E be the set of empty intersections, E = a- ’ (empty). The liberties of a 
block b are the intersections in the set L(b) = Ext(b) fl E. That is, a liberty is 
an empty intersection adjacent to the block. If the block b is empty, L (b) = 9. 

A game is a sequence of arrangements (co, al , . . . , s) subject to the rules. 

RULE 0 (a). For all i E Z, a0 (i) = emp@, a0 (I) = {empty} . 

(b). For all k, azk and azk + , differ by the addition of at most one 

black stone and the deletion of white stones subject to Rule 1, while azk + I and 

azk + 2 differ by the addition of at most one white stone and the deletion of 
black stones subject to Rule 1. 

This rule states that the game begins with an empty board and that black and 
white alternate by placing stones on empty intersections or else passing. In n- 
handicap Go this rule is replaced by another in which the initial arrangement con- 
tams n black stones at intersections specified by the rules while white plays the 
first move. See Tilley [ 151. 

RULE 1 (CAPTURE). If a block b of x-stones has exactly one liberty, # L(b) = 1, 
and 5 (the other player) may play in the liberty, then upon doing so the block 
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b is captured and removed from the board. Formally, if uk is the arrangement 
before capture, then 

ak+l(l-CbUL(b)))=uk(l-(btJLIb))), 

ak + 1 (b) = {empiy} , 

RULE 2 (NO SUXCIDE). if a block b of x-stones has exactly one liberty, #L (b) = 1, 
and there is no Z block b’ such that L (b’) = L (b), then x may not play at L(b). 

There are other rules, for which see Thorp and Walden (1972), but these three 
suffice for the present analysis. In particular, there is no need to consider the 
rules covering repetitive ~r~~rnents such as Ko, since the only concern is for 
unconditional safety. 

3. SAFE BLOCKS 

DEFINITION. Let b be an x-block in arrangement ak. Consider all subsequent 

aK~gements d such that x passes on every turn. These ~r~~rnents form a 
tree rooted in ak . Each path from the root is denoted by uk, tzk + 1, ak + 2 , . . . ,un. 

If block b remains on the board in all arrangements in d , then b is safe. 
This definition is intended to capture the intuitive notion of unconditional 

life. x does not play at all, so cannot hinder attempts by X to capture b. By this 
definition we have no need to consider stupid plays by x which put a safe biock 
in danger of capture. In Fig., 3 the black block is safe, since white may not play 
in either of black’s liberties due to the “no suicide” rule. 

Fig. 3 

The obvious algorithm for determining whether a block b is safe is to attempt 
to play X stones on the Intersections of L (b). If there is no legal sequence of T 
plays which capture b, b is safe. In Fig. 3 the block has only two liberties. In 
Fig. 4 the full tree of sequences of legal moves in L (blrrck) has 4! leaves. While 
the full search tree may be pruned by some elementary considerations of 
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“inside” and “outside” liberties, in more complex situations the lookahead 
requirement is still large. In Fig. 5 the three black blocks are safe. The determina- 
tion by lookahead requires filling three outside liberties, one inside liberty (in 
the comer) followed by six attempts to capture, two for each block. 

Fig. 4 

Fig. 5 

There is a concept related to safe used in actual play, whigh might be called 
almost always safe. An x-block is almost always safe if in any sequence of sub- 
sequent arrangements X must play against the block n times, for n > 1, before 
x needs to respond in order to make his block safe. In this situation X would lose 
points trying to capture immediately, so the situation would be left as it is until 
nearer the end of the game. At some point x may need to play to make his 
block safe, depending on the exact arrangement. Almost always safe blocks are 
not studied here. Our interest is in the static evaluation of safety, a considerably 
easier problem. 

4. UNCONDITIONAL LIFE 

The static determination of life requires additional concepts. 

DEFINITION. A small x-enclosed region R is a region such that 

(1) No x-stone is in R. x qa(R). 
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(2) R is surrounded by x-stones, a(Ext (R)) = {x) . 
(3) Each intersection of the region is on the border or contains an Y-stone or 

both, hence a(ht(R)) E ( 2) . 

DEFINITION. A region R is healthy for block b, symbolized H(R, b), if R is a 
small x-enclosed region such that every empty intersection in R is a liberty of 
b, R f-lEEL(b). 

Fig. 6 

The small black-enclosed region in Fig. 6 is not healthy for either black 
block. Provided black passes, either black block may be captured without captur- 
ing the other. 

Fig. 7 

The empty region in Fig. 7 is healthy for both black blocks. However, neither 
black block is safe since white may fill all the empty intersections, capturing 
both black blocks on the third move. For safety, black requires two distinct 
healthy regions with additional properties. 

DEFINITION. Let iVB(R) be the set of blocks neighboring region R, NB(R) = 

{b IExt(b) nR # #} 

DEFINITION. Let X be a set of x-blocks wiwb E X. If R is healthy for b, H(R,b), 
and all blocks neighboring R are in X, NB(R) C X, then R is vital to b in X, 
V(R,b,X). 
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DEFINITION. Let X be a set of X-blocks, X E B(X), such that all b e X have two 
distinct vital regions, i.e., 3 Rr,R2, RI ZRz suchthat Y(R,,b,x), i= 1,2. 
Then X is unconditionally alive. 

Fig. 8 

The two small black-enclosed regions in Fig. 8 are healthy for all three black 
blocks. Let be be the large black block, bl and b2 be the other two black blocks. 
With X = { bO, bt , b2} then both regions are vital but since bl and b2 fail to have 
two vital regions X is not unconditionally alive. In fact, white may capture by 
filing all the liberties in any order. 

The definition takes care of complexities exemplified by Figs. 5 and 8. That 
all safe situations are characterized is the substance of the theorems to follow. 

5. THE EQUIVALENCE OF SAFETY AND UNCONDITIONAL LIFE 

The proofs require the following notation. 

DEFINITION.’ Let R be healthy for b. If #NB(R) = 1, then R is an eye. Other- 
wise, R is a joiner. 

LEMMA 1. Let b E B(x). If b has two or more distinct eyes, then b is safe. 

Proof: Any sequence of moves by X capturing b must completely fill one 
eye with Z-stones before the others. Let R be the first eye filled. We claim that 
R is now an Z-block. In the original arrangement, every interior intersection of 
R contained an Z-stone. Hence, X could only fill border intersections. Since R 
is the union of its interior and its border, when filled by X it is an X block with 
no liberties. Yet b has not been captured since there is at least one liberty of b 
in another eye. So, by the “no suicide” rule, this arrangement is illegal. By 
symmetry b is safe. n 

LEMMA 2. Let b e B(x). If b has an eye R. and one or more joiners, Ri, 
1 < i 5 n, n _> 1, then at least one block other than b neighboring each joiner Ri 

must be captured before b can be captured. 
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Proof. By the previous analysis, the eye R0 cannot be completely filled 
until the final capturing move. So x must fill all the liberties of b in all the 
joiners first. Since every empty intersection in each joiner Ri is a liberty of b, 
the “no suicide” rule requires that upon filling the last empty intersection of 
RP X must capture. Since b still has at least one libel ty in its eye, some other 
x-block must be captured. = 

LEMMA 3. Let b E B(x) such that b has no eyes but has joiners R, 1 < i 5 n, 

n 2 2. Then at least one block other than b neighboring each of n - 1 of the 
joiners must be captured before b can be captured. 

Proof An obvious modification of the proof of Lemma 2. l 

THEOREM 1. Zf X C B(x) is unconditionally alive, then every block in X is 
safe. 

Proofi To arrive at a contradiction, assume X is unconditionally alive and that 
b0 e X is not safe. From Lemma 1 and the lack of safety for bO, b,-, has at most 
one eye. Since X is unconditionally alive, there is at least one joiner R 1 vital to 
b,-, in X, V(R 1, bO, X). If b0 has no eyes, it has at least two vital joiners. Since 
b,-, is not safe, by Lemmas 2 and 3, it must be possible to capture a block other 
than b0 neighboring some vital joiner, say R 1. Let bl be the first block neighbor- 
ing RI to be captured. For the induction, assume that b0 , . . . , bk are all distinct 
members of X such that none of b,-,, . . . , bk are safe, and bi + 1 must be captured 

before b,., 0 < i < k. Further assume that there is a sequence R 1 , . . . , & of 
regions such that V(Ri + 1, bi, X) and bi + 1 E NB(Ri + 1), 0 < i <_ k, and that bi 

is the first block neighboring Ri to be captured, 0 < i <_ k. Consider bk. Since 

bk is not safe, by Lemma 2 and the fact that bk is the first block neighboring 
Rk to be captured, bk has no eyes. As bk e X, there are at least two regions vital 
to bk in X, one of whiich may be Rk. Let Rk + 1 be another. To capture bk it is 

necessary to fill Rk + 1 before Rk, since by hypothesis bk is the fust block 

neighboring R, to be captured. Let bk + 1 be the first block neighboring Rk + 1 

to be captured. Clearly bk + 1 is distinct from b0 , . . . , bk. Thus, b. , . . . , bk+ 1 

andR, , . . . ,Rk+l satisfy the induction hypothesis and we conclude that X 
is of infinite cardinality. Since X is finite, the desired contradiction is obtained. n 

We now show that unconditional life is a property of all safe blocks. The 
proof involves filling the liberties of blocks, so it is advantageous to consider 
outside and inside liberties separately. 

DEFINITION. An inside liberty of b e B(x) is any liberty of b in a small x- 
enclosed region. Denote the set of inside liberties by IL(b). The outside 
liberties of b are OL (b) = L (b) - IL(b). 

LEMMA 4. Let b e B(x) in arrangement ak with IL(b) = 9. All outside 
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liberties of b mY be 
A,, n 2 k, such that 

filled by E , i.e., there is a subsequent legal arrangement 
an (OL (b) ) = {z.} 

proof. Let i be any outside liberty of b, i e OL (b). Consider the block of 
empty intersections containing i, [i] , together with all neighboring X blocks, to 
form a region, 

R = [i] Uu (B(F) nM3 [i]) 

If ak (Ext(R)) = {x} then Znt [i] f Q since R is not a small x-enclosed region. 
If ak (Ext(R)) f {x} then Ext(R) contains an empty intersection by construc- 
tion of R. In either case, if Z fills [i] CI L (b), while x passes, producing the 
arrangement am, the resulting F blocks still have at least one liberty. Since only 
X stones have been added, the small x-enclosed regions remain the same and in 
the arrangement am, OLm (b) = OLk (b) - [i] . The conclusion follows from a 
trivial induction. H 

THEOREM 2. Let X E B(x) be the set of all safe x-blocks. Then X is uncondi- 
tionally alive. 

Proof. Suppose X is not unconditionally alive. Then there exists some 
b E X which does not have two vital regions. This might occur in one of three 
ways. 

(1) There are not two or more small x-enclosed regions neighboring b. 
(2) There are two or more small x-enclosed regions neighboring b but at most 

one is healthy. 
(3) There are two or more healthy regions for b, but at most one is vital. 

We will show that there is a sequence of legal moves by ,3: which capture b. By 
Lemma 4 we may assume that all outside liberties of all blocks in X are filled. 
But if case (1) holds, either b has no inside liberties so is captured, or else has one 
small x-enclosed region which when filled captures b. Consider case 2 and let 
Ri, 1 <_i< n, be the unhealthy small x-enclosed regions neighboring b. For each 

Ri, there is an empty intersection in Ri not adjacent to b, i.e., (En Ri) - IL(b) f $J. 

So z may fill Ri r7 IL(b) to form a block with at least one liberty. After all such 
R,nZL(b), 1 <i<_ , h n ave been filled, the remaining liberties of b, if any, are in 
the healthy region. This may now be filled by X since the last stone played 
in the healthy region captures b. Now consider case 3 and assume that all liber- 
ties of b in unhealthy regions have been filled by Z. Let Ri, 15 i 2 n, be the 

healthy but not vital regions neighboring b. For each Ri, consider the blocks 
neighboring Ri other than b, NB(R$ - {b} . For each i, at lease one of the 
blocks in NB(Ri) - {b} is not in X, since Ri is not vital to b in X. Consider 

any bi E (NB (Ri) - {b} ) - X. By the definition of X, bi is not safe, so there is a 
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sequence of moves by X capturing bi. After this capture X may fill the remaining 
liberties of b in Ri, Ri n L(b), since the intersections occupied by bi supply at 
least one liberty for the resulting x block. After all liberties for b in all the Ri 

have been filled, either b is captured or else it has one vital region remaining. 
Since the only liberties of b are in this region, it may be filled by X capturing b. 
Since b has been shown to be unsafe, the contrapositive is established. n 

6. SAFETY IS BEST 

It is of interest to consider whether x would ever choose to convert a safe 
block into an unsafe one. The intuitive answer is no. However, whether x ever 
obtains an advantage by this conversion depends upon the exact scoring method 
chosen. Unfortunately, the actual scoring scheme used by human players has so 
far defied accurate formalization, and we must be content with approximations. 
The following rule is close to that of actual human play. 

RULE 3 (SCORING). At the end of the game, all unsafe blocks are removed 
from the board, the stones becoming prisoners of the opponent. Let P, be the 
total number of x-stones removed from board, both due to capture by x during 
the game and due to the previous sentence. The area for x, Ax, is the number of 
intersections in the empty regions completely surrounded by x. The score for 
xisA,tPx.xwinsifAxtPx>A_ tP_. 

X X 

The following lemma leads directly to the conclusion that, with Rule 3 for 
scoring, there is never an advantage in converting safe blocks to unsafe ones. 

LEMMA 5. Let b E B(x) be safe in arrangement ek. X must play in his own 
inside liberties to cause b to be unsafe in subsequent arrangements. 

Proof: Consider the set of all safe blocks, X. Each block in X has two vital 
regions. To make b unsafe, at least one vital region of some b’ E X must be con- 
verted into a region lacking vitality or else completely removed by Mling it with 
x stones. Destroying the vitality of a region requires converting it from a healthy 
region to an unhealthy region. This can only be accomplished by playing in the 
liberties of the region. If there are Z-stones in the region, these may be captured 
by the x plays, resulting in new inside liberties. This may result in an unhealthy 
region. If not, additional x stones must be played in the resulting inside liberties 
until the region is removed by filling it with x stones. In any case, x must play on 
inside liberties. l 

With Rule 3 for scoring, it is clear that x cannot increase his score by con- 
verting a block from safe to unsafe unless doing so enables him to capture some 
blocks belonging to X. Since the conversion requires playing on inside liberties, 
the only way that these moves could increase x’s score is to sacrifice the block 
so that after X has captured it, x can in turn retake more than his losses. But 
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under best play, X will refuse the gambit, passing if necessary. Therefore, x will 
never choose to play in such a way as to cause a safe block to be unsafe. 

If Thorp and Walden’s Rule 3 for scoring is used, there are situations in which 
x chooses to play to make a safe block unsafe! The difference in scoring is that 
at the end of the game, no stones are removed from the board. Suppose for 
b E B(x) there is a healthy region containing X stones. If there are more stones 
than liberties in the region, it is to x’s advantage to fti these liberties and capture 
the X stones, provided this can be done without losing any of his own blocks. If 
there are enough Z stones the arrangement after capture may contain unsafe x- 
blocks, which nonetheless cannot be captured given best play on both sides. This, 
together with the pathologies demonstra~d in Figure 9 of Thorp and WaIden’s 
paper, combine to make our scoring rule preferable as well as more realistic. As 
the subsequent section shows, it is no more difficult to use in computerized Go 
than Thorp and Walden’s scoring. 

7. SUPPORTS 

It is of interest to consider sets of x-blocks which mutuaIly support one 
another in un~nditio~ life. To do so, consider the collection of all uncondi- 
tionally alive sets of x-blocks as ordered by the subset relation. This partially 
ordered set is a join-semilattice with a zero and a one since the union of any two 
~con~tion~y alive sets is un~ndition~y alive, while $ provides the zero and 
the set of all safe x-blocks provides the one. The partially ordered set is not a 
lattice, since the intersection of two unconditionally alive sets may not be 
unconditionally alive. Given any set Y of safe x-blocks, consider the collection 
of all un~n~tio~y alive sets X such that Y C X, and there is no uncondition- 
ally alive set 2 such that Y & 2 C_X Each X in this collection of minimal covers 
for Y is certainly a mutually supporting set, in that if any block is removed from 
X, the resulting set is not unconditionally alive. If there are several minimal 
covers, none of them is the largest set of “connecter’ mutu~y supposing x- 
blocks covering Y. We define the support of Y to be this natural set of mutually 
supporting x-blocks after giving precision to the notion of connected x-blocks. 

Blocks b 1 and bz are joined if there is a small x-enclosed region, R , such that 
bothbi and b2 neighbor R, {bl, b2) 5 NB(R). The transitive closure of this 
relation is an equivalence relation called region-connectedness, denoted by L. 
Thatis,b,-,=bb,+l ifbi ,..., b, E B(x) such that bi is joined to bi + 1 , 
l<i<n, orifbe tb,+l. Let the equivalence classes under 2 containing 

b E B(x) be denoted in the usual way as [b] wh3e for Y E B(x), [Y] = U 

{[b] 1 b E Y } = {b’ 1 b’ 3 b, b e Y} . For YE B(x), consider the largest 
unconditionally alive set X such that X C [Y] . The supporr of Y is S(Y) = X n Y. 
If every block in Y is safe, then S(Y) 2 X, while if no block in Y is safe then 
S(Y) = Cp. In any case, every safe block in Y is in S(Y). 
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AN UNCONDITIONAL LIFE ALGORITHM 

For any Y _C B(x) the ~gori~ implicit in this section finds the support of 
Y, as will be proved. We envision the algorithm being used on a single block, 
Y = {b} , or on a set of blocks in some “area” of the board which other parts of 
a computer Go player find to be related in some way. 

Given that small x-enclosed regions and x-blocks have been determined, the 
first stage of the algorithm computes [Y] by any standard transitive closure 
algorithm such as in Knuth (1968). The second stage is specific to find the sup- 
port. It proceeds by casting out unsafe blocks. 

Let Ze = [Y] , 9 o = {R IA%(R) C_ [Y] , R a small x-enclosed region} . For 
i_> O,let.$+l be the set of all blocks in Zi such that b has two healthy regions 
in si 

Z i+l = {b eZi IRI,R2 e SPi,R1 fR2,H(R1, b)&H(Rz, b)} . 

Further, let gj + l be the set of all small x-enclosed regions neighboring Zi+ l, 

$+I = {R’NB(R)EZi+lt R a small x-enclosed region } . Let 2 be the mini- 
mal futed point of the sequence of Zi, that is Z = Z, for that n such that Zn = 
2 nil’ 

THEOREM 3. Z is the largest unconditionally alive set of X-blocks contained 
in [Y]. 

Proof: LetbeZ. Then jRlrR2,RI fRz suchthat H(R1,b)andH(R2,b). 
Further,Rt,Rz E {RiN~(R)~Z}soR~ andRa ~e~t~tobinZ.HenceZ 
is un~nditiona~y alive. Consider b e [Y] - Z. Now b E ZO but foi some i, 
O<_i<n,beZiandb#Zi+l. Therefore, b does not have two healthy regions 

in 911,. By the construction of.5Pi, every region neighboring b is in .%?,.. Hence 
b is not unconditionally alive. m 

COROLLARY. S(Y)=Ynzmdz=S[Yf. 

Three algorithms have been mentioned, pure game tree lookahead, lookahead 
distinguishing between inside and outside liberties, and computation of the 
support. In the order given, each algorithm requires more storage than its pre- 
decessor. However, even support computation requires only a reasonable amount 
of storage, so the main criterion for selecting an algorithm is the time require- 
ment. Both support and lookahead with inside-outside liberty deter~ation 
require the determination of the small x-enclosed regions of an arrangement. 
Since knowledge of these regions seems to be valuable to the computer Go 
player for other portions of the game analysis, we will assume the regions have 
been determined and ignore the pure lookahead algorithm. 

Support computation requires the dete~ation of [Y] and healthy regions. 
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If the equivalence classes of region-connected blocks are maintained throughout 
the game, then [Y] is obtained at little cost. Again it seems to be valuable for 
other portions of the game analysis to maintain these equivalence classes. By 
storing suitable data on liberties, computing whether a region is healthy for a 
block just involves a linear search of the intersections of the region. Once 
determined, the fact may be stored as part of the data about the region, not 
changing until a stone of either color is played in the region. Finally, the support 
computation must go through the casting out process to arrive at 2. In almost 
all practical cases, 2 = Zn for n < 3, with n = 1 or 2 the most common. The 
casting out process is less time-consuming than lookahead, since each move 
provisionally placed on the board must be tested for legality. This suggests that 
the two algorithms are competitive, the exact costs dependent on their computer 
implementations. However, much of the data collected in the computation of 
Z is of interest for determining intelligent plays. For example, playing in one’s 
own inside liberties is a good play only if necessary for safety. So it is bad to 
play in vital regions. Also, every block in [Y] - Z is in some danger of capture. 
Once informed of this fact, the player can devise plans to save these blocks by 
connecting them to the support. The most defensive way to do this is to make a 
few plays in the small enclosed regions joining the blocks. These considerations 
strongly suggest that the computation of unconditional life supports is to be 
preferred to the lookahead determination of safety. 

l7re extremely prompt review by Professor Thorp is greatly appreciated. He 
noticed several minor errors and suggested the desirability of Section 6. 
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