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Abstract. Post’s correspondence problem (PCP) is a classic undecid-
able problem. Its theoretical unbounded search space makes it hard to
judge whether a PCP instance has a solution, and to find the solutions if
they exist. In this paper, we describe new application-dependent meth-
ods used to efficiently find optimal solutions to individual instances, and
to identify instances with no solution. We also provide strategies to cre-
ate hard PCP instances with long optimal solutions. These methods are
practical approaches to this theoretical problem, and the experimental
results present new insights into PCP and show the remarkable improve-
ment achieved by the incorporation of knowledge into general search
algorithms in the domain of PCP. 1
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1 Introduction

Post’s correspondence problem (PCP for short) was invented by Emil L. Post in
1946 [10], and soon became a highly cited example of an undecidable problem
in the field of computational complexity [5]. Bounded PCP is NP-complete [3].
PCP of 2 pairs was proven decidable [2], and recently a simpler proof using a
similar idea was developed [4]. PCP of 7 pairs is undecidable [9]. Currently the
decidability of PCP of 3 pairs to PCP of 6 pairs is still unknown.

As the property of undecidability shows, there exists no algorithm capable
of solving all instances of PCP. Therefore, PCP is mainly discussed in the the-
oretical computer science literature, for example, to prove the undecidability
of other problems. Only recently did researchers begin to build PCP solving
programs [8,11,13]. Richard J. Lorentz first systematically studied the search
methods used to solve PCP instances and the techniques to create difficult PCP
instances. These ideas were implemented and generated many good results [8].
Our work was motivated by his paper and can be regarded as an extension and
the further development of his work. As his paper is frequently cited in the
following sections, we use the term Lorentz’s paper to denote it for convenience.

In the past 20 years, search techniques in Artificial Intelligence (AI) have
progressed significantly, as exemplified in the domains of single-agent search and
two-player board games. A variety of search enhancements developed in these
1 Last revised on April 25, 2003
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two domains have set good examples for building a strong PCP solver, and some
of this research can be directly migrated to PCP solvers after a few application-
dependent modifications. On the other hand, the characteristics of PCP lead to
many special search difficulties, which has prompted us to develop new tech-
niques and discover more properties of PCP that could be nicely integrated
into the solver. This work clearly demonstrates the significance of combining
application-dependent knowledge with general search framework in the domain
of PCP, and some of the ideas may be applied to other problems.

This paper mainly discusses three directions for tackling Post’s correspon-
dence problem. The first two directions focus on solving solvable and unsolvable
instances respectively, i.e., finding optimal solutions to solvable instances effi-
ciently and effectively, and identifying unsolvable instances. Six new methods
were invented for the aim of solving instances, namely, the mask method, for-
ward pruning, pattern method, exclusion method, group method and bidirectional
probing.

The third direction of our work is concerned with creating hard instances
that have very long optimal solutions. With the help of the methods developed
in the above two directions, we built a strong PCP solver that discovered 199
hard instances whose shortest solution lengths are at least 100. Currently, we
are holding the hardest instance records in 4 PCP subclasses.

The paper is organized as follows. We begin by introducing the definition
and notation, and some simple examples in Section 2. Section 3 describes six
methods that are helpful to solve instances. Section 4 explains how to create
difficult instances, and Section 5 contains the experimental results and related
discussions. Finally, Section 6 provides conclusions and suggestions for future
work.

2 What is Post’s correspondence problem

An instance of Post’s correspondence problem is defined as a finite set of pairs
of strings (gi, hi) (1 ≤ i ≤ s) over an alphabet Σ. A solution to this instance is
a sequence of selections i1i2 · · · in (n ≥ 1) such that the strings gi1gi2 · · · gin

and
hi1hi2 · · ·hin formed by concatenation are identical.

The number of pairs in a PCP instance,2 s in the above, is called its size,
and its width is the length of the longest string in gi and hi (1 ≤ i ≤ s).
Pair i represents the pair (gi, hi), where gi and hi are the top string and bottom
string respectively. Solution length is the number of selections in the solution.
For simplicity, we restrict the alphabet Σ to {0, 1}, as we can always convert
other alphabets to their equivalent binary format.

Since solutions can be stringed together to create longer solutions, in this
paper we are only interested in optimal solutions, which have the shortest length
over all solutions to an instance. The length of an optimal solution is called the
optimal length. If an instance has a fairly large optimal length compared to its
size and width, we use the adjective hard or difficult to describe it.
2 In the following, we use the name instance to specifically represent PCP instance.
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An instance is trivial if it has a pair whose top and bottom strings are the
same. It is obvious that such an instance has a solution of length 1. We call an
instance redundant if it has two identical pairs. In this case, it will not influence
the result if one of the duplicated pairs is removed. For brevity, we assume the
instances discussed in this paper are all nontrivial and non-redundant.

To conveniently represent subclasses of Post’s correspondence problem, we
use PCP [s] to denote the set of all instances of size s, and PCP [s, w] for the
set of all instances of size s and width w. Then the following relations hold:

PCP [s, w] ⊂ PCP [s] ⊂ PCP

We use a matrix of 2 rows and s columns to represent an instance in PCP [s],
where string gi is located at position (i, 1) and hi at (i, 2). PCP (1) below is an
example in PCP [3, 3]. (

100 0 1
1 100 00

)
(1)

2.1 Example of solving a PCP instance

Now let’s see how to solve PCP (1). First, we can only start at pair 1, since it is
the only pair where one string is the other’s prefix. Then we obtain this result:

Choose pair 1 :
100
1

The portion of the top string that extends beyond the bottom one, which
is underlined for emphasis, is called a configuration. If the top string is longer,
the configuration is in the top; otherwise, the configuration is in the bottom.
Therefore, a configuration consists of not only a string, but also its position
information: top or bottom.

In the next step, it turns out that only pair 3 can match the above configu-
ration, and the situation changes to:

Choose pair 3 :
1001
100

Now, there are two matching choices: pair 1 and pair 2. By using the mask
method (described in Section 3.1.1), we can avoid trying pair 2. Then, pair 1 is
the only choice:

Choose pair 1 :
1001100
1001

The selections continue until we find a solution:

Choose pair 1 :
1001100100
10011

Choose pair 3 :
10011001001
1001100

Choose pair 2 :
100110010010
1001100100

Choose pair 2 :
1001100100100
1001100100100

After 7 steps, the top and bottom strings are exactly the same, and the con-
figuration becomes empty, which shows that the sequence of selections, 1311322,
forms a solution to PCP (1). When all combinations of up to 7 selections of pairs
are exhaustively searching, this solution can thus be proven to be optimal.
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2.2 More examples

Some instances may have no solution. For example, the following PCP (2) is un-
solvable, which can be proven through the exclusion method discussed in Section
3.2.1. (

110 0 1
1 111 01

)
(2)

An analysis of the experimental data we gathered shows that in PCP sub-
classes of smaller sizes and widths, only a small portion of instances have solu-
tions, and a much smaller portion have long optimal solutions. PCP (3) is such
a difficult instance with optimal length of 206. It is elegant that this simple form
embodies such a long optimal solution. If a computer performs a brute-force
search by considering all possible combinations up to depth 206, the computa-
tion will be enormous. That’s the reason why we utilize AI techniques and new
methods related to special properties of PCP to prune hopeless nodes, and thus,
accelerate search speed and improve search efficiency.(

1000 01 1 00
0 0 101 001

)
(3)

The optimal solution to an instance may not be unique. For instance, PCP
(4) below has 2 different optimal solutions of length 75.(

100 0 1
1 100 0

)
(4)

Now let’s take a look at PCP (5). It is clear that pair 3 is the only choice
in every step, and as a consequence, configurations will extend forever and the
search process will never end. This example shows an unfortunate characteristic
of some instances: the search space is unbounded. This special property suggests
that we cannot rely on search to prove some instances unsolvable. Several new
methods such as the exclusion method, which helps to prove the unsolvability of
PCP (5), have been invented and will be presented in the next section.(

100 0 1
0 100 111

)
(5)

3 Solving PCP instances

Intuitively, solvable and unsolvable instances should be treated separately, but
for PCP instances, many methods are valuable to both types of tasks. Therefore,
we do not divide these methods into two sections, but discuss them together in
this section instead.

Lorentz’s paper introduced some general search techniques that can be used
in the PCP solver:
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1. Depth-first iterative-deepening search [7] works well on problems with expo-
nential search space and provides a satisfactory trade-off between time and
space.

2. A cache table can be used to prune revisited nodes (similar to what trans-
position tables do in game playing programs).

3. System-level programming techniques such as tail recursion removal result
in satisfactory improvement of the running time.

Lorentz’s paper also introduced the concept of filters, which consist of simple
rules to identify unsolvable instances. In addition, configurations of an instance
are not of fixed size, thus it will be very inefficient to use the standard memory al-
location functions provided by an operating system. Therefore, we implemented
specialized routines for configuration allocation, and this work resulted in about
15% improvement in speed. Please refer to [8,13] for details of these ideas.

In the following part, we will describe six new methods to tackle PCP in-
stances, which can be roughly categorized into three classes:

1. Pruning configurations: the mask method, forward pruning, and pattern
method.

2. Simplifying instances: the exclusion method and group method.
3. Choosing the easier direction: bidirectional probing.

These methods are all closely related to the properties of PCP, and four of
them including the mask method, pattern method, exclusion method and group
method are very specific and cannot work for any given instance. However, they
do improve the performance of the solver dramatically and enable it to answer
some unresolved questions in Lorentz’s paper.

3.1 Pruning configurations

Configurations are a vital feature for solving PCP instances. The difficulty en-
countered in solving an instance is often presented by its vast number of con-
figurations that need to be examined. But in many cases, a great portion of
configurations can be pruned without examining their descendants, and thus, a
significant percentage of search effort can be saved. Especially, the unbounded
search space may be reduced to a finite one, making it possible to prove the
unsolvability of some instances.

In order to make it easy to explain, we first introduce some definitions con-
cerning configurations. The reversal of a configuration is generated by reversing
its string. The turnover of a configuration is generated by flipping its position
from top to bottom or vice versa. A configuration is generable to an instance if
it can be generated from the empty configuration by a sequence of selections of
pairs in the instance. Similarly, A configuration is solvable to an instance if it
can lead to the empty configuration by a sequence of selections.



6

3.1.1 Mask method

The mask method deals with pruning all configurations in the top or in the
bottom. Before going into detail of the powerful and seemingly magical method,
we first introduce the concepts of critical configuration and valid configuration.

Definition 1: A critical configuration in an instance is a non-empty configura-
tion that can be fully matched by a pair: the resulting configuration is empty
or can be turned upside-down by a pair: the resulting configuration changes its
position from that of the previous one.

Definition 2: A configuration is valid to an instance if it is generable and
solvable.

Critical configurations are critical because they constitute an indispensable
step for a configuration in general to reach a solution. For any configuration in
the top, a necessary condition for it to lead to a solution is that there must
exist a critical configuration in the top in the solution path. This property can
be justified by the fact that a solvable configuration must change its position
somewhere (we define the position of the empty configuration to be neither top
nor bottom). A configuration being valid also means it occurs in a solution path.
As a result, if no valid critical configuration in the top exists in an instance,
then all configurations in the top can be pruned: the instance has a top mask.
Similarly, a bottom mask means there is no hope of reaching a solution once the
configuration is in the bottom.

To check if an instance has masks, we need to find all possible critical con-
figurations, and then test their validity. The first step can be simply done by
enumeration. The second step, validity testing, can also be automated, because
there is a nice relation between an instance and its reversal, which is generated
by reversing all the strings in the original instance: the question as to whether
one configuration is generable to an instance is equivalent to the question as to
whether the turnover of the reversal of the configuration is solvable to the rever-
sal of this instance. This property can be easily proven by using the definition of
PCP. It needs to be clarified that though the process of checking configurations
solvable can be automated, it cannot always terminate without other stopping
conditions imposed. In fact, this process is undecidable in general.

The following will explain how these steps work to discover the top mask in
PCP (6), whose reversal is PCP (7).(

01 00 1 001
0 011 101 1

)
(6)

(
10 00 1 100
0 110 101 1

)
(7)

At first, we need to find all critical configurations in the top. Since they could
either be fully matched or turned over by at least one pair, any matched pair
must have a longer bottom string. In this instance, the matched pair could only
be pair 2 or pair 3. It is not hard to find that only one critical configuration in
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the top exists, i.e. 10 in the top, which can be fully matched by pair 3. Secondly,
we check whether the 10 in the top can be generated by PCP (6), or equivalently,
whether 01 in the bottom in PCP (7) can lead to a solution. However, in PCP
(7), the configuration of 01 in the bottom cannot use any pair to match. Thus,
PCP (6) has a top mask.

For some instances, the mask method is an effective tool to find their optimal
solutions. Take PCP (6) for example. It has a top mask, so we forbid the use of
pair 1 at the beginning, and can only choose pair 3, which helps quickly find the
unique optimal solution of length 160. If this fact was not known, pair 1 would
be chosen as the starting pair and a huge useless search space would have to
be explored before concluding that its optimal length is 160. That is the reason
why Lorentz’s solver successfully found solutions to two instances but could not
prove their optimality [8]. Both can be decided with the assistance of the mask
method.

The mask method can also prove the unsolvability of many instances. For
example, if an instance has some masks that forbid all possible starting pairs, it
has no solution.

GCD rule
The step to prove critical configurations invalid can be strengthened by the GCD
(Greatest Common Divisor) rule: let d be the greatest common divisor of the
length differences of all pairs, then the length of every valid configuration must
be a multiple of d.3 Consider the following PCP (8) as an example. The GCD
of all length differences is 2. (

111 001 1
001 0 111

)
(8)

Although in PCP (8) we can find a critical configuration of 0 in the bottom,
which can be turned upside-down by pair 2, it is invalid because its length is
not a multiple of 2. As a result, this instance has a bottom mask, revealing that
the starting selection must be pair 2. Finally, with a few steps of enumeration,
we can prove that PCP (8) has no solution.

The above example uses the difference of length, and similarly, we can use
the difference of the number of elements 0 or 1. For example, if the difference of
the number of occurrences of element 0 in the two strings of any pair has a GCD
d, then the number of element 0’s occurred in any valid configuration must be a
multiple of d.

3.1.2 Forward pruning

Similar to heuristic search algorithms such as A∗ and IDA∗ [6,7], heuristic
functions can be used to calculate lower bounds of the solution length for a
configuration (for an unsolvable instance, its solution length is defined to be
infinity). A heuristic value of a configuration is an estimate of how many more
3 This idea was separately mentioned by R. Lorentz and J. Waldmann in private

communications.
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selections are needed before reaching a solution. When the heuristic value of
one configuration added to its depth exceeds the current depth threshold in the
iterative deepening search, this configuration definitely has no hope of reaching a
solution within that threshold. Hence we can reject it even if its depth is still far
away from the threshold. Since the heuristic function is admissible, the pruning
is safe and does not affect the optimality of solutions.

One simple heuristic value of a configuration in the top (bottom) can be
calculated by its length divided by the maximum length difference of all pairs
that have their bottom (top) strings longer. This heuristic is based on the balance
of length, and similarly, we can calculate heuristics on the balances of elements
0 or 1.

More complex heuristics can be developed analogous to the pattern databases
used to efficiently solve instances of the 15-puzzle [1]. We can pre-compute match-
ing results for some strings as the prefixes of configurations and use them to
calculate a more accurate estimate of the solution length than the simple heuris-
tics.

3.1.3 Pattern method

If a configuration has a prefix α and any possible path starting from it will al-
ways generate a configuration with the prefix α after some steps, and no empty
configuration occurs in the middle, then this prefix cannot be completely re-
moved whatever selections are made. The significance of this property is that
any configuration having such a prefix never leads to a solution. This obser-
vation essentially comes from the goal to shrink configurations to the empty
string. If there is a substring that will unavoidably occur, it is impossible for
configurations to transfer to the empty string.

The pattern method is a very powerful tool to prove instances unsolvable.
The following example illustrates how this method is effective to prove that
PCP (9) has a prefix pattern of 11 in the top, and as a result, PCP (9) is proven
unsolvable. (

011 01 0
1 0 100

)
(9)

For a configuration of 11A in the top, where A can be any string, the next
selection can only be pair 1. Thus a new configuration 1A011 in the top is
obtained. Now let’s focus on how the substring 0 right after the A is matched.
The matched 0 can be supplied either by the only 0 in the bottom string of pair
2, or by the last 0 in the bottom string of pair 3. Whichever it is, after 0 is
matched the substring 11 right behind it will inevitably become the prefix of a
new configuration. So a configuration 11A in the top will definitely transfer to
another configuration 11B in the top after a number of steps. The prefix cannot
be removed, showing that any configuration in the top with a prefix of 11 will
never lead to a solution. The procedure to find a prefix in PCP (9) is presented
in Fig. 1.

The dotted vertical line in the figure partitions configurations into two parts:
left part and right part. If a configuration still has the chance to lead to a
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Fig. 1. Deduction of a prefix pattern in PCP (9)

solution, its left part from the line must be matched exactly during a number of
selections. Therefore, the dotted vertical line works as a border: matching must
stop at one side of it and continue on the other side; no substring is matched
across the border.

It can be proven that PCP (9) has a bottom mask. So with the help of the pre-
fix pattern derived above, we can exhaustively try all possible selections, prune
any configuration in the top with a prefix of 11. When this process terminates,
the unsolvability of PCP (9) is proven.

It is quite intuitive to discover the pattern in PCP (9), yet to find similar
patterns in other instances may not be simple. For example, Fig. 2 illustrates
the procedure to detect the prefix pattern of 000 in the top in PCP (10), which
is indispensable for the unsolvability proof of this instance.(

01 0 00
0 100 10

)
(10)

Fig. 2. Deduction of a prefix pattern in PCP (10)

3.2 Simplifying instances

Through the analysis of specific instances, it is possible to simplify them by
removing some pairs or replacing substrings with simpler ones. This simplifica-
tion significantly reduces the search work, and makes it possible to solve some
instances.

3.2.1 Exclusion method

The exclusion method is utilized to detect pairs that will never be used when
the selections start at some pair. The exclusion comes from the fact that if
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any combination of certain pairs cannot generate a configuration that can be
matched all other pairs, then those pairs are useless and can be safely removed.
PCP (11) is such an example. (

1 0 101
0 001 1

)
(11)

If we start from pair 2, then the following selections can only be pair 1 or
pair 2. The proof can be separated into three steps:

1. Any configuration generated by pair 1 and pair 2 is in the bottom.
2. Any combination of the bottom strings of these two pairs cannot have a sub-

string of 101, the top string of pair 3. Thus when a configuration generated
by these two pairs has its length of at least 3, pair 3 has no chance to be
selected.

3. The only configuration in the bottom with length less than 3 that can be
matched by pair 3 is 10 in the bottom, yet it cannot be generated by selec-
tions of pair 1 and pair 2.

Therefore, after selections start at pair 2, we only need to deal with an
instance consisting of pair 1 and pair 2. This new instance never leads to a
solution because of the length of configurations it generates will never decrease.
Hence starting at pair 2 is hopeless. Combined with the fact that this instance
has a top mask, we successfully prove it unsolvable.

3.2.2 Group method

If any occurrence of a substring in configurations can only be entirely matched
during one selection of pairs, instead of being matched through several selections,
we can consider the substring as an undivided entity, or a group. In other words,
if the first character in a group is matched during one selection, all others in
the group will be matched in the same selection. The group method is utilized
to detect such groups and help to simplify instances. Consider the following
instance, where the substring 10 is undivided.(

011 10 0
1 0 010

)
(12)

The substring 10 can be inserted into configurations through the bottom
string in pair 3, and then can be matched by 10 in the top string in pair 2. If we
consider an instance consisting of only pair 2 and pair 3, then it is not difficult
to find out that whenever there is a substring 10 occurring in a configuration,
this substring must be entirely supplied by a selection of pair 3 and can only be
matched by pair 2. Therefore, we can use a new symbol g to represent the group
10, and the instance will be simplified to:(

011 g 0
1 0 0g

)
g = 01

(13)
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If only pair 2 and pair 3 are taken into consideration, the configurations they
generate will stay in the bottom and have their lengths non-decreasing. So these
configurations will lead to no solution. As the new symbol g cannot be matched
by 0 or 1, it is easy to see that pair 1 can be excluded and safely removed when
selections start at pair 3. Since no other possible starting pair exists, PCP (12)
is unsolvable.

3.3 Bidirectional probing

An instance and its reversal are isomorphic to each other in the sense that
they share the same solvability, and have the same number of optimal solutions
and the same optimal length if solvable. Therefore, solving either one of them
is enough. But these two forms may be amazingly different in terms of search
difficulties, as shown experimentally in Section 5.1.

Hence, we use a probing scheme to decide which search direction is more
promising. Initially we set a comparison depth (40 in the implementation). Then
two search processes are performed for the original instance and its reversal to
the comparison depth separately. A comparison of the number of visited nodes in
both searches gives a good indication about which direction is easier to explore.
The solver then chooses to solve the one with the smaller number of visited
nodes. As the branching factor in most instances is quite stable, this scheme
worked very well in our experiments.

4 Creating difficult instances

A strong PCP solver enhanced by the application-dependent methods discussed
in the previous section is essential for creating many difficult instances. Besides,
the hard instances that we found attracted us to find their solutions efficiently,
and those unresolved instances were intriguing for us to come up with new ideas.
Thus, the three directions we are working on are interrelated, as shown in Fig.
3.

The task of creating difficult instances can be further categorized into two
schemes: random search and systematic search.

4.1 Random search for hard instances

A random instance generator plus a PCP solver is a straightforward means
of discovering interesting instances, which has been used to create difficult in-
stances in [8]. Statistically, the generator will create a few hard instances with
very long optimal lengths sooner or later. However, we can still do much work to
increase the chance of finding hard instances. By using several search enhance-
ments and various methods that help to prove instances unsolvable, the program
can quickly stop searching hopeless instances and find the optimal solutions to
solvable instances faster.
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Fig. 3. Relations between three research directions in PCP

During the search process of an instance, we use three factors as stopping
conditions if no solution is found. They are the final depth threshold, the number
of visited nodes, and the number of cutoff nodes (nodes pruned by the cache ta-
ble). Using the number of visited nodes as a stopping condition forces the search
process to treat every instance equally, avoiding the situation of frequently get-
ting stuck in instances that have a large branching factor but no solution. Based
on the observation of the hard instances we collected, most of those instances do
not have a large number of cutoff nodes (the largest is only 28,972). Thus in the
implementation, we also use the number of cutoff nodes as one of the stopping
conditions.

One method suggested in the literature is the removal of instances that have
the pair purity feature, that is, a pair consisting wholly of ones or zeroes [8]. This
idea is based on the observation that many instances bearing this feature have
no solution, but have quite messy search trees that are very costly to explore.
However, our experimental results show that this method may cause the failure
of discovering some hard instances (described in Section 5.3).

4.2 Systematic search for hard instances

As the random search scheme randomly chooses instances to consider, the chance
of finding difficult instances is still dependent on luck, so a systematic approach
seems more convincing to demonstrate the strengths of a PCP solver. If all
instances in a specific PCP subclass are examined, they may be completely
solved, and lots of hard instances including the hardest one in this subclass will
be discovered. Even if we cannot solve all of them, the unresolved instances may
be left as incentives for new approaches.
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It is not hard to generate all instances in a finite PCP subclass, and there
is a related problem about how to remove those isomorphic instances which
potentially will cause lots of redundant work. We omit it for brevity, and for
further information see [13].

In Lorentz’s paper, the subclass PCP [3, 3] was explored, with more than 2000
instances unresolved (most of them have the pair purity feature). We continued
the work and rescanned all instances in PCP [3, 3] as well as 9 other subclasses.
The results are shown in Sections 5.2 and 5.3.

4.3 New PCP records

The random and systematic search schemes for creating difficult instances helped
create new records in 4 PCP subclasses. These records are new instances with
the longest optimal lengths known in specific PCP subclasses. The records in
subclasses PCP [3, 4] and PCP [4, 3] were found by the systematic search scheme
and those in PCP [3, 5] and PCP [4, 4] were obtained through the random search
scheme. Table 1 gives these four records as well as the record in PCP [3, 3],
which was discovered by R.J. Lorentz and J. Waldmann independently. More
information is provided on the websites [12,14].

number of
subclass hardest instance known optimal length optimal

solutions

PCP [3, 3]

(
110 1 0

1 0 110

)
75 2

PCP [3, 4]

(
1101 0110 1

1 11 110

)
252 1

PCP [3, 5]

(
11101 1 110

0110 1011 1

)
240 1

PCP [4, 3]

(
111 011 10 0

110 1 100 11

)
302 1

PCP [4, 4]

(
1010 11 0 01

100 1011 1 0

)
256 1

Table 1. Records of hardest instances known in 5 PCP subclasses

5 Experimental results and analysis

We implemented most of the methods we discussed in Section 3 under the depth-
first iterative-deepening search framework, except the pattern method and group
method, because we could not find a general way to automate them. The pro-
gram was written using C++ under Linux. All experiments were performed on
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200 hard instances. 199 instances have optimal lengths at least 100 and were
collected from 4 PCP subclasses through the methods described in Section 4;
the remaining test case is the hardest instance known in PCP [3, 3], as shown in
Table 1.

The average branching factor of 200 test instances is only 1.121 after all
enhancements were incorporated. Such a small branching factor makes it feasible
to find an optimal solution with length even greater than 300.

With other normal search enhancements and programming techniques incor-
porated, the final version of our PCP solver achieved a search speed of 1.38×106

nodes per second on a machine with a 600MHZ processor and a 128M RAM.

5.1 Results of solving methods

It is hard to give a quantitative evaluation of the improvements derived from
the mask method and the exclusion method, since sometimes they are essential
to solve instances. It is more proper to comment that these two methods would
help to prune a huge search space in some cases.

Bidirectional probing is also crucial to solve some hard instances. PCP (14)
with an optimal length of 134 is such an example. Up to depth 40, searching this
instance directly is more than 15,000 times harder than searching its reversal
in terms of the number of visited nodes. Consider that searching to depth 40
has already made such a big difference, if searching to depth 132, the difference
will explode exponentially. Thus, it becomes unrealistic to solve this instance
when the wrong direction is chosen. This clearly demonstrates how important
the bidirectional probing method is.(

110 1 1 0
0 101 00 11

)
(14)

One nice strength of the above three methods is that they are all done before
a deep search is performed and they introduce negligible overhead to the solver.

We implemented two types of admissible heuristic functions to prune hopeless
nodes in the forward pruning. The first one is based on the balance of length,
and the second is based on the balance of elements, as Section 2.1.2 described.
Three separate experiments were conducted on forward pruning, namely, only
using the first type of heuristic, only using the second type and using both types.
The results show that only using the heuristic on the balance of length gives the
best performance.

We tried to compare the improvement achieved by heuristic pruning with
the situation when no pruning is used, but we could not finish the task since it
would take too much time. PCP (15) is an illustrative example. The solver spent
14,195 seconds to solve this instance when no pruning was used, compared to
merely 5.2 seconds when the length balance heuristic was employed. This is a
2730-fold speedup in solving time!(

11011 110 1
0110 1 11011

)
(15)
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We also did experiments on some search parameters. For example, the exper-
imental results show that when the depth increment in the iterative deepening is
20, the solving time is minimal over our test set. The result of the experiments
on the cache size, however, is a little surprising. It shows that from 8 entries
to 65536 entries, the solving time is quite stable. We suspect this phenomenon
is largely dependent on the test instances chosen. By default, a large table is
employed because it is essential to prove some instances unsolvable.

5.2 Results of scanning PCP subclasses

We scanned seven PCP subclasses that are easy to handle, and all instances
in these subclasses have been completely solved. All isomorphic instances have
been removed, and the results are shown in Table 2. This table also provides
a statistical view on the effectiveness of our unsolvability proof methods, and
illustrates how small the percentage of solvable instances in these PCP subclasses
is. In addition, the small largest optimal lengths in these subclasses partly explain
why they can be completely explored in a small amount of computation.

PCP total after after after solvable unsolvable largest
subclass number filter mask exclusion instances instances optimal length

PCP [2, 2] 76 3 3 3 3 73 2

PCP [2, 3] 2,270 51 31 31 31 2,239 4

PCP [2, 4] 46,514 662 171 166 165 46,349 6

PCP [2, 5] 856,084 9,426 795 761 761 855,323 8

PCP [2, 6] 14,644,876 140,034 3,404 3,129 3,104 14,641,772 10

PCP [3, 2] 574 127 67 61 61 513 5

PCP [4, 2] 3,671 1,341 812 786 782 2,889 5

Table 2. Solving results of 7 PCP subclasses

One special phenomenon we observed is that the hardest instances in PCP
subclasses with size 2 can all be represented in the following form:4(

1n0 1
1 01n

)
(16)

It is not hard to prove that the optimal length of this kind of instances
is 2n. Lorentz conjectured that such an instance might always be the hardest
one in PCP [2, n + 1] in the general case. If the conjecture is true, it will lead
to a much simpler proof that PCP [2] is decidable than the existing one [2].
Our experimental results support the conjecture in the cases from PCP [2, 2] to
PCP [2, 6].
4 Of the three hardest instances of PCP [2, 2], only one instance can be represented in

this form.
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We used the systematic method to further examine three PCP subclasses
that are much harder to conquer. Table 3 first summarizes the results from
PCP [3, 3].

Total number 127,303

After filter 8,428

After mask 2,089

After exclusion 2,002

Solvable instances 1,961

Unsolvable instances 40

Unsolved instances 1

Table 3. Scanning results of subclass PCP [3, 3]

In Tables 3 and 4, an instance removed by the exclusion method may still have
solutions, but it cannot have a non-trivial solution.5 Since the result of solving
such an instance is identical to the combinations of the results from instances
with smaller sizes, we do not give it any further processing. Similarly, instances
removed by the element balance filter (see [8]) may also have trivial solutions,
but these solutions are of no interest to us. In addition, 32 instances remained
unsolved by our PCP solver, but were proven unsolvable by hand using the
methods discussed in Section 2. The difference comes from the fact that though
some methods can successfully prove several instances unsolvable, some of them
are too specific to be generalized, and thus they were not incorporated into our
PCP solver.

The only unsolved instance in PCP [3, 3] is PCP (17).6 Our solver searched
to a depth of 300, but still could not find a solution to this instance. Various
deduction methods were tried to prove it unsolvable, but also failed. Compared
to the fact that the hardest instance in all instances of PCP [3, 3] except this one
only has an optimal length of 75, we believe that this instance is very likely to
have no solution. However, apparently new approaches are needed to deal with
it. (

110 1 0
1 01 110

)
(17)

5.3 Results of creating difficult instances

We scanned all instances in PCP [3, 4] and PCP [4, 3] to discover hard instances.
The results are summarized in Table 4.
5 A solution to an instance is trivial if in the solution not all pairs of the instance are

used.
6 It has solved by Mirko Rahn through a new method that generalizes the pattern

method discussed in this paper.
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PCP [3, 4] PCP [4, 3]

Total number 13,603,334 5,587,598

After filter 902,107 1,024,909

After mask 74,881 275,389

After exclusion 65,846 266,049

Solvable instances 61,158 249,493

Unsolvable instances 1,518 2,633

Unsolved instances 3,170 13,923

Hard instances 5 72

Table 4. Scanning results of subclass PCP [3, 4] and PCP [4, 3]

The scanning process took about 30 machine days to finish and resulted in the
discovery of 77 hard instances whose optimal lengths are at least 100. At the same
time, more than 17,000 instances remain unsolved to the solver, and it becomes
impossible to check such a large quantity of instances manually. Although most
of these unsolved instances may have no solution, it is still likely that they
contain some extremely difficult solvable instances. Thus, these instances are
left for future work, waiting for some new search and disproof methods.

In the 72 hard instances we collected from PCP [4, 3], 13 instances (18.1%)
have the pair purity feature, and some of them need more than a hundred seconds
to solve. This evidence suggests that even an instance with the pair purity feature
may still have a very long optimal solution (the longest we found is 240), and
the quantity of these instances cannot be ignored.

Using the random approach to search for difficult instances, we successfully
discovered 21 instances in PCP [3, 5] and 101 instances in PCP [4, 4]. Their opti-
mal lengths are all at least 100. The whole process took more than 200 machine
days to finish. All of those hard instances and unsolved instances can be found
on the website [14].

6 Conclusions and future work

In this paper, we described some new methods and techniques to tackle PCP in-
stances, including finding optimal solutions quickly, proving instances unsolvable
and creating many interesting difficult instances. We successfully solved some in-
stances that were unsolved in Lorentz’s paper and scanned all instances in 10
PCP subclasses. Our work resulted in the discovery of 199 difficult instances
with optimal length at least 100, and in setting new hardest instance records
in 4 PCP subclasses. We also present the empirical results for solving PCP in-
stances and they may serve for investigating some theoretical issues related to
this problem.

Although the six new methods described in this paper are all application-
dependent, the ideas behind them are not new at all. For example, bidirectional
probing uses the idea of performing a shallow search to direct a deep search, and
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incorporating application-dependent knowledge into general search framework
has worked successfully in many domains such as planning and games.

This paper further exploits the ideas discussed in Lorentz’s paper, and there
is no doubt that the results can be improved. PCP (17) is the only unsolved in-
stance in PCP [3, 3], and more than 17,000 instances in PCP [3, 4] and PCP [4, 3]
are unsolved, waiting for new methods to conquer them. Although we imple-
mented most of the methods and techniques discussed in this paper, the group
method and pattern method have only been applied by hand to solve some hard
instances. We believe that if these methods could be successfully incorporated
into our PCP solver, a great portion of unsolved instances would be proven
unsolvable.

As PCP instances are closely related to their reversals, bidirectional search
can also be applied to solve them. It is also very interesting to evaluate the
benefits provided by the complex heuristics mentioned in Section 2.1.2. In this
way, PCP can act as a special test bed for general search enhancements.

We anticipate the work to continue to tackle PCP [3, 5], PCP [4, 4] and more
PCP subclasses. If the hardest instances in these subclasses could be found, it
may be possible to find some similarities between them and link them to theo-
retical issues. Nevertheless, identifying more hard instances can provide more a
better understanding of the complexity of PCP and pave the road for improve-
ment of solving methods.
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