
Making Your World Leverly -- plot tokens and other magic

The goal of this tutorial is to build on the last tutorial (Making Your World Interesting)
by making the world you've built even better. This tutorial assumes that you've finished
the basic Aurora Toolset tutorial, the ScriptEase tutorial, and the previous three Make
Your World tutorials.

In this tutorial, we will get the lever animation down, create this "right order" we've been
babbling about, and make some treasure!

The player is a wandering adventurer who happens upon a tower in the wilderness.
Inside the tower, the player finds a friendly Guardian who tells the player about the magic
levers. If they are pulled in the right order, the vault opens and the treasure may be
obtained.

Getting Started:

1) Open The Aurora Toolset.

2) Open LeverMagic3 and save it as “LeverMagic4”.

Animating Placeables:

Levers don't play nice:

3) You may have noticed that we've been avoiding the levers. Only one even moves, it
flips on and off really fast, and it doesn't affect the world at all. You may have surmised
that this is because levers don't play nice. You may have surmised correctly. Let's get
started, and you’ll see why levers are tricky as we go. Close your module in Aurora and
open it in ScriptEase.

4) Expand the “Lever #1 use” Encounter and the “Use placeable...” Situation.

5) First, we'll delete that “Action” that is trying to animate the lever by right-clicking on
the “Then, Animate...” Action, and choosing “Delete” from the menu.

6) Next, we'll Add a Definition-->Get Variables-->Define a local integer to the “Use
placeable...” Situation. Because the lever has no sense of whether it is in an “on” (the
game thinks of it as “activated”) or “off” (“deactivated”) state, we must keep track of this
ourselves. We do this with a local variable which will change (to reflect the change in
the lever's state) each time the lever is pulled. For example, when the local integer is “1”,
that means the lever is in the “activated” or “on” state. When the player “uses” the lever
in the game, the local integer gets changed to “0”, and the lever changes state
accordingly. If this doesn't make sense, don't worry. It will become clearer as we go
along.

7) In the “Definition” you've just created-->Description tab-->Label-->put
“LeverToggle” into the textbox.

8) Under the “Target” tab-->Select Object-->The Placeable. As you've probably guessed,
we can simply choose “Lever #1” from the Module Blueprint-->Pick option. There is a
reason for choosing the “variable” name over the “constant” name, but we'll go into that
when we start animating the other levers.

9) Under the “Label” tab-->Constant-->put “toggle” into the textbox.

10) Again, under the “Use placeable...” Situation-->Add a Definition-->Binary--
>Comparing Objects or Values-->Whether two integers are the same.

11) Under the “Description” tab-->Label-->put “Activated” in the text box.

12) Under the “First Integer” tab-->Select Integer-->choose “LeverToggle” from the
dropdown.

13) Under the “Second Integer” tab-->Constant-->put “1” in the text box. At this point,
your module should look like the screenshot below.

14) Now we'll Add an Action-->Conditional Action-->Do the following actions if true to
the “Use placeable...” Situation.

15) Under the “Condition” tab-->Select Binary-->choose “Activated” from the
dropdown.

16) Now repeat steps 14 and 15, but choose “Do the following actions if FALSE”. This
is to catch both situations: when the lever is “Activated” and when it is “Deactivated”.

17) Under the true “Action”, we need to toggle the local variable's state (from 1 to 0) and
we need to animate the lever. First we'll toggle by Add an Action-->Action Atom--
>Variable Assignment-->Assign a value to a local integer variable.

18) Under the “Target” tab-->Select Object-->The Placeable.

19) Under the “Label” tab-->Constant-->put “Toggle” in the textbox. Leave the value as
“0”.

20) To animate the lever, simply Add an Action-->Action Atom-->Animations--
>Animate a placeable object.

21) Under the “Actor” tab-->Select Placeable-->The Placeable and under the
“Animation” tab-->Constant-->Activate.

22) Now that you've finished scripting the lever's actions when the “Activated” binary is
true (when the lever is already in the “on” position), we need to do similar things for
when “Activated” is false. We'll assign “1” to The Placeable's variable labeled “Toggle”,
and we'll “Animate The Placeable” to “Deactivate”.

23) Your module should now look like the screenshot below. “Save and Compile” your
module and make sure that the lever changes position each time you “use” it. Now, let's
make the other levers work.

Getting the other levers going:

24) We still haven't got Levers 2 and 3 doing anything, but now that Lever #1 is properly
configured, it is quite simple to get the others going as well. First, open your module in
SE, right-click on the “Lever #1 use”, and choose “Copy” from the menu.

25) Right-click on the “LeverMagic4.mod” folder, and choose “Paste”. Repeat this to
paste a second copy of “Lever #1 use”.

26) Select the first copy, under the “Description” tab-->Instance Name-->change it to
“Lever #2 use”, and under “The Placeable” tab-->Module Blueprint-->Pick-->Lever #2.
Repeat these steps for the second copy, changing the label and blueprint to reflect the use
of Lever #3.

27) Now save and compile your module, and try out your newly animated levers. “So
simple?” you ask? Yes. By constructing the first lever properly (by using variable names
like “The Placeable”), we made it easy to reuse scripts. This is the “reason” I mentioned
way back in step 8.

Plot Tokens:

Making tokens:

28) Plot tokens are sort of revisiting the notion of “state” that we discussed when
animating the levers. We're going to use them so that the scripts know if the player has
pulled the levers in the correct order. If you've forgotten, the order that the Guardian has
prescribed is 1, 2, then 3. Let's create some plot tokens to help us enforce this order.

29) Open your module in SE (again), and choose “Plot Token Builder” from under the
“Tools” menu at the top of the screen. The location of the “Tool” menu is illustrated in
the screenshot below.

30) In the “Plot Token Builder” window that opens, right-click in the big white box that's
in the center of the window. Choose “New Plot Token” from the menu.

31) Your new plot token will be automatically selected (indicated by a light blue
highlighting of your plot token). In the “Token Name” box, put in “lever1token”.

32) Repeat that steps 30 and 31 to create “ever2token”.

33) Left-click the red 'X' in the top, right corner of the “Plot Token Builder” window to
close it.

Getting tokens:

34) Expand the “Lever #1 use” Encounter, right-click the “Use placeable...” Situation,
and Add an Action-->Action Atom-->Plot-->Assign a plot token to an object

35) In the “Action” you've just created, under the “Plot Token” tab-->Constant--
>lever1token and under the “Recipient” tab-->Select Object-->User. Your module
should now look like the screenshot below.

36) Expand the “Lever #2 use” Encounter, right-click the “Use placeable...” Situation,
and Add a Definition-->Binary-->Plot-->Whether an object owns a plot token. Under the
“Description” tab-->Label-->change to Owns1, under the Owner tab-->Select Object--
>User, and under “The Token” tab-->Constant-->lever1token.

37) Right-click the “Use placeable...” Situation and Add an Action-->Conditional Action-
->Do...if true. Under the “Condition” tab-->Select Binary-->Owns1.

38) Right-click on the “...if Owns1 is true” Action and Add an Action-->Action Atom--
>Plot-->Assign a plot token to an object. Under the “Plot Token” tab-->Constant--
>lever2token and under the “Recipient” tab-->Select Object-->User. Your module
should look like this screenshot:

Opening doors:

39) We've made sure that the player has earned their two plot tokens, but we need
something to happen when they pull that third lever. We need to open the door. This
will require us to make sure that the player has both the previous tokens.

40) Repeat step 36 for the “Lever #3 use” encounter (you’ll have to re-create Owns1),
and then follow a similar pattern to create a “Binary” for the “lever2token”, calling it
“Owns2”.

41) Right-click the “Use placeable...” Situation and Add a Definition-->Binary--
>Combining Binary Values-->Whether both of two binary values are positive. Under the
“Description” tab-->Label-->change it to “OwnsBoth”, under the “First Value” tab--
>Select Binary-->Owns1, and under the “Second Value” tab-->Select Binary-->Owns2.

42) Right-click the “Use placeable...” Situation and Add an Action-->Action Encounter--
>Destroy an object with an effect near the object. Under the “Destroyed Object” tab--
>Module Blueprint-->Pick-->Vault Door and under the “Visual Effect” tab-->Constant--
>Lightning I. Your module should look like this screenshot.

43) “Save and Compile” your module and check out your handiwork.

Treasure:

44) Now we're at the real reason why you would create a module in the first place: to
make the best treasure possible and give it to your characters. Since the creation of
treasure has already been covered (way back in the original ScriptEase tutorial), I'm not

going to repeat it here. Use your imagination. Do whatever you like but make sure to
place it INSIDE the vault.

That’s all folks. If you're cagey, you may have noticed that there are a few holes in our
module: you don't HAVE to talk to the guardian to get into the vault, pulling all the
levers in a random order will eventually open the door, etc. These are left for you to
tackle on your own as you continue to explore the world of NWN, AT, and SE.

