

Lecture Overview

- Lab Exam
- Pizza!
- Summary (Tuesday)
- Pathfinding
- Finite State Machines

CMPUT 299 - Fall 2005 Artificial Intelligence

CMPUT 299 - Fall 2005 Artificial Intelligence

Artificial Intelligence

Part II

CMPUT 299

Winter 2006

March 2, 2006

Algorithm

- A detailed set of actions to perform or accomplish some task
- Evaluate game algorithms according to:
 - 1. Does it meet our time constraints?
 - 2. Does it meet our memory constraints?
 - 3. Does it solve the task at hand?
 - 4. Does it do so in an acceptable/realistic manner?

CMPUT 299 - Fall 2005 Artificial Intelligence

Describing Algorithms

- Three components to describing an algorithm
 - Actions
 - States
 - Transitions

CMPUT 299 - Fall 2005 Artificial Intelligence

Finite State Machines (FSM)

- An algorithm for applying actions in states
- A computer can be described as a FSM
- Simple, but powerful

FSM Example

- Simple first person shooter (FPS) state:
 - Do I have a weapon?
 - Am I near an enemy?
- FPS Actions
 - Find weapons
 - Find enemies
 - Shoot enemies

Finite State Machine

- Trogdor control knights
 - What are the actions?
 - What are the states?

CMPUT 299 - Fall 2005 Artificial Intelligence

Exercise

FSM Pros and Cons

- Pros:
 - How much time does it take to run a FSM?
 - How much memory does a FSM use?
 - Very simple to implement
- Cons
 - May be difficult to reproduce complex behavior
 - May be too predictable

Finite State Machines

- Can be built in two ways
 - Boxes are states or actions

FSM 1

CMPUT 299 - Fall 2005 Artificial Intelligence

Possible states

- Weapons / Enemies
 - Have Weapons, Near Enemies
 - Have Weapons, No Enemies
 - No Weapons, Near Enemies
 - No Weapons, No Enemies

Pacman ghosts

• How are pacman ghosts controlled?

- How many paths are there through a grid?
 - Start at one corner
 - Travel to the other corner
 - How many possible paths are there?
- Actions, states, transitions?

CMPUT 299 - Fall 2005 Artificial Intelligence CMPUT 299 - Fall 2005 Artificial Intelligence

CMPUT 299 - Fall 2005 Artificial Intelligence

		in the	
	3x3 Grid		2
		Goal	
Start			

4x4 Grid

		Goal	
Start			

CMPUT 299 - Fall 2005 Artificial Intelligence

How many paths?

Grid Size	# of paths
2x2	2
3x3	6
4x4	20
5x5	70
6x6	252
7x7	924
8x8	3432

CMPUT 299 - Fall 2005 Artificial Intelligence

FSM for grid problem

- What FSM can we use for grid pathfinding?
 - Actions:
 - N, S, E, W, NE, NW, SE, SW
 - States: (Goal Location)
 - Above (+ left/right)
 - Below (+ left/right)
 - Right
 - Left

Pathfinding FSM

Pathfinding

- Pathfinding is a global problem
 - Need global knowledge of the world to make correct choices
 - Easy for our visual systems to see this global information
- New approach
 - Search algorithm

CMPUT 299 - Fall 2005 Artificial Intelligence

Grid-Based Pathfinding • Given a start and goal in a grid • Compute all 1-step moves • Label with cost • Compute 2-step moves • Label with cost • Continue until goal is reached

CMPUT 299 - Fall 2005 Artificial Intelligence

			Goal
1			
Start	1		

				Goal
2				
1	2			
Start	1	2		

a second for

CMPUT 299 - Fall 2005 Artificial Intelligence

				1	
				Goal	
3					
2	3				
1	2	3			
Start	1	2	3		

CMPUT 299 - Fall 2005 Artificial Intelligence

					ित्त्	
1	4				Goal	12
	3	4				
	2	3	4			
	1	2	3	4		
	Start	1	2	3	4	

4	5			Goal
3	4	5		
2	3	4	5	
1	2	3	4	5
Start	1	2	3	4

ARA
124

4	5	6		Goal
3	4	5	6	
2	3	4	5	6
1	2	3	4	5
Start	1	2	3	4

CMPUT 299 - Fall 2005 Artificial Intelligence

CMPUT 299 - Fall 2005 Artificial Intelligence

Pathfinding

- Compute the cost to all locations
 - Time? Memory?
 - π·r²
 - Solves the problem
 - Will find the shortest path
- Breadth-First Search

				ित्त	
				Goal	
Start					

CMPUT 299 - Fall 2005 Artificial Intelligence

CMPUT 299 - Fall 2005 Artificial Intelligence

4				Goal	
3					
2	3	4			
1	2	3			
Start	1	2	3	4	

4	5			Guai
3				
2	3	4		
1	2	3		5
Start	1	2	3	4

CMPUT 299 - Fall 2005 Artificial Intelligence

				1 A	
4	5	6		Goal	
3					
2	3	4		6	
1	2	3		5	
Start	1	2	3	4	

CMPUT 299 - Fall 2005 Artificial Intelligence

				ित्त	2
4	5	6	7	Goal	
3				7	
2	3	4		6	
1	2	3		5	
Start	1	2	3	4	

What about...

Pathfinding

- In some cases we do much more work than the simpler algorithm
 - Avoid this by improving our algorithm
 - Consider the distance to the goal
 - Assuming no obstacles in the world

					2
4	3	2	1	Goal	
5	4	3	2	1	
6	5	4	3	2	
7	6	5	4	3	
Start	7	6	5	4	

4	3	2	1	Goal
5	4	3	2	1
6	5	4	3	2
7	6	5	4	3
Start	1+7	6	5	4

A RAN
124

4	3	2	1	Goal
5	4	3	2	1
6	5	4	3	2
7	2 +6	5	4	3
Start	1+7	6	5	4

CMPUT 299 - Fall 2005 Artificial Intelligence

				14	
4	3	2	1	Goal	
5	4	3	2	1	
6	3 +5	4	3	2	
7	2 +6	5	4	3	
Start	1+7	6	5	4	

CMPUT 299 - Fall 2005 Artificial Intelligence

4	3	2	1	Goal
5	4	3	2	1
6	3 +5	4 +4	5 +3	2
7	2 +6	5	4	3
Start	1+7	6	5	4

	रम्	
1	C 1	

4	3	2	1	Goal
5	4	3	6+2	1
6	3 +5	4 +4	5 +3	2
7	2 +6	5	4	3
Start	1+7	6	5	4

CMPUT 299 - Fall 2005 Artificial Intelligence

					AR	
Ι	4	2	2	1	Cont	1
	4	5	2	1	Goal	
	5	4	3	6+2	7+1	
	6	3 +5	4 +4	5 +3	2	
	7	2 +6	5	4	3	
	Start	1+7	6	5	4	

CMPUT 299 - Fall 2005 Artificial Intelligence

- Standard game pathfinding algorithm is A*
 - Combines actual costs with cost estimates
 - In easy cases behaves the same as simple FSM
 - In complicated cases still finds optimal paths
- Many extensions by AI researchers
 - IDA*, SMA*, D*, HPA*, PRA* ...