
1

Intro to ProgrammingIntro to Programming

CMPUT 299

H. James Hoover

Fall 2005 2005-10-11

Version 1.0

CMPUT 299

H. James Hoover

Fall 2005 2005-10-11

Version 1.0

CMPUT 299 - Fall 2005
Intro to Programming

2

Programming isProgramming is

Machine + Instructions

CMPUT 299 - Fall 2005
Intro to Programming

3

Scripting isScripting is

♣Programming where the “machine” is often
another program or system.

♣No real distinction anymore.

♣Programming where the “machine” is often
another program or system.

♣No real distinction anymore.

CMPUT 299 - Fall 2005
Intro to Programming

4

ExampleExample

♣Bob the robot:

♣Instructions:

turn left L

turn right R

go forward F

♣Bob the robot:

♣Instructions:

turn left L

turn right R

go forward F

CMPUT 299 - Fall 2005
Intro to Programming

5

Straight Line ProgramStraight Line Program

F F L F R F F R

CMPUT 299 - Fall 2005
Intro to Programming

6

Straight Line ProgramsStraight Line Programs

♣Simple linear flow of control

♣Only work in limited, pre-defined contexts

♣Building blocks for more complex actions

♣Simple linear flow of control

♣Only work in limited, pre-defined contexts

♣Building blocks for more complex actions

Define 2F as F F
Define Spin as R R R R
Define Dance as 2F Spin 2F Spin

CMPUT 299 - Fall 2005
Intro to Programming

7

2F Spin 2F Spin

CMPUT 299 - Fall 2005
Intro to Programming

8

SLP to walk a mazeSLP to walk a maze

 [][][][][]
 [] []
 [] [] []
 []
 [][][][][]

F R F F L F F F F

CMPUT 299 - Fall 2005
Intro to Programming

9

Branching ProgramsBranching Programs

♣To adapt to uncertain environment need to
have decision ability.

♣Decision result causes a branch in the flow
of control.

♣To adapt to uncertain environment need to
have decision ability.

♣Decision result causes a branch in the flow
of control.

CMPUT 299 - Fall 2005
Intro to Programming

10

Decision TreesDecision Trees

♣Decision trees are a common example of
branching programs.

♣Appear in many kinds of games and search
problems.

♣Decision trees are a common example of
branching programs.

♣Appear in many kinds of games and search
problems.

CMPUT 299 - Fall 2005
Intro to Programming

11

Common Decision TreeCommon Decision Tree

♣Pick a number in range 0 .. 7♣Pick a number in range 0 .. 7

< 4 ?

< 2 ? < 6 ?

< 1 ? < 3 ? < 5 ? < 7 ?

0 1 2 3 4 5 6 7

Y N

CMPUT 299 - Fall 2005
Intro to Programming

12

Many possible designs …Many possible designs …

♣Pick a number in range 0 .. 7♣Pick a number in range 0 .. 7

< 1 ?

0 < 2 ?

1 < 3 ?

2

Y N

< 4 ?

3 < 5 ?

4 < 6 ?

5

Y N

< 7 ?

6 7

CMPUT 299 - Fall 2005
Intro to Programming

13

So Cost is an IssueSo Cost is an Issue

♣How much time (e.g. number of steps,
decisions)

♣How much space (e.g. memory in RAM, on
disk)

♣How much programmer time?

♣How much time (e.g. number of steps,
decisions)

♣How much space (e.g. memory in RAM, on
disk)

♣How much programmer time?

CMPUT 299 - Fall 2005
Intro to Programming

14

Looping ProgramsLooping Programs

♣Add decision ability to our robot

♣Add Instructions:

blocked? - which returns Y or N
depending on whether can go forward or
not.

♣Allow branching back to previous point

♣Add decision ability to our robot

♣Add Instructions:

blocked? - which returns Y or N
depending on whether can go forward or
not.

♣Allow branching back to previous point

CMPUT 299 - Fall 2005
Intro to Programming

15

Maze program again …Maze program again …

Blocked? RY

N

Blocked? RY

N

Blocked?

R

Y

N

L

F

 [][][][][]
 [] []
 [] [] []
 []
 [][][][][]

CMPUT 299 - Fall 2005
Intro to Programming

16

Simplified …Simplified …

Blocked? RY

N

L

F

 [][][][][]
 [] []
 [] [] []
 []
 [][][][][]

CMPUT 299 - Fall 2005
Intro to Programming

17

As programsAs programs
while (in maze) {
 L;
 if (Blocked?) {
 R;
 if (Blocked?) {
 R;
 if (Blocked?) {
 R;
 }
 }
 }
 F;
 }

while (in maze) {
 L;
 while (Blocked?) {
 R;
 }
 F;
 }

Are these equivalent?
I.e. do the same thing?

CMPUT 299 - Fall 2005
Intro to Programming

18

Key IdeasKey Ideas

♣System - all the things that you are
interested in. Eg. Maze + Robot

♣State - all the dynamic information needed
to reconstruct the system at a point in time.
E.g. position and orientation of robot.

♣If you stop a system at time t, record its
state, and then continue you can backtrack
back to time t. E.g. Save game.

♣System - all the things that you are
interested in. Eg. Maze + Robot

♣State - all the dynamic information needed
to reconstruct the system at a point in time.
E.g. position and orientation of robot.

♣If you stop a system at time t, record its
state, and then continue you can backtrack
back to time t. E.g. Save game.

CMPUT 299 - Fall 2005
Intro to Programming

19

♣Transition - change of a system from one
state at time t to another state at time t+1.
Transitions are described by rules that say
where the current state can go next.

♣State space - all the potential states that a
system can have. Some of them may never
actually occur when a system runs.

♣Execution - a sequence of transitions
between states, usually starting in some
initial state and ending in a final state.

♣Transition - change of a system from one
state at time t to another state at time t+1.
Transitions are described by rules that say
where the current state can go next.

♣State space - all the potential states that a
system can have. Some of them may never
actually occur when a system runs.

♣Execution - a sequence of transitions
between states, usually starting in some
initial state and ending in a final state.

CMPUT 299 - Fall 2005
Intro to Programming

20

♣State Variable - variables capture different
parts of the system. They break it into pieces
to make it intellectually manageable.

♣E.g. for robot in maze have 3 state variables:

orientation o: {N, S, E, W}

 position (x,y) where

x: {0, 1, 2, 3, 4}

y: {0, 1, 2, 3, 4}

♣State Variable - variables capture different
parts of the system. They break it into pieces
to make it intellectually manageable.

♣E.g. for robot in maze have 3 state variables:

orientation o: {N, S, E, W}

 position (x,y) where

x: {0, 1, 2, 3, 4}

y: {0, 1, 2, 3, 4}

CMPUT 299 - Fall 2005
Intro to Programming

21

 [][][][][]
 [] []
 [] [] []
 []
 [][][][][]

o: E
x: 0
y: 3

 [][][][][]
 [] []
 [] [] []
 []
 [][][][][]

o: S
x: 3
y: 2

 [][][][][]
 [] []
 [] [] []
 []
 [][][][][]

o: S
x: 2
y: 2

Not a legit state

CMPUT 299 - Fall 2005
Intro to Programming

22

♣How big is the state space?
♣For robot in maze have 3 state variables:

orientation o: {N, S, E, W}
 position (x,y) where

x: {0, 1, 2, 3, 4}
y: {0, 1, 2, 3, 4}

 so 4 x 5 x 5 = 100 possible states. Which
ones are legal depends on the maze.

♣How big is the state space?
♣For robot in maze have 3 state variables:

orientation o: {N, S, E, W}
 position (x,y) where

x: {0, 1, 2, 3, 4}
y: {0, 1, 2, 3, 4}

 so 4 x 5 x 5 = 100 possible states. Which
ones are legal depends on the maze.

CMPUT 299 - Fall 2005
Intro to Programming

23

♣Actually have a 4th state variable p, the
position in the program giving the next
instruction the robot is going to execute.

♣Actually have a 4th state variable p, the
position in the program giving the next
instruction the robot is going to execute.

CMPUT 299 - Fall 2005
Intro to Programming

24

Managing State SpaceManaging State Space

♣The art of programming is managing your
state space.

♣Total state space is huge (multiply the
possible values of all variables).

♣Program with just 1000 integers has
2 ** 32000, or about 10 ** 9600 states.

♣The art of programming is managing your
state space.

♣Total state space is huge (multiply the
possible values of all variables).

♣Program with just 1000 integers has
2 ** 32000, or about 10 ** 9600 states.

CMPUT 299 - Fall 2005
Intro to Programming

25

But size doesn’t matter …But size doesn’t matter …

♣The key to keeping sane is making sure
most actions only affect “local” state.

♣The narrative guidelines are examples of
this.

♣Programming guidelines are similar. The
main one is:
Don’t talk to too many others.

♣The key to keeping sane is making sure
most actions only affect “local” state.

♣The narrative guidelines are examples of
this.

♣Programming guidelines are similar. The
main one is:
Don’t talk to too many others.

CMPUT 299 - Fall 2005
Intro to Programming

26

♣The other main one is:
Just because you can doesn’t mean you
should. Aka, Keep it Simple and Stupid.

♣The other main one is:
Just because you can doesn’t mean you
should. Aka, Keep it Simple and Stupid.

CMPUT 299 - Fall 2005
Intro to Programming

27

Programming LanguagesProgramming Languages

♣Languages are designed for specific
purposes, and generally don’t do so well
outside their design domain.

♣Some are general purpose: Java, Perl

♣Others are domain specific: ScriptEase, our
toy robot

♣Languages are designed for specific
purposes, and generally don’t do so well
outside their design domain.

♣Some are general purpose: Java, Perl

♣Others are domain specific: ScriptEase, our
toy robot

CMPUT 299 - Fall 2005
Intro to Programming

28

General PurposeGeneral Purpose

♣Have to be able to do almost anything, so
tend to be bad at most things.

♣Expressing what you want to do is neither
easy nor outrageously difficult

♣Have to be able to do almost anything, so
tend to be bad at most things.

♣Expressing what you want to do is neither
easy nor outrageously difficult

CMPUT 299 - Fall 2005
Intro to Programming

29

Special PurposeSpecial Purpose

♣Have to be able to do a small number of
things well.

♣Expressing what you want to do is easy if
you are are using it as intended, but often
outrageously difficult if you are pushing the
boundaries.

♣Have to be able to do a small number of
things well.

♣Expressing what you want to do is easy if
you are are using it as intended, but often
outrageously difficult if you are pushing the
boundaries.

CMPUT 299 - Fall 2005
Intro to Programming

30

ScriptEaseScriptEase

♣Special purpose, designed to cover most
common activities in a RP game: encounters
with other characters and objects.

♣Built by looking at common coding patterns
in the game engine codes and capturing
these in the programming language.

♣Special purpose, designed to cover most
common activities in a RP game: encounters
with other characters and objects.

♣Built by looking at common coding patterns
in the game engine codes and capturing
these in the programming language.

CMPUT 299 - Fall 2005
Intro to Programming

31

ScriptEaseScriptEase

♣Don’t try to make it do what it is not
intended to do.

♣Don’t try to make it do what it is not
intended to do.

