Representing the vertices of a graph with subtrees of a tree

Jessica Enright
Supervisor: Lorna Stewart
University of Alberta
Set Representations

Let:
$S = \{s_1 \ldots s_n\}$ be a family of sets
$G = (V, E)$ be a graph
ϕ be some set relationship

then

G is the ϕ-graph of S iff for $1 \leq i, j \leq n$
holds v_i, v_j are adjacent iff s_i, s_j are ϕ
Overlap Representation

\{ \{2, 3, 4\}, \{2, 3\}, \{1, 2\}, \{5, 3\} \}
Overlap Graphs of Subtrees of a Tree

Graph $G = (V, E)$ is a **subtree overlap graph** (SOG) iff there exists a family of subtrees \mathcal{T} of tree T such that G is the overlap graph of \mathcal{T}.
Intersection Graphs of Subtrees of a Tree

These are friends: chordal graphs.

Exactly the graphs with no chordless cycles

Lovely proof in Golumbic’s Book

Containment Graphs of Subtrees of a Tree

These are friends: comparability graphs.

Exactly the graphs with transitive orientations of the edges

Exactly all containment graphs
Filaments

What’s a filament?

Consider a line L and an interval I on that line
Filaments

Let L be embedded in a plane P, and let there be another plane above and perpendicular to P that intersects P at exactly L.
Filaments

A filament on I is a curve in the second plane connecting the endpoints of I.

If intervals are disjoint, filaments do not intersect.

If an interval contains another, then filaments may or may not intersect.
Filaments

Interval filament graphs (Gavril 2000)

Intersection graphs of filaments on intervals

Partition of non-edges - alternate definition
Interval Filament Graphs

Equivalent statements

Graph G is a:

Interval filament graph
Caterpillar overlap graph
SOG with a subtree-covering path

Recognition is NP-C
Subtree Filaments
Subtree Filament Graphs

Intersection graphs of filaments on subtrees in a tree
- If subtrees are disjoint, filaments do not intersect
- If subtrees overlap, filaments do intersect
- If one subtree contains another, filaments may or may not intersect
SFGs are SOGs

One piece of terminilogy: T_{f_i}
Subtree that f_i is on
SFGs are SOGs

Given: n Filaments $\mathcal{F} = \{f_1, f_2...f_n\}$ on tree $T = (V_T, E_T)$

Construct tree: T'

Construct n subtrees: $\mathcal{T}' = \{t'_1, t'_2...t'_n\}$ such that:
t'_i overlaps t'_j iff f_i intersects f_j
SFGs are SOGs

Construct tree: $T' = T + n$ extra nodes \{x_1...x_n\}

where

x_i is adjacent in T' to an endpoint of f_i in T.
Construct subtrees: $t'_i = T_{f_i}$

plus

x_i

plus

$\{x_j | T_{f_j} \subset T_{f_i} \text{ and } f_i \text{ does not intersect } f_j\}$
We must show that t'_i overlaps t'_j iff f_i intersects f_j.
t'_i overlaps t'_j iff f_i intersects f_j

Suppose f_i intersects f_j
- T_{f_i} intersects T_{f_j}
- so t'_i intersects t'_j

But also:
- x_i is in t'_i but not in t'_j
- x_j is in t'_j but not in t'_i

Therefore t'_i overlaps t'_j!
Suppose \(f_i \) does not intersect \(f_j \) then either \(T_{f_i} \) is disjoint from \(T_{f_j} \) or \(T_{f_j} \) is contained in \(T_{f_i} \).
t'_i overlaps t'_j iff f_i intersects f_j

Say T_{f_j} is contained in T_{f_i}

Consider the vertices in t'_j.
They are:

- Vertices in T_{f_j}
- x_j
- $\{x_k | T_{f_k} \subset T_{f_j} \text{ and } f_j \text{ does not intersect } f_k \}$
Say T_{f_j} is contained in T_{f_i}.
Consider the vertices in t'_j.
They are:

- Vertices in T_{f_j}
- x_j
- $\{x_k | T_{f_k} \subset T_{f_j} \text{ and } f_j \text{ does not intersect } f_k \}$

Jessica Enright, Lorna Stewart

SFGs are SOGs

CanaDAM 2007 31/35
Say T_{f_j} is contained in T_{f_i}
Consider the vertices in t'_j.
They are:

- Vertices in T_{f_j} - Are in t'_i
- x_j
- $\{x_k | T_{f_k} \subset T_{f_j} \text{ and } f_j \text{ does not intersect } f_k \}$
Say T_{f_j} is contained in T_{f_i}.
Consider the vertices in t'_j.
They are:
- Vertices in T_{f_j} - Are in t'_i
- x_j - Is in t'_i
- $\{x_k | T_{f_k} \subset T_{f_j} \text{ and } f_j \text{ does not intersect } f_k \}$

Jessica Enright, Lorna Stewart

SFGs are SOGs

CanaDAM 2007
Consider the vertices in \(t'_j \).
They are:
- Vertices in \(T_{f_j} \) - Are in \(t'_i \)
- \(x_j \) - Is in \(t'_i \)
- \(\{x_k \mid T_{f_k} \subset T_{f_j} \text{ and } f_j \text{ does not intersect } f_k \} \)
\{ x_k \mid T_{f_k} \subset T_{f_j} \text{ and } f_j \text{ does not intersect } f_k \}

Lets take a x_k in t'_j.

T_{f_k} is contained in T_{f_j}

T_{f_k} is contained in T_{f_i}

then

f_k does not intersect f_i

x_k is in t'_j
SFG and SOGs

The two classes are equivalent - why is this surprising?

- Filaments seem more general
- Have a choice when the subtrees overlap

The proof is surprisingly straightforward

This gives us new ways to think about SOGs

Gavril’s non-edge partitioning
Recognition

- We suspect it’s NP-C
- Other recognition problems that are hard:
 - Interval Filament
 - OG of subtrees in tree with 3 leaves
 - OG of subtrees in tree with k leaves
 - OG of subtrees in given tree
Algorithms

- Given a subtree overlap representation we can compute:
 - Max clique/Independent Set
Exciting Future Directions!

- Complexity of Recognition
- Partition approach
- Minimal SOG triangulation and representation
- What other hard problems can we solve on SOGs?
- Do asteroidal triples come into it somehow?
- Representations of restricted size
- A general formulation for Gavril’s mixing
- Potential application to:
 - Perfect phylogeny?
 - Knowledge and social interaction?
 - Hierarchical knowledge modeling?
 - General filament to overlapping formulation
 - Mizar-Formalizing results
 - Graph algebras
Thanks for your time! My stay here has been supported by Dr. Kratochvil and Martin Pergel. I am also supported by:

Lorna Stewart
University of Alberta Computing Science
Canadian National Engineering and Science Research Council (NSERC)
Alberta’s Informatics Circle of Research Excellence (iCORE)
University of Alberta Faculty of Science
University of Alberta Faculty of Graduate Studies and Research

If you’d like to talk to me about my work or anything else
enright@cs.ualberta.ca
or until March 18th
jessica@kam.mff.cuni.cz
or Office 324

Thanks!
If you’d like to talk to me about my work or anything else

enright@cs.ualberta.ca

or until March 18th

jessica@kam.mff.cuni.cz or Office 324