Paths in a Tree with Fixed Maximum Degree

Jessica Enright and Martin Pergel
Intersection of Paths in a Tree

Subtree Overlap Graphs

Overlap of Paths in a Tree

Overlap of Paths in Degree-Limited Tree

Intersection of Paths in Degree-Limited Tree

Catepillar Overlap Graphs

Polygon Circle Graphs

Circle Graphs

Chordal Graphs

Interval Graphs

Circle Graphs

Chordal Graphs

Intersection of Paths in a Tree
Proof Intuition
Transformation

\[G = (V, E) \]

\[G' = (V' = V \cup E \cup H, \quad E' = \text{edges between:} \]

- members of \((E \cup H)\),
- member of \(V\) and its holder
- member of \(E\) and its endpoints in \(G\)

\begin{align*}
\text{holder of } u & \\
\text{holder of } v & \\
\text{holder of } w &
\end{align*}
If G is k-colourable,
G' is k-representable

$C_1 \quad C_2 \quad \ldots \quad C_k$
G’ is k-representable

- $E \cup H$ is a clique - their subtrees must have a node in common

Diagram:
- Nodes 1, 2, q
- Edge between 1 and q
- Edge between 2 and q
- Indicated that there are at most k nodes in common
Claim: Adjacent vertices in G are not represented on the same branch
Claim: Adjacent vertices in G are not represented on the same branch
at most \(k \)
at most k
Subtree Overlap Graphs

- Caterpillar Overlap Graphs
 - Polygon Circle Graphs
 - Circle Graphs
 - Chordal Graphs
 - Intersection of Paths in a Tree
 - Interval Graphs
 - Intersection of Paths in a Tree in Degree-Limited Tree
 - Overlap of Paths in a Tree
 - Overlap of Paths in Degree-Limited Tree
G is k-colourable

G’ is Intersection of Paths

G’ is Overlap of Paths

Overlap of Paths in Degree-Limited Tree

Intersection of Paths in Degree-Limited Tree
G is k-colourable

G' is Intersection of Paths

G' is J

G' is Overlap of Paths

Overlap of Paths in Degree-Limited Tree

Class J

Intersection of Paths in Degree-Limited Tree
Thanks

Dr. Lorna Stewart
Dr. Jan Kratochvil