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Abstract

This paper considers the integral multicommodity flow problem on directed graphs underlying two
classes of multistage interconnection networks. In one direction, we consider 3-stage networks. Using
existing results on (g, f)-factors of bipartite graphs, we show sufficient and necessary conditions for the
existence of a solution when the network has at most 2 secondary switches. In contrast, the problem is
shown to be NP-complete if the network has 3 or more secondaries. In a second direction, we introduce
a recursive class of networks that includes multistage hypercubic networks (such as the omega network,
the indirect binary n-cube, and the generalized cube network) as a proper subset. Networks in the new
class may have arbitrary number of stages, moreover, each stage may contain identical switches of any
arbitrary size. The notion of extra-stage networks is extended to the new class, and the problem is
shown to have polynomial time solutions on r-stage networks where r = 3, or r ≥ 3 and each link
has a unit capacity. The latter result implies an efficient algorithm for deciding admissible permutations
on conventional extra-stage hypercubic networks. In contrast, we show that the multicommodity flow
problem is NP-complete on extra-stage networks, even if r = 6, each link has an integral capacity ≤ 3,
and all flow demands are equal.

1 Introduction

Multicommodity flow problems arise naturally in the analysis of circuit-switching communication networks
where a collection of end-to-end connections are to be routed simultaneously. With some connections
already in progress at some instant, the state of the network is captured by a graph G = (V,E), where each
communication link e ∈ E has a positive residual capacity c(e). The required connections are specified
by a set of pairs of vertices {(si, ti) : 1 ≤ i ≤ k}, with connection (si, ti) requiring q(si, ti) (qi for short)
units of bandwidth. In the integral multicommodity flow (MCF) problem, c and q are integer-valued. The
problem is to compute a set of flow functions {fi : E → Z+

0 : 1 ≤ i ≤ k} such that (a) for each e ∈ E,
∑

fi(e) ≤ c(e), (b) for each vertex v /∈ {si, ti}, flow fi is conserved at v, and (c) for each i, 1 ≤ i ≤ k, the
net flow into ti under fi is at least qi.

Our objective in this paper is to investigate the complexity of the problem on directed graphs underlying
certain classes of multistage interconnection networks (MINs), commonly constructed from arrays of space-
division or time-division multiplexers (for example, crossbar switches). An r-stage MIN then corresponds
to a directed graph G with stages (V1, V2, · · · , Vr) of vertices, and links connecting vertices in one stage
to vertices in the next stage; the required connections form a subset of V1 × Vr. Networks of this type
have been studied extensively in the context of designing telephone switching systems, communication
networks, as well as high performance parallel and distributed multiprocessor systems (see, for example,
[3, 8, 13, 23, 26]). In particular, numerous interesting results (to mention a few, [2, 14, 17, 18, 21, 25])
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exist on special cases of the problem where c(e) = 1 for each link, and the traffic is restricted to permutation
connections or broadcast connections. In contrast, not as much seems to be known about the general problem
on various classes of MINs. In this paper we aim at bridging the above gap by considering the problem
on 3-stage networks (sections 2 and 3), and another hierarchy of classes of networks that includes extra-
stage hypercubic networks (examples of standard hypercubic networks include the omega network [15], the
generalized cube network [22], and the indirect binary n-cube [21]) as special subclasses (sections 4, 5, and
6).

Before proceeding further, it is perhaps worthwhile reviewing some general results that are valuable in
directing the search for efficient exact algorithms for the MCF problem. From a complexity point of view,
Even et al. [6] have shown that the 2-commodity MCF problem is NP-complete, even if each edge has
a unit capacity. Although the result serves well in pruning a nontrivial portion of the search space, it is
based on constructing directed graphs with relatively large diameters, and with multiple paths between the
terminals of interest. In contrast, the classes of networks considered here have either small diameters, or
regular structure that offer only two paths between any pair of terminals (the paths may share an initial or a
terminal segment, but otherwise link-disjoint).

A second result of interest, due to Okamura and Seymour [19], deals with planar graphs where the
terminals of interest lie on a common face of the graph. With X ⊆ V , δ(X) denoting the set of edges with
one end point in X and the other in V − X , D(X) = {i : |{si, ti} ∩ X| = 1}, and c, q are integer-valued,
[19] shows that integral flows exist if and only if for every subset X ⊆ V ,

∑
e∈δ(X) c(e) −

∑
i∈D(X) qi

(≥ 0) is an even integer. This implies integral solutions if c and q are even-integer-valued, and each cut’s
capacity is at least as large as the cut’s demand. Hassin [10] gives efficient procedures for constructing such
a flow if one exists. Conversely, if no feasible solution exists, the argument identifies a violating set X of
vertices. Finding such a set X is useful in cases where additional bandwidth can be allocated dynamically to
increase link capacities to accommodate a given workload. Analogous to the above cut-demand conditions,
we examine in sections 3 and 5 the sufficiency of the following set of conditions for directed multistage
networks:
Set [CD]: For every subset X ⊆ V1 and Y ⊆ Vr: q(X,Y ) ≥ δ(X,Y ), where q(X,Y ) =

∑

(si,ti)∈X×Y

qi, and

δ(X,Y ) is the minimum capacity of a directed cut separating X from Y .

2 3-stage Networks

Networks in this class have a simple structure that is often used as the basis of constructing other networks
with various properties. Thus, providing a good starting point for analysis. Here, the network is modeled by a
tripartite graph G = (X∪Y ∪Z,EXY ∪EY Z), on a set X of primary switches, a set Y of secondary switches,
and a set Z of tertiary switches. Each switch corresponds to an independent subnetwork that is capable of
switching all incoming traffic, regardless of its volume or distribution. Common graph terminology is used
and will be introduced as required. To start, we need the following few notations. If S is a subset of vertices
or edges of a graph G, then G[S] denotes the subgraph of G induced by S. In addition, if f is a real function
on S, we let f(S) =

∑
x∈S f(x). Well known terminology of switching networks is also used. Thus, a

network with N inputs (outputs) is rearrangeable if it admits all N ! permutation connections between the
inputs and outputs.

Clos (see, for example, [3]) pioneered the discovery of a class of 3-stage rearrangeable networks. In its
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general form, a Clos network is constructed from rearrangeable switches such that each primary is connected
to every secondary, and each secondary is connected to every tertiary. Thus, G[EXY ] and G[EY Z ] are
complete bipartite graphs. When routing permutations is of concern, it is well known that Clos’s result can
be derived from Vizing edge-coloring theorem (e.g., see [4] or [5]). Specifically, for a given permutation
to be routed, consider the bipartite graph GD = (X ∪ Z,ED) of flow demands, where (x, z) ∈ ED if
q(x, z) = 1. The maximum degree of any vertex in GD is |Y |, hence, by Vizing theorem, ED can be
properly colored using at most |Y | colors. Thus, all demands can be assigned to the set Y of secondaries
without conflicts, proving that the network is rearrangeable. Fast parallel algorithms for routing in networks
that can be derived recursively from 3-stage networks appear in [16].

At an arbitrary instant, however, some links of the network may be busy serving connections already in
progress, and it is no longer true that all of the |Y | secondaries are accessible from each primary or tertiary.
Consequently, all of the above techniques are potentially inapplicable. Nevertheless, one may anticipate
that minor topological variations of the fully connected Clos network may give rise to routing problems that
can be solved efficiently. In Theorem 2.1 we support the above intuitive remark for two restricted cases.
Furthermore, the result shows that conditions in [CD] are both necessary and sufficient for the existence of
a solution. The proof uses an elegant characterization of sufficient and necessary conditions for solving the
following problem. Given two integer-valued functions f and g on the vertex set of a bipartite graph G such
that 0 ≤ g(x) ≤ f(x) ≤ degG(x), for each x in G. Find a (g, f)-factor of G; that is, a spanning subgraph F

such that g(x) ≤ degF (x) ≤ f(x) for each vertex x in G. Using the new notation a . b = max(0, a − b)

employed in [11], the result can be stated as follows.
Theorem HHKL [11]: A bipartite graph G has a (g, f)-factor if and only if for every set S of vertices
∑

x/∈S g(x) . degG−S(x) ≤ f(S).
Efficient algorithms for solving several factoring problems appear in [12] and the references therein.

Our proof applies the above result on the demand graph GD = (X ∪ Z,ED), having q(x, z) parallel edges
between x and z for each q(x, z) > 0.
Theorem 2.1: Let G = (X ∪ Y ∪ Z,EXY ∪ EY Z) be a 3-stage network satisfying one of the following
conditions. Then the MCF problem (c and q are as in section 1) has a solution if and only if conditions in
[CD] hold.

1. |Y | ≤ 2.

2. |X| ≤ 2 and G[EY Z ] is a complete bipartite graph (by symmetry, |Z| ≤ 2 and G[EXY ] is a complete
bipartite graph), and c is constant.

Proof of 1:
Part 1 follows easily if |Y | = 1, so let Y = {a, b}. Note that the MCF problem has a solution if

and only if GD has a (g, f)-factor Ga (corresponding to demands routed through the secondary a), where
f(v) = c(v, a), and g(v) = degGD

(v) − c(v, b) for every v ∈ GD . So that the remaining demands form
a second bipartite graph Gb where degGb

(v) ≤ c(v, b) for every vertex v. To derive a contradiction, let
(G, c, q) be a counter instance of the MCF problem with the fewest number of vertices. That is, (G, c, q)

satisfies conditions [CD], yet there is no feasible solution. In G, every primary or tertiary v is connected to
both secondaries a and b. Otherwise, one can route all demands of v via its unique adjacent secondary, and
subsequently reduce the capacities, and delete v. The resulting instance forms a smaller counterexample.
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By Theorem [HHKL], there exits a violating set S of minimum cardinality such that
∑

v/∈S g(v) . degGD−S(v) >

f(S). The cardinality of S implies that it is a subset of either X or Z , but not both. Without loss of generality,
assume that S ⊆ X . It is then easy to verify that the vertices of X −S have zero contribution to the summa-
tion on the left hand-side. In contrast, let Z ′ ⊆ Z be the set {z : g(z) . degGD−S(z) > 0} that contributes
positively to the sum. With z ∈ Z ′ and βz denoting the flow requirements q(X − S, z) =

∑
x∈X−S q(x, z),

the violating inequality can be written as:
∑

z∈Z′

(degGD
(z) − c(z, b) − βz) > f(S) =

∑

x∈S

c(x, a).

Equivalently, ∑

z∈Z′

(degGD
(z) − βz) >

∑

x∈S

c(x, a) +
∑

z∈Z′

c(z, b).

The left hand-side of the above inequality corresponds to q(S,Z ′), and the right hand-side corresponds to
the capacity of an (S,Z ′)-cut, a contradiction.
Proof of 2:

The claim follows easily if X has one primary. So, assume that X = {x1, x2}. By the above proof, it
suffices to show a flow equivalent instance (G′, c′, q′) with exactly 2 secondaries, denoted ys and yd. With
N(x) denoting the neighbors of an arbitrary vertex x, let Y1,2 = N(x1) ∩ N(x2), Y1 = N(x1) \ N(x2),
and Y2 = N(x2) \ N(x1). In the new instance, X ′ = X , Y ′ = {ys, yd}, Z ′ = Z , and q′ = q. In addition,
for each vertex xi ∈ X set c′(xi, yd) = c(xi, Yi), and c′(xi, ys) = c(xi, Y1,2). Moreover, for each vertex
zi ∈ Z set c′(zi, yd) = c(zi, Y1∪Y2), and c′(zi, ys) = c(zi, Y1,2). Since c is constant and EY Z is a complete
bipartite graph, it then follows that G admits the demands of q if and only if G ′ admits q′.

3 NP-completeness

Theorem 2.1(1) has an application in section 6; we now show that it is a tractable problem at the edge of an
intractability cliff.
Theorem 3.1: The MCF problem is NP-complete on 3-stage networks with 3 secondaries, and unit-valued
functions c and q.

In the special case (where c = 1), the MCF problem is equivalent to the following restricted edge-
coloring problem on bipartite graphs, denoted BREC thereafter. Given a bipartite graph G = (A ∪ B,E),
a set L of colors, and for each vertex x a subset L(x) of permissible colors. Does there exist a coloring
function color : E → L such that for each edge xy ∈ E, color(xy) ∈ L(x) ∩ L(y), and no two edges
incident with the same vertex have the same color?

The reduction is from the Not-All-Equal 3-SAT (problem [LO3], page 259, [7]) where U is a set of
variables and C is a collection of clauses over U such that each clause c ∈ C has |c| = 3. We ask whether
there exists a truth assignment for U such that each clause in C has at least one true literal and at least one
false literal. To show Theorem 3.1 above, it suffices to show the following.
Lemma 3.1: N-A-E 3-SAT ∝ BREC with exactly 3 colors.
Proof:

Let (U,C) be an instance of the N-A-E 3-SAT, we construct an instance (G,L) of the BREC problem
where G has |U | variable-gadgets and |C| clause-gadgets, and L = {n, t, f}. Figure 3.1 illustrates the
caterpillar-like structure of a typical variable-gadget Gi associated with variable ui. The head edge hi of the
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gadget has two permissible colors: t and f . The outlets of the gadget are the leaves labeled ui,j , j ≥ 0. An
outlet ui,j is called odd or even depending on the index j. If literal ui appears p times, and literal ui appears
q times in C , then the gadget is extended to supply 2max(p, q) outlets.

(n,t,f)

u
i,0i,1

ui,2u

(n,t,f) (n,t,f)

(n,t,f) (n,t,f) (n,t,f) (n,t,f)

h
i

(t,f)

(t,f) (t,f) (t,f)

(n,f) (n,f)(n,t) (n,t)

(n,f)

Figure 3.1. A variable gadget Gi.

The gadget satisfies the following property: if hi is colored x ∈ {t, f} then all edges incident with the even
outlets have the same color x, and all edges incident with the odd outlets have the complement color x.

In addition, for each clause Cj ∈ C , G has a vertex Cj with L(Cj) = {n, t, f}. If literal ui ∈ Cj then
vertex Cj is made adjacent to an odd outlet in Gi using the new edge e = uiCj . Otherwise, (if ui ∈ Cj)
then Cj is made adjacent to an even outlet using the new edge e = uiCj . By the above property of variable-
gadgets, it follows that:
Property 1: color(uiCj) ∈ {n, color(hi)}, and color(ui, Cj) ∈ {n, color(hi)}.

It is easy to verify that G is a bipartite graph with square nodes on one side and clause gadgets plus
circle nodes on the other side. Now, suppose that N-A-E 3-SAT has a truth assignment va` : U → {t, f} in
which each clause has at least one true literal and one false literal. Then the following coloring scheme is
feasible:

1. For every ui ∈ U , set color(hi) = va`(ui).

2. For each clause Cj identify a true literal, say u0 (or u0), a false literal, say u1 (or u1), and let u3 be the
third literal in Cj . For ui ∈ {u0, u1}, set color(uiCj) = va`(ui) if ui ∈ Cj . Otherwise (if ui ∈ Cj),
set color(uiCj) = va`(ui). Finally, set color(u3Cj) = n.

Conversely, suppose that (G,L) has a feasible coloring. Set va`(ui) = color(hi), for each ui ∈ U .
Now, each clause vertex Cj has two edges et and ef colored t and f , respectively. For each e ∈ {et, ef},
if e is labeled uiCj (for some ui) then, by convention, literal ui ∈ Cj . By Property 1, color(uiCj) =

color(hi) = va`(ui). Likewise, if e = uiCj then color(uiCj) = color(hi) = va`(ui). In both cases,
variable ui gives a true literal in Cj if e = et, and a false literal if e = ef . This completes the proof.

4 A Recursive Class of Multistage Networks

Hypercubic MINs form a class of cost-effective self-routing networks that include the omega network [15],
the generalized cube network [22], and the indirect binary n-cube [21]. Parker [20], and independently, Wu
and Feng [24], have shown that the inverse omega network, the indirect binary n-cube, a restricted version
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of the SW-banyan networks [9] are topologically equivalent. Hence, results on any of the above networks
can be extended to the others. Here, we choose the indirect binary n-cube network (IBC , for short) as a
representative of the above class, and introduce a recursive class that generalizes the IBC networks. The
recursive class, denoted GIBC , removes the restriction of using 2×2 switches, and allows switches of any
arbitrary size to be used. The resulting proofs are more graph-theoretic, with a limited component based on
manipulating network addresses at the binary level. In section 5, we define the class of extra-stage GIBC

networks and show two cases where the MCF problem can be solved efficiently.
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Figure 4.1. (a) an 8-input IBC network. (b) a 2-stage network.

To set a framework, we need some definitions. The binary representation of a positive integer x, x < 2n,
is denoted (xn−1, · · · , x0)2. The fan-in of a MIN refers to the number of inputs (outputs) of the network.
An IBC [21] of fan-in N = 2n (see, for example, Figure 4.1a) has (lg N) stages numbered 0, 1, · · · , n − 1

from the input side to the output side. The topology can be described using the cube functions: cube i(x) =

(xn−1 · · · xi · · · x0)2, 0 ≤ i ≤ n − 1, as follows. At each stage 0 ≤ σ ≤ n − 1 of the network, each
2×2 switch is identified by a unique pair of addresses (x, cubeσ(x)), where bit xσ = 0. Address x is then
associated with the upper input and output ports, and the second address cubeσ(x), with bit xσ = 1, is
associated with the lower ports. Each internal link in the network joins an output port of one stage to the
unique input port of the next stage having the same address.

Central to the structure of the new class is the topology of ordered full-access 2-stage networks. Figure
4.1b illustrates a typical network with p primaries (X0, · · · , Xp−1), and q secondaries (Y0, · · · , Yq−1), where
each primary is a rearrangeable switch with q inputs, and each secondary is a rearrangeable switch with p

inputs. Two coordinate systems (local and global) are used to reference the inputs and outputs of switches at
any stage. In both systems, output addresses within each switch are assumed to be in one-to-one correspon-
dence with input addresses. Hence, for any system, it suffices to fix input labels at each stage. In the local
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system, the inputs within each switch are ordered sequentially (0, 1, 2, · · ·) from top to bottom. In contrast,
the global system associates a unique address with each input of any given stage, moreover, each link joins
an output port of one stage to the unique input port of the next stage with the same address. In Figure 4.1b,
local labels appear inside the switches, and global labels appear on both sides of the network. Using local
coordinates, one may then refer to the jth input (or output) of a switch Xi by X−

i,j (respectively, X+
i,j). The

intermediate links of the network then corresponds to the set: {(X+
i,j , Y

−

j,i)| 0 ≤ i ≤ p − 1, 0 ≤ j ≤ q − 1}.

The class of GIBC networks is defined recursively as follows: any rearrangeable switch or any ordered
full-access 2-stage network is a GIBC . Furthermore, assume that G is a GIBC network with a stage σ

having switches of fan-in nσ each, and H is a 2-stage GIBC network of fan-in nσ . Then replacing each
switch of stage σ by a copy of H gives a GIBC network G′ of the same fan-in and larger number of stages.
Here, we say that G derives G′ (G ` G′) in one step. The notation G

∗

` G′ (or G
+
` G′) implies that

G′ is obtained from G in zero (respectively, one) or more steps. Note that G has more permutation power
than G′. With nσ denoting the fan-in of each switch in stage σ of an r-stage GIBC network, define the
profile of G as the vector (n0, n1, · · · , nr−1). In case where a symbol, say Xσ (possibly with additional
subscripts), is used to designate the switches at stage σ then the extended profile of the network is a vector
(X0 :n0, X1 :n1, · · · , Xr−1 :nr−1) of name-size pairs.

That IBC networks are properly contained in GIBC networks is shown next (where the notation “∼=”
refers to the isomorphism operator).
Lemma 4.1: Let G be a 2-stage GIBC network of fan-in 2n, n ≥ 2, and let H be an IBC of the same fan-in
then G

∗

` H .
Proof:

By induction on n. The lemma holds by definition for n = 1. So, assume that it holds for all integers less
than n > 2. Let (X :2a, Y :2b), 2a+b = 2n, be G’s extended profile. By the induction hypothesis, one can
construct a new network G′ by replacing each switch Xi (or Yj) by an IBC X ′

i (respectively, Y ′
j), of the

corresponding fan-in. Local labels of inputs within each switch Xi (or Yj) induces a labeling of all internal
ports within the substitute network X ′

i (or Y ′

j ). We now define a global labeling of G′ (using addresses of
length a + b bits), and use the new labels to prove that G′ ∼= H .

1. For each IBC X ′
i, 0 ≤ i ≤ 2b − 1, change every occurrence of local address 0 ≤ j ≤ 2a − 1 to

a global address i2a + j. Thus, all addresses in X ′
i agree in the most significant b bits. Clearly, in

X ′
i each switch at stage 0 ≤ σ ≤ a − 1 connects two inputs whose addresses differ only in bit σ.

Consequently, the leftmost a stages of G′ are identical to their counterparts in H .

2. For each IBC Y ′
j , 0 ≤ j ≤ 2a − 1, change every occurrence of local address 0 ≤ i ≤ 2b − 1 to

the global address i2a + j. Hence, addresses in Y ′
j agree in the least significant a bits. In Y ′

j each
switch at stage 0 ≤ σ ≤ b − 1 connects two inputs whose addresses differ only in bit σ + a, proving
that the rightmost b stages of G′ are identical to their counterparts in H .

Finally, it is easy to verify that each intermediate link (X+
i,j, Y

−

j,i) in G connects an output with global address
i2a + j to an input of the next stage, with the same address.

Lemma 5.1 in the next section introduces a key property used in deriving polynomial time MCF al-
gorithms on extra-stage networks. An important ingredient of the proof is the following uniqueness (up
to isomorphism) result shown in Lemmas 4.2 and 4.3 below. The proofs use the following k-way shuffle
function: suppose that k divides n evenly, then a k-shuffle of the sequence (0, 1, · · · , n − 1) is obtained by
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dividing the sequence into n/k subsequences: (i, i + 1, · · · , i + k − 1), i = 0, k, 2k,· · ·, n
k − 1, and then

constructing a new sequence by taking the first element of each subsequence, then the second element of
each subsequence, and so forth. The location of an integer α, 0 ≤ α ≤ n − 1, in the new sequence is given
by: k-shuffle(α)= (α mod k) n

k + int(α
k ), where int(α

k ) = bα
k c.

Lemma 4.2: For any three integers x, y, and z there exits a unique 3-stage GIBC network H with profile
(x, y, z).
Proof:

By definition, H can be only derived from one of the following 2-stage networks: GX with extended
profile (X :x, [Y Z] :yz), or GXY with extended profile ([XY ] :xy, Z :z). Denote by HX and HXY the two
possible networks of extended profile (X :x, Y :y, Z :z) that can be derived from GX and GXY , respec-
tively. We show that HX

∼= HXY by proving that a global labeling of the latter can be obtained from a
global labeling of the earlier by applying the x-shuffle function to the secondaries (hence, we use a straight-
forward, but rather tedious, method of translating addresses between local coordinates of the 4 networks
GX , HX , GXY , and HXY ). In particular, we examine the following two types of edges:

1. In GX , let e = (X+
i,j , [Y Z]−j,i) be an edge, where i < yz and j < x. In HX , e is incident with

switch Yα, where α = jz + int(i/y). Hence, the coordinates of e in HX are (X+
i,j , Y

−

α,i mod y).
Now, consider the other derivation GXY ` HXY . Module [XY]int(i/y) in GXY , when expanded,
yields the distinguished switch Xi in network HXY . The offset of that distinguished switch, rel-
ative to the top of [XY]int(i/y), is (i mod y). Hence, within [XY]int(i/y) we consider the edge
e′ = (X+

i mod y,j, Y
−

j,i mod y). In HXY , e′ hits switch Yβ , where β = int(i/y)x + j. Thus, the co-
ordinates of e′ in HXY are (X+

i,j , Y
−

β,i mod y). With i < yz, j < x, and β ≤ xz secondaries of HX , it
then follows that x−shuffle(β) = α, proving that e = e′.

2. In GXY , let e = ([XY]+i,j , Z
−

j,i), where i < z and j < xy. In HXY , e is incident to switch Yα, where
α = ix+int(j/y). Hence, the coordinates of e in HXY are (Y +

α,j mod y, Z
−

j,i). Now, consider the other
derivation GX ` HX . Module [Y Z]int(j/y) in GX , when expanded, yields the distinguished switch Zj

in network HX . The offset of that distinguished switch, relative to the top of [Y Z] int(j/y), is (j mod y).
Hence, within [Y Z]int(j/y), we consider the edge e′ = (Y +

i,j mod y, Z
−

j mod y,i). In HX , e′ is incident
with switch Yβ , where β = int(j/y)z + i. Thus, the coordinates of e′ in HX are (Y +

β,j mod y, Z
−

j,i).
With i < z, j < xy, and α < xz secondaries of HXY , it follows that x−shuffle(α) = β, proving that
e = e′.

This completes the proof.
Lemma 4.3: For any sequence ~n = (n0, n1, · · · , nr−1) of r positive integers, there exists a unique GIBC

network with profile ~n.
Proof:

The lemma holds for r ≤ 2, by definition of GIBC networks, and for r = 3, by Lemma 4.2. We now
show that it holds for all r > 3. To derive a contradiction, let r > 3 be the smallest integer for which the
lemma fails. That is, there exist two non-isomorphic r-stage networks H ′ and H ′′ with the same profile
~n. Denote by G′ and G′′ the two (r − 1)-stage networks that derive H ′ and H ′′, respectively. In addition,
assume that the derivation G′ ` H ′ expands stage i of G′ to yield stages i and i + 1 of H ′. Likewise, let
j be the index of the stage in G′′ affected by the derivation G′′ ` H ′′. Without loss of generality, we may
assume that i ≤ j. We distinguish the following cases.
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1. Case: i = j. Here, G′ and G′′ have the same profile. By the choice of r, G′ ∼= G′′. Consequently,
H ′ ∼= H ′′, a contradiction.

2. Case: (i + 1) < j. By the choice of r, there exists a unique (r − 2)-stage network G with profile
(n0, · · · , ni−1, nini+1, · · · , nj−1, njnj+1, · · · , nr−1) that derives both G′ and G′′. Thus, the first j

stages of G′′ and H ′ are identical, moreover, the last r − (i + 2) stages of G′ and H ′′ are identical.
Thus, H ′ ∼= H ′′, a contradiction.

3. Case: i+1 = j. Again, consider the unique (r−2)-stage network G with profile (no, · · · , ni−1, nini+1ni+2, · · · , nr−1)

that derives both of G′ and G′′. By Lemma 4.2, each switch of size nini+1ni+2 (at the ith stage of G)
expands to a unique 3-stage network of profile (ni, ni+1, ni+2). Hence, H ′ ∼= H ′′, a contradiction.

This completes the proof.

5 Cutsets of Generalized Extra-Stage Networks

A mincut of a directed graph underlying a MIN is a minimal set of edges whose removal destroys all directed
paths between some set of inputs I , and another set of outputs O. A wide mincut is one where I contains
all inputs that can reach any edge in the cutset, and O contains all outputs the are reachable from any edge
in the cutset.

Extra-stage IBC networks (denoted IBC+) are obtained by adding a new stage (of 2×2 switches) with
N = 2n inputs to the input side of an IBC of the same fan-in. The resulting network is of type IBC+k

if the new stage implements the cubek function, for some 0 ≤ k ≤ n − 1. See, for example, Figure 5.1a.
Variations of this type of networks have been studied in the context of designing fault-tolerant networks (see,
for example, the survey in [1]). Thus, any possible IBC+ network has exactly two paths from any input x

to any output y. By convention, a type-0 path (denoted P 0, with additional subscripts) leaves the extra stage
from an upper output port, and a type-1 path (denoted, P 1) leaves from a lower output port. Consequently,
networks of this type are rich with mincuts of size ≤ 2.
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Figure 5.1. (a) A network of type IBC+2.
(b) GIBC+ network with profile (X :2, Y :3, Z :5) and spread= 1.

We extend the above notion to GIBC -type networks in the following way. Let G be one with profile ~n =

(n0, · · · , nr−1), fan-in N = n0 · · · nr−1, and inputs with global addresses 0, 1, · · · , N − 1 from top to
bottom. Call an integer d valid for ~n if d ≤ N/2 and the smaller of d and n0 divides the larger evenly. If
d is valid for ~n then connecting a new stage of N/2 (2×2)-switches to the input stage of G so that each
input switch has two inputs with global addresses (i, i + d) results in an extra-stage GIBC network G ′. The
integer d is called the spread of the extra-stage in G′. See, for example, Figure 5.1b. In a typical IBC+k

network, n0 = 2 divides the spread factor 2k ≤ N/2, hence, GIBC+ networks includes the class of IBC+

networks as a proper subset. We now present a key structural property of the class GIBC + networks.
Lemma 5.1: Let H be a GIBC network with an edge e. Then

1. either e is a wide mincut or there exists a unique edge e∗ in the same stage as e such that {e, e∗} is a
wide mincut, and

2. if {e, e∗} is a wide mincut separating inputs {s1, s2} from outputs {t1, t2}, and e ∈ P 0
s1,t1 (or P 1

s1,t1 )
then e ∈ P 0

s2,t2 (respectively, P 1
s2,t2 )

Proof of 1:
Let (W :2, X0 :n0, · · · , Xr−1 :nr−1) be H’s extended profile. If e ∈ EW,X0

then set e∗ to be the unique
edge incident to the same input switch as e, and the lemma follows immediately. Else, e ∈ EXi,Xi+1

,
0 ≤ i ≤ r − 2. Let nx = n0 · · ·ni and ny = ni+1 · · ·nr−1. By Lemma 4.3, there exits a unique 2-stage
GIBC network G with an extended profile (X :nx, Y :ny), that derives the rightmost r stages of H . The
edge e can be uniquely identified in G by the global addresses of its two end-points. For convenience,
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however, we use local coordinates in G to refer to e. Thus, one may assume that e = (X+
i,j , Y

−

j,i), for some
i < ny and j < nx.

Consider the extra-stage network G′ obtained by augmenting G with an input stage of (2×2)-switches
with the same spread factor d as in H . Since mincuts of G′ are also mincuts of H , it then suffices to proof
the lemma for G′. To this end, we examine the connected components of the subgraph G′[W ∪X] (induced
on the first two stages of G′), in each of the following cases.

1. Case: nx = αd, for some even integer α. Each component of G′[W ∪ X] has exactly one X-switch.
Hence, e is a directed cut separating Xi from Yj .

2. Case: nx = αd, for some odd integer α. Each component of G′[W ∪ X] has exactly two consecutive
X-switches sharing d input switches. Let Xi′ be the other switch in the same component as Xi. Set
e∗ to the edge (X+

i′,j, Y
−

j,i′). No other edge in the same stage links the shared input switches to switch
Yj .

3. Case: nx divides d evenly. Each component of G′[W ∪X] has exactly two X-switches, each one can
be reached from the same set of input switches. As in the above case, let Xi′ be Xi’s sibling, and set
e∗ = (X+

i′,j, Y
−

j,i′).

Proof of 2:
follows easily from the above argument.
We, henceforth, say that e and e∗ are conjugate edges only if they lie in the same stage, and {e, e∗}

forms a wide mincut. Moreover, an edge e is called essential for a flow demand q(s, t) if e ∈ P 0
s,t ∩ P 1

s,t.
Based on the above property, we now present two well-solved cases of the MCF problem.

Theorem 5.1: The MCF problem (with c and q as in section 1) can be solved efficiently on any GIBC +

network H , where

1. H is a 3-stage network, or

2. H has any possible number of stages, and c and q are unit-valued.

Proof of 1:
Let (X :2, Y :y, Z :z) denote H’s profile. By Lemma 5.1, the subnetwork H[X ∪ Y ] induced on the

first two stages of H is a disjoint union of connected components, each containing at most 2 switches of
type Y . Label such components G0, G1, etc. (in any order). With V (Gi) denoting the switches in the ith
component, and Hi = H[V (Gi) ∪ Z] denoting the subnetwork of H induced on V (Gi) union the set of
tertiaries, the claim then follows by applying Theorem 2.1(1) to each subnetwork Hi independently.

Proof of 2:
We first outline a simple polynomial time algorithm that accepts the problem instance if there exists a

feasible solution, and rejects, otherwise (the algorithm is not optimized for running time, rather its structure
simplifies the proof).

[0] set L = {(s, t) : q(s, t) = 1}.
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[1] For each demand q(s, t) = 1, allocate all essential edges P 0
s,t ∩ P 1

s,t to the demand. If any such edge
has been previously allocated then reject.

[2] Repeat until no more demands can be removed from the current set L: for each demand (s, t) ∈ L,
examine each edge e ∈ P 0

s,t ∪ P 1
s,t. If e is nonessential to q(s, t) (that is, e /∈ P 0

s,t ∩ P 1
s,t), but it has

been previously allocated to another demand, then allocate every edge on the path passing through the
conjugate edge e∗ to q(s, t). If any edge on that path has been previously allocated then reject. Delete
(s, t) from L, and iterate again.

[3] Denote the current set L by L′. Construct a conflict graph R on the set {vs,t : (s, t) ∈ L′} of vertices.
Two vertices (demands) vs,t and vs′,t′ are adjacent in R only if P 0

s,t ∩ P 0
s′,t′ contains an edge e that is

in nonessential for either qs,t or qs′,t′ . Thus, by Lemma 5.1(2), the conjugate edge e∗ ∈ P 1
s,t ∩ P 1

s′,t′ .
If R is a bipartite graph with partitions V0 and V1 then assign each demand in V0 (or V1) to a type-0
(respectively, type-1) path, and accept. Else, reject.

To show the correctness, first, assume that step 3 accepts. It then suffices to show that demands in L ′ are
assigned to link-disjoint paths. To this end, observe the following:

1. If step 3 allocates a path Ps,t for a demand (s, t) ∈ L′ then, prior to executing step 3, every edge
e ∈ Ps,t is either free, or has been allocated in step 1 to q(s, t). Otherwise (i.e., if e has been allocated
to another demand) then step 2 would have removed (s, t) from L.

2. By definition of the graph R, all paths assigned to demands in the same partition (either V0 or V1) are
link-disjoint.

3. For any two vertices vs,t ∈ V0 and vs′,t′ ∈ V1, the two assigned paths P 0
s,t and P 1

s′,t′ are link-disjoint.
If not, then let e = P 0

s,t ∩ P 1
s′,t′ . Now, e is nonessential for either demands (otherwise, step 2 would

have allocated a path to one of them and, subsequently, deleted the other from L). Thus, e is part of
a wide mincut separating (s, s′) from (t, t′). By Lemma 5.1(2), e ∈ P 0

s′,t′ , contradicting the above
claim that e is nonessential for (s′, t′).

In the other direction, suppose that the algorithm rejects. This happens in step 1 if an edge e is essential
for two or more demands. Since c is unit-valued, the problem has no feasible solution. Likewise, in step
2, all path-allocation decisions are enforced. Failing to allocate a path to a demand implies the existence of
a cutset whose demands exceed its capacity. Finally in step 3, suppose that R has an odd cycle. Then any
assignment of the demands in the cycle to paths (of type-0 or type-1) assigns two paths of the same type to
two adjacent vertices. By definition of R, such an assignment maps two demands to two paths sharing at
least one edge. Thus no solution exists.
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Figure 5.2. An instance satisfying conditions [CD] with no feasible solution.

By Theorem 2.1(1), conditions [CD] are sufficient for problems in part 1 of the above theorem to have
feasible solutions. In contrast, Figure 5.2 shows an instance with 5 demands where conditions [CD] hold,
yet step 3 of the above algorithm rejects. In the given instance, every edge (or flow demand) has a unit
value, and each mincut has size 2 (hence, any wide mincut has an even number of edges). The observation
follows by inspecting cuts of size 2 and 4. In particular, if the network has a violating cut of size 4 (i.e., one
that disconnects all paths for the 5 demands) then it has a violating cut of size 2. However, not cut of size 2
disconnects more than 2 demands.

6 The Complexity Result

The complexity of the MCF problem on r-stage GIBC+ networks seems to be open for r = 4 and 5. The
following theorem deals with the case when r ≥ 6.
Theorem 6.1: The MCF problem (c and q are as in section 1) is NP-complete on 6-stage GIBC + networks
where q is unit-valued, and c(e) ≤ 3 for any edge.
Proof:

Let (U,C) be an instance of the 3-satisfiability problem on |U | = n variables, and |C| = m clauses,
where each variable appears at most 3 times in C , and each clause has no more than 3 variables. The proof
constructs an instance (G, c, q) of the MCF problem on a 6-stage GIBC+ network G, with the following
demand sets:

1. QC =
⋃m−1

j=0 QCj: demands associated with clauses in C , where QCj = {q(sj,k, tj,k) = 1 :

uk or uk appears in Cj}. Thus, |QC| ≤ 3m. For simplicity, we use the abbreviation qj,k to denote
q(sj,k, tj,k).

2. QU =
⋃n−1

k=0 QUk: demands associated with variables in U , where QU k = {q(sk, tk) = 1, q(sk, tk) =

1}. That is, |QU | ≤ 2n. Again, for convenience, we use the simplified notation qk and qk for the two
demands above, respectively.

The topology of G, explained later, forces any feasible assignment of paths to the above flow requirements
to satisfy the following conditions:
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[c1] for each clause Cj , at least one demand, say qj,k, is assigned a path of type 0.

[c2] for each variable uk, exactly one of the two flow demands qk or qk is assigned a path of type 0.

[c3] If demand qj,k is a assigned a type 0 path, and literal uk ∈ Cj then

[a] qk and any other demand qj′,k, where literal uk ∈ Cj′ , are assigned paths of type 0, and

[b] qk and any demand qj′,k, where literal uk ∈ Cj′ , are assigned paths of type 1.

Conversely, if qj,k is as above (i.e., assigned a path of type 0) and literal uk ∈ Cj then demands in [b]
are assigned to paths of type 0, and these in [a] are assigned paths of type 1.

Assuming that [c1], [c2], and [c3] hold in G, one may verify that any feasible assignment of flow require-
ments can be used to construct a truth assignment va` : U → {t, f} that satisfies each clause in C . The
strategy is to set va`(uk) = 1 if qk is assigned a type 0 path (cf. condition [c2]). Else, if qk is assigned to
a type 0 path then set va`(uk) = 0. Condition [c1] then implies that at least one demand qj,k uses a type 0
path, and condition [c3] ensures that literal uk (or uk) satisfies Cj .

In the remaining part, we describe the structure of G, and show that it satisfies the above condi-
tions. Subsequently, we show that any solution to the given instance (U,C) of the 3-SAT problem im-
plies a solution to the instance (G, c, q) of the MCF problem. The network G has the extended profile
(A :2, V :3,W :n,X :m,Y :2, Z :2). The rightmost 5 stages of G forms a GIBC network, denoted H5. We
derive H5 from a 2-stage network H2 with profile ([V W] :3n, [XY Z] :4m), having the following types of
gadgets.
Clause Gadgets:

0
3

4
6

n−1

0

3

c(e)=3

c(e*)=2
0
3

4
6

n−1

0

3

sj,3

sj,4

sj,6

[VW] j

[VW] j+2m

A V WStage

To [XYZ]3

To [XYZ]3

Figure 6.1 A clause gadget for Cj = {u3, u4, u6}.

For each clause Cj , the corresponding gadget is formed by the two switches [V W]j and [V W]j+2m of net-
work H2, plus a set of 3 switches from stage A. Figure 6.1 illustrates a typical gadget corresponding to a
hypothetical clause Cj = {u3, u4, u6}. Note the inputs sj,3, sj,4, and sj,6 required for the flow requirements
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qj,3, qj,4, and qj,6, respectively. Condition [c1] is guaranteed by assigning the critical capacities c(e) = 3

and c(e∗) = 2, for the two distinguished edges e and e∗ shown in the gadget. Any other edge has a default
capacity of one unit.

The Auxiliary Gadget
The gadget is formed by switches [V W]m and [V W]3m of network H2, plus n switches from stage A, as
shown in Figure 6.2. For 0 ≤ k ≤ n − 1, the gadget contains an input sk required by the two demands
{qk, qk} ∈ QUk. It is easy to verify that the structure satisfies condition [c2], above.
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Figure 6.2 The auxiliary gadget for |U | = n variables.
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Figure 6.3 A variable gadget where uk ∈ C0 and C1,
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uk ∈ C5, and the corresponding conflict graph.

For each variable uk ∈ U , the corresponding gadget is formed by part of switch [XY Z]k. The detailed
structure depends on the distribution of literals uk and uk among the clauses in C . Figure 6.3 illustrates a
typical structure, assuming that literal uk appears in C0 and C1, and the complement uk ∈ C5. In the figure,
only the relevant part of the switch is shown, and each of the relevant input links is labeled with the possible
flow demands that can pass through that link. Each link in the gadget has a unit capacity; this implies the
conflict graph (shown on the right) on the set {q0,k, q1,k, q5,k} ∪{qk, qk} of vertices. Hence, condition [c3]
applies for this distribution.

By exchanging outputs tk and tk, we account for the case where literal uk appears twice, say in C0 and
C1, and literal uk appears once, say in C5. The remaining distribution, where literal uk appears exactly
once, say in C1, and literal uk appears exactly once, say in C5, the terminal t0,k is no longer needed, but the
remaining structure remains intact. In all of the above cases, one may verify that condition [c3] holds.

It is routine to verify that the above construction can be done in polynomial time. We now show that
any satisfying assignment va` : U → {t, f} yields a feasible solution to the above instance of the MCF
problem. This can be done as follows:

[1] For each variable uk, where literal uk satisfies some clause in C (that is, va`(uk) = 1), assign qk and
any other flow qj,k, where literal uk ∈ Cj , to paths of type 0. Assign qk and the remaining demands
of type q∗,k to paths of type 1.

[2] (Converse of [1]) if literal uk satisfies some clause (thus, va`(uk) = 0) then assign qk and any other
flow qj,k, where uk ∈ Cj , to paths of type 0. Assign qk and the remaining requirements of type q∗,k
to a path of type 1.

[3] For each of the remaining variables, use the assignment of step [1].

Then at least one demand in each clause gadget will pass through the link with capacity 3, furthermore, the
assignments are admissible by the variable gadgets. This concludes the proof.
The above proof can be easily extended to extra-stage IBC networks, hence.
Corollary 6.1: The MCF problem (c and q are as in section 1) is NP-complete on networks of type IBC +,
where q is unit-valued, and c(e) ≤ 3 for any edge.
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