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Abstract

In this paper we show that every 3-connected (3-edge-connected) planar graph con-
tains a 2-connected (respectively, 2-edge-connected) spanning partial 2-tree (series-
parallel) graph. In contrast, a recent result by [4] implies that not all 3-connected
graphs contain 2-edge-connected series-parallel spanning subgraphs.

1 Introduction

The k-connected subgraph problem can be described as follows: given a family F of graphs,
a host graph G and an integer k find a k-connected spanning subgraph G′ of G where
G′ ∈ F . The k-edge-connected subgraph problem is defined similarly by replacing the
vertex-connectivity of G′ by edge-connectivity. The above problems are similar to the
well-known minimum edge-deletion problem (see for example [5], [1] and [2]) where G ′ is
required to have the maximum possible number of edges (with no connectivity restriction).
However, unlike the latter problem little is known about the existence of solutions to the
earlier problems when F is one of many important restricted classes of graphs. Recently,
however, Dean and Seymour [4] showed the following:

Theorem 1 [DS90]. Let F be a class of graphs that is closed under minors and
in which each member has a chromatic number bounded by a constant χ

F
. Then for all

integers k and k′, k ≥ k′ ≥ 2, there exists a k-connected graph G that has no spanning
subgraph G′, G′ ∈ F , with minimum degree at least k′.

Proof: Let G be the bipartite graph (X
⋃

Y,E) where |X| ≥ χ
F

(k − 1) + 1, |Y | =
(|X|

k

)

and every vertex of Y is adjacent to a distinct subset of k vertices of X.
Assume that G′ satisfies the conditions of the theorem and let M be a subset of E(G′)

that covers every vertex in Y . Consider the minor H obtained by contracting M in G ′. By
assumption, H ∈ F and hence χ

H
≤ χ

F
. That is, viewing H as a graph on the set X of
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vertices, H has an independent set S of size at least d|X|/χ
F
e = k. By construction, the

vertices of such a subset S of X are incident to some vertex y in Y . The degree of y in G ′

is at least k′, k′ ≥ 2. Hence, contracting any edge incident to y introduces an edge between
some two vertices of S, a contradiction. 2

Hence, the k-connected and the k-edge-connected spanning subgraph problems may
have no solution even if the host graph G has an arbitrarily large connectivity when F is
any one of the following classes of graphs: graphs embeddable on an orientable surface with
a bounded genus k and graphs with a bounded tree-width k (partial k-trees).

In the remaining part of this paper, we investigate both problems when the host graph
is restricted to be planar. In particular, we show that the two problems have a solution
when F is the class of series-parallel graphs, k ′ = 2 and G is any 3-connected planar
graph. The results can be used to derive approximate algorithms for many NP-complete
and #P-complete optimization and enumeration problems on 3-connected planar graphs.
Approximating the k-terminal reliability of a probabilistic network where vertices (or edges)
are subject to failure serves as a typical example. Here, one may seek a 2-connected (2-
edge-connected) spanning subgraph if the vertices (respectively, edges) may fail and the
remaining elements are perfectly reliable.

2 2-connected Series-Parallel Graphs

Throughout this section a graph G = (V (G), E(G)) is considered to be finite and loopless.
A 2-terminal graph G = (V,E) is a graph with two distinguished vertices, say s and t; such
a graph is denoted G(s, t). A graph is series-parallel reducible if it can be reduced to an
edge by applying a sequence of series and parallel reductions and eliminations of vertices of
degree 1. Series-parallel graphs are often introduced in the more general setting of partial
k-trees (see for example [3] for definitions and some properties of partial k-trees). In this
context, series-parallel graphs are precisely the class of partial 2-trees.

Given a 3-connected planar graph G we fix an embedding of G in the plane. Cycles of
G are traversed in a clockwise direction, according to the hypothesized fixed embedding.
Thus, given a cycle C of G we can refer to a path of C by listing a sequence of vertices on
that path encountered when traversing C in a clockwise direction. For instance, Cw,x,y,z is
a path of C from w to z passing by x and y in that order.

Given a cycle C of G, call the graph R formed by C and the subgraph embedded in its
interior a block. Here, we say that C defines R. Let R and C be as above. An internal
path P of R is one with at least one vertex in V (R) \ V (C), moreover, if x ∈ V (P )

⋂

V (C)
then x is an end vertex of P .

Now, suppose that s and t are two distinct terminals on V (C). Our objective is to
find a 2-connected spanning series-parallel subgraph A(s, t) of the 2-terminal block R(s, t)
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such that (i) C ⊆ A(s, t) and (ii) A(s, t) can be reduced to the edge (s, t). To this end,
we introduce the following structures. Let s′ and t′ be two distinct vertices of C such that
Cs′,t′ is a subpath of either Cs,t or Ct,s (the two halves of C). Without loss of generality, we
may assume that V (Cs′,t′) ⊆ V (Cs,t). Three types of internal paths in R relative to Cs′,t′

are of interest.

1. Let P be an internal path of R joining a vertex of V (Cs′,t′) \ {s
′, t′} to some vertex in

V (Cs,t). Call the section Cs′,t′ free (in R) with respect to Cs,t (the half that includes
V (Cs′,t′)) if R has no such P . By the above definition, every edge e = (x, y) in C is a
free path since V (e) \ {x, y} = φ.

2. Let P be an internal path of R joining a vertex of V (Cs′,t′) \ {s
′, t′} to some vertex in

V (Ct,s)\{s, t} (recall that Ct,s is the half of C that does not contain Cs′,t′). Such a path
P is called a K4-completing path of Cs′,t′ in R (since, K4 is a minor of C

⋃

(s, t)
⋃

P ).

3. Call an internal path P which joins s′ to t′ enclosing with respect to Cs′,t′ if every
internal path of R that joins a vertex of V (P ) \ {s′, t′} to some vertex of V (P ) is also
an internal path of the block R′ defined by the cycle Cs′,t′

⋃

P . A simple algorithm
to compute enclosing paths is presented shortly.

If R and C are as above then every possible component of the subgraph induced by
V (R) \ V (C) has a tree-like structure whose nodes correspond to blocks or vertices of R.
We call such a component, together with the edges joining it to C, an attached augmented
tree (or attached tree for short) of C in R. If T is such an attached tree and s′ and t′ are
in V (Cs,t)

⋂

V (T ) then the following procedure finds an enclosing path P relative to Cs′,t′ .
We first view the subgraph H induced by E(Cs′,t′)

⋃

E(T ) as a separate graph with the
same embedding as G. Remove from H all vertices that belong to V (C)\V (Cs′,t′) and then
repeatedly prune all blocks and vertices of the remaining graph that are not 2-connected
(with 2 vertex disjoint paths) to s′ and t′. At the end, the remaining subgraph is a block
of H whose cycle can be written as Cs′,t′

⋃

P , where P is as required. We are now ready to
prove the following

Theorem 2. Let R(s, t) be a 2-terminal block of a 3-connected planar graph G and let
C be its defining cycle, where {s, t} ∈ V (C). Then R has a 2-connected spanning series-
parallel subgraph A that contains the cycle C and admits the (possibly new) edge (s, t).

Proof: The proof is by induction on |V (R) \ V (C)| the number of internal vertices in
the block R. If |V (R) \ V (C)| = 0 then set A = C and we are done. Now, assume the
theorem holds inductively for all 2-terminal blocks (of 3-connected graphs) with fewer than
k internal vertices and let R be a block with exactly k internal vertices.

Let T be an attached tree of C and let Ms,t (also Mt,s) be the vertices of attachment
of T on the section Cs,t (respectively, Ct,s) of C. Furthermore, let M be the larger of the
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two sets Ms,t and Mt,s. We may assume, without loss of generality, that M = Ms,t. Now,
|M | ≥ 2 since G is 3-connected. Let s′ (respectively, t′) be the closest neighbour in M to s
(respectively, t) on C. Furthermore, let γ be an enclosing path in T relative to Cs′,t′ .

Set R1 to be the block whose defining cycle C1 = Cs′,t′
⋃

γ. Similarly, set R2 to be the
block defined by the cycle C2 = Ct′,s′

⋃

γ (hence, R1
⋃

R2 = R and R1
⋂

R2 = γ). Clearly,
γ is not a K4-completing path of any section of C which is free with respect to either Cs,t

or Ct,s since both s′ and t′ lie on one side of C, namely Cs,t. Moreover, every subpath of
Cs′,t′ which is free with respect to Cs,t remains free on C1 with respect to C1(s′,t′). Likewise,
every subpath of Ct′,s′ which is free relative to Cs,t (or Ct,s) remains free on C2 relative to
C2(s,t) (respectively, C2(t,s)).

By the induction hypothesis, the 2-terminal blocks R1(s
′, t′) and R2(s, t) possess 2-

connected spanning series-parallel subgraphs A1(s
′, t′) and A2(s, t), respectively, such that

E(C1) ⊆ E(A1) and E(C2) ⊆ E(A2). It is then easy to check that the combined graph
A(s, t) = A1(s

′, t′)
⋃

A2(s, t) is a spanning 2-connected subgraph of R. In addition, γ is
a free section in R2 with respect to C2(s,t). Hence, R1 can be reduced to an edge (s′, t′);
the reduced graph can then be further reduced to the edge (s, t) and A(s, t) satisfies the
theorem. 2

The following result is then immediate:

Corollary 1. Let G(s, t) be a 3-connected planar graph, where s and t share a common
face. Then G has a 2-connected spanning series-parallel subgraph which admits the edge
(s, t).

3 2-edge-connected Series-Parallel Graphs

We now extend the above argument to show that every 3-edge-connected planar graph G
contains a 2-edge-connected spanning series-parallel subgraph A. Define an s-walk to be a
walk in which every 2-connected component is either an edge or a cycle. Figures 1.a and 1.b
illustrate an s-walk and a non s-walk, respectively. A multicycle is a closed s-walk. Clearly,
if C is a multicycle then every 2-connected component of C is a cycle. Moreover, every closed
subwalk of C is a multicycle. Call a subgraph R of G formed by taking a multicycle C and
the subgraph embedded inside it a multiblock. Then an internal walk P of R is one that
contains at least one internal vertex of R and includes vertices of C only as end vertices.

We now introduce structures similar to the ones mentioned in the previous section.
First, assume that C has a cycle C that includes two distinct terminals s and t. The
set E(C) can be partitioned into two subsets: E(Cs,t) and E(Ct,s) that are the edge sets
of two graphs Cs,t and Ct,s, respectively, where V (Cs,t) ⊆ V (Cs,t), V (Ct,s) ⊆ V (Ct,s) and
V (Cs,t)

⋂

V (Ct,s) = {s, t}. A closed walk W of C lies on the boundary of both Cs,t and Ct,s

if V (C)
⋂

V (W ) = {s} or {t}. We adopt the convention that any such boundary closed
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subwalk W of C belongs to Cs,t. With the above convention in mind, the two walks Cs,t

and Ct,s become uniquely defined; these are called the two halves of C (with respect to the
2-terminal cycle C(s, t)).

(c)(b)(a)

x

t

s

Figure 1.

Now, suppose that s′ and t′ are two (possibly identical) vertices on C and let Cs′,t′ be a
subwalk from s′ to t′ having all of its edges in one half of C. Then

1′. Call Cs′,t′ free, relative to the particular half which includes V (Cs′,t′), if R has no
internal path joining a vertex in V (Cs′,t′) \ {s′, t′} to some vertex in that particular
half.

2′. Define a K4-completing path of Cs′,t′ to be an internal path of R which joins a vertex
in V (Cs′,t′) \ {s

′, t′} to some vertex, distinct from s and t, in the half of C that does
not include V (Cs′,t′).

3′. Call an internal s-walk W which joins s′ to t′ edge-enclosing with respect to Cs′,t′ if
every internal walk of R that joins a vertex of V (W ) \ {s′, t′} to some vertex of V (W )
is also an internal walk of the multiblock R′ made of the graph Cs′,t′

⋃

W and its
interior edges.

Again, given a 2-terminal multiblock R(s, t) our objective is to find a 2-edge-connected
spanning series-parallel subgraph A(s, t) where C ⊆ A(s, t) and A(s, t) admits the edge
(s, t). Such a subgraph A(s, t) may not exist, however, for any arbitrarily chosen multicycle
that defines R. The graph R illustrated in Figure 1.c is an example, given that we choose
C to be the multicycle marked by arrows. Therefore, we introduce the following type of
restricted multicycles. We say that C is a valid multicycle for R(s, t) if C defines R(s, t)
and whenever C1 and C2 are two cycles of C with E(C2) lying in the interior of C1 then the
interior of C2 is empty.

Clearly, if C is valid for R and C ′ is a closed subwalk of C that defines a subgraph R′

then C′ is valid for R′. In addition, any cycle that defines R is a valid multicycle. We are
now ready to proof the following theorem.
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Theorem 3. Let R(s, t) be a 2-terminal multiblock of a 3-edge-connected planar graph
G. Let C be a minimal valid multicycle for R(s, t). Then R has a 2-edge-connected spanning
series-parallel graph A(s, t) that contains C and admits the (possibly new) edge (s, t).

Proof: We induct on |V (R) \ V (C)|. The basis and the induction hypothesis are simple
to deduce. For the induction step we consider the following cases.

First, suppose that C has a cutvertex x. Let C1 and C2 be two multicycles of C such
that E(C) = E(C1)

⋃

E(C2) and V (C1)
⋂

V (C2) = {x}. Similarly, let R1 and R2 be the two
multiblocks defined by C1 and C2, respectively. Clearly, C1 (C2) is valid for R1 (respectively,
R2). If s and t belong to one of the two multiblocks, say R1, then apply the induction
hypothesis to R1(s, t) and R2(x, y) where y is any vertex of V (C2) \ {x}. Otherwise, we
may assume, without loss of generality, that s ∈ R1 and t ∈ R2. We apply the induction
to R1(s, x) and R2(t, x). In either case, the theorem follows easily.

Otherwise, C does not have a cutvertex. Then C has a distinguished cycle C which
defines R. Similar to the proof of theorem 2, let T be an attached tree of C and let Ms,t

(also Mt,s) be the edges of attachment of T on Cs,t (respectively, Ct,s). Set M to be the
larger of the two sets (hence, |M | ≥ 2). In addition, let VMC = V (M)

⋂

V (C) and CMC to
be the half of C which includes VMC .

Now, VMC has two vertices s′ and t′ (s′ = t′ is a possibility) such that Cs′,t′ is a subwalk
(from s′ to t′) of CMC and VMC ⊆ V (Cs′,t′). In addition, let γ be a minimal edge-enclosing
s-walk of Cs′,t′ in T (if s′ = t′ then γ is a multicycle). The minimality condition ensures
that γ has no subwalk γ ′ such that Cs′,t′

⋃

γ′ encloses edges in E(γ) \ E(γ ′).

If s′ 6= t′ then set R1(s
′, t′) to be the multiblock defined by C1 = Cs′,t′

⋃

γ. Otherwise,
(s′ = t′) choose r′ to be a vertex of γ distinct from s′ and set R1(s

′, r′) to be the multiblock
defined by C1 = γ. Also, set C2 such that E(C2) = E(γ)

⋃

(E(C) \E(Cs′,t′)) and let R2(s, t)
be the multiblock defined by C2 minus the vertices and edges which appear in the interior
of R1. One may then verify that

1. C1 and C2 are minimal valid multicycles for R1(s
′, t′) (or R1(s

′, r′)) and R2(s, t),
respectively,

2. γ is not a K4-completing path of any free section (relative to Cs,t or Ct,s) of C,

3. every subwalk of Cs′,t′ which is free with respect to Cs,t remains free on C1 with respect
to C1(s′,t′) (or C1(s′,r′)),

4. every subwalk of E(C) \ E(Cs′,t′) which is free relative to Cs,t (or Ct,s) remains free on
C2 relative to C2(s,t) (respectively, C2(t,s)) and

5. the graph C ′
2 on the set E(γ)

⋃

(E(CMC) \E(Cs′,t′)) of edges is a half of C2. Moreover,
γ is free in R2 with respect to C ′

2.
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Hence, applying the induction hypothesis results in two series-parallel graphs A1(s
′, t′)

(or A1(s
′, r′) if s′ = t′) and A2(s, t) whose union satisfies the theorem. 2

We then have

Corollary 2. Let G(s, t) be a 3-edge-connected planar graph, where s and t share a
common face in some embedding of G. Then G has a 2-edge-connected spanning series-
parallel subgraph which admits the edge (s, t).

Proof: Fix an embedding of G(s, t) where s and t lie on the exterior face f . Choose C
to be the multicycle whose elements lie on f and apply Theorem 3.

4 Concluding Remarks

A direct extension to the problems considered above can be stated as follows:

Conjecture 1. Every 4-connected planar graph contains a 3-edge-connected spanning
partial 3-tree.

At present, the above conjecture seems to be open. To investigate the combinatorics
of the problem further, we present the following equivalent (but more restricted) version of
the Conjecture.

Conjecture 1′. Every 4-connected planar graph G with 3 vertices v1, v2 and v3

sharing a face f , |V (f)| ≥ 4, contains a 3-edge-connected partial 3-tree that admits the
triangle (v1, v2, v3).

Lemma. Conjectures 1 and 1′ are equivalent.

Proof: The proof uses the following structural properties of the edge-labelled octahedron,
denoted P6, illustrated in Figure 2:

i. every 3-edge-connected spanning subgraph H of P6 contains a target vertex t incident
with 3 (or more) edges whose nearest ends are labelled 1, 2 and 3 and

ii. H has a minor isomorphic to K4 having the set {t} as one of its vertices.

Let G, f , v1, v2 and v3 be as in Conjecture 1′. Fix an embedding of G in the plane with
f as an exterior face. Let v4 be some vertex in V (f) \ {v1, v2, v3}. Consider the new graph
G′ obtained by replacing each node in P6 by a copy of G such that for every i, 1 ≤ i ≤ 4,
vertex vi in each copy is incident to the edge whose nearest end is labelled i. It is then easy
to verify that G′ is 4-connected.

We now show that if G′ has a 3-edge-connected spanning partial 3-tree (as in Conjecture
1) then G has a 3-edge-connected partial 3-tree that admits the triangle (v1, v2, v3) (as in
Conjecture 1′). Assume that Conjecture 1 is true and let H ′ be a 3-edge-connected spanning
partial 3-tree of G′. By property (i), H ′ contains a subgraph H of some target copy of G
which is attached to the rest of H ′ by the vertices v1, v2 and v3. Moreover, property (ii)
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ensures that H ′ contains a minor Hc = (V (H), E(H)
⋃

{(v1, v2), (v1, v3), (v2, v3)}). Now, Hc

is a 3-edge-connected partial 3-tree (since partial 3-trees are closed under minors). Hence,
Hc can be reduced to the triangle (v1, v2, v3) and Conjecture 1′ holds true. 2
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Figure 2.
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