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Abstract

Consider a distributed processing system with a set K of sites that can either cooperate in computing
a function or hold resources required by other sites. The system is implemented using a communication
network with unreliable nodes. Two simplified reliability problems then arise. In the first problem, we
are interested in computing the probability that every operational pair of sites in K can communicate
with each other. This problem is known to be #P-complete. In the second problem, the sites in K are
service centers. Our reliability measure is the probability that every operational site in the network is
connected to at least one operational service center. In this paper, we define the class of t-polygon graphs,
t ≥ 3, as the intersection graphs of straight line chords in a convex t-gon. Hence, any t-polygon graph is
a circle graph. We show that both problems admit polynomial time solutions when the underlying graph
of the network is restricted to a t-polygon graph, for a fixed t.

1 Introduction

In this paper we deal with two network connectedness reliability problems that arise in the reliable as-
signment of resources to nodes in a distributed processing system. Our model of the network is that of a
probabilistic graph G = (V,E) where each vertex x fails independently of other vertices with probability
px.

In the first problem, every operational pair in a set K , K ⊆ V (G), of terminals requires to communicate
with each other. The reliability of the network is the probability that there is a subgraph G ′ of G whose nodes
are operational and all operational nodes in K lie in a single component of G ′. We adopt the convention that
if all nodes in K fail then any subgraph of G is operational. We call this problem the K-terminal reliability
problem with unreliable nodes (denoted UN−RelK for short). In the second problem, a collection of |K|

identical resources is assigned to a set of |K| nodes, called service centers hereafter. Here, a subnetwork G ′

is functional if every surviving node can gain access to an operational service center. Hence, in our simplified
problem, we seek the probability that each operational node lies in one component with an operational
service center. Call this latter problem the K-resource reliability problem. In either problem, the reliability
of an n-vertex graph G whose vertices have the same probability p of operation is given by the polynomial
∑i=n

i=0 Fip
i(1 − p)n−i where Fi is the number of i-vertex operational subgraphs of G.

An overview of some related problems and results follows now in order. The K-terminal reliability prob-
lem where edges fail independently and nodes are perfectly reliable (denoted UE−RelK ) has been studied
extensively in the literature for directed and undirected graphs. Valiant [11] has shown that the UE−RelK

problem, |K| = 2, is #P-complete. Ball [2] and Provan and Ball [9] have proven similar complexity results
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assuming different forms of reliability evaluations and approximations. Subsequently, Provan [8] has shown
that the problem remains NP-hard even if G is a planar graph or an acyclic graph and |K| = 2.

Similar complexity results can be shown for the UN−RelK problem using a transformation that replaces
each unreliable edge with two reliable edges incident to a new unreliable node. Recently, AboElFotoh and
Colbourn [1] have shown that a variant of the problem where nodes in K are perfectly reliable remains
NP-hard for chordal graphs and comparability graphs. Later, Sutner, Satyanarayana and Suffel [10] have
proven that the UN−RelV (G) problem (called the residual node connectedness reliability problem in [10])
is NP-hard for split graphs and for bipartite planar graphs. The complexity of the K-resource problem,
however, seems to be open.

In view of the apparent intractability of virtually all of the above K-terminal reliability problems, many
researchers focused on developing efficient algorithms for restricted classes of graphs and efficiently com-
putable lower and upper bounds (see for example [4] and the references therein). One particularly important
class of reliability bounding techniques for the UE−RelK problem is due to [3]. Unfortunately, such tech-
niques do not apply to the UN−RelK (or the K-resource) problem due to a fundamental difference in the
combinatorial structure of the pathsets (operational subgraphs) of the two problems. Namely, the pathsets
in the UE−RelK problem form a hereditary family. That is, if G′ ⊆ G is operational then any supernetwork
G′′, G′ ⊆ G′′ ⊆ G, is also operational. This property does not hold for our problems.

In this paper, we define t-polygon graphs, t ≥ 3, to be the intersection graphs of straight line chords
in a convex t-gon. Hence, permutation graphs form a proper subset of 3-polygon graphs. Moreover, circle
graphs =

⋃∞
t=3 t-polygon graphs. We show that the UN−RelK and the K-resource reliability problems

on t-polygon graphs can be solved in O(nf(t2)) and O(ng(t2+|K|)) time, respectively, where f and g are
simple polynomials. Our first result generalizes a recent result of [5] that solves the residual connectedness
reliability (UN−RelV (G)) problem in O(n3) time on permutation graphs. In general, the results are useful in
obtaining bounds on the reliability of a network that can be approximated (either by adding edges or deleting
edges) by a k-gon graph with a small k.

The remaining part of this paper is organized as follows. In section 2, we fix some definitions and nota-
tions. Section 3 outlines the general strategy for computing the reliability measures; the specific ingredients
of the algorithms are given in sections 4 and 5. Finally, we draw some conclusions in section 6. Throughout
our presentation, we use the graph in Figure 1 as a runing example.
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Figure 1.

2 Definitions and Notations

The intersection graph G = (V,E) of a set of chords C inside a t-gon Pt has a vertex vi for each chord
(i, i′) and an edge (vi, vj) if and only if (i, i′) intersects (j, j ′). The sides of Pt are labelled d1, d2, . . . , dt

as they appear in a clockwise traversal of Pt. The diagram of C inside Pt is called a polygon diagram of G.
For any two points i and i′ on a side d of the t-gon Pt we denote the interval on d between (and including) i

and i′ by [i, i′ ]. We also denote the particular side of Pt that contains a given point i by d(i).
We view the set C as a union of

(t
2

)

disjoint sets, C1, C2, . . . , C(t

2)
, called chordal classes. Each chordal

class Ci is defined by a unique pair of sides that contains the endpoints of all chords in that particular class.
Let I = {1, 2, . . . ,

(t
2

)

} be the set of indices of such classes. The following definitions identify certain
structures related to chordal classes (see also Figure 1).

Definition 1 (extreme points and chords). Let Ci, i ∈ I , be a chordal class defined by the sides dx and
dy of Pt and let Wi be a nonempty subset of Ci. The extreme points of Wi is a collection i1, i2, i3 and i4 of
end-points of chords in Wi such that i1, i2 ∈ dx and i3, i4 ∈ dy (it is possible that i1 = i2 and/or i3 = i4)
and if (l, l′) ∈ Wi then l ∈ [i1, i2] and l′ ∈ [i3, i4]. We also call the set of chords incident with the extreme
points the extreme chords and denote it by ext(Wi).

Definition 2 (windows and casts). Let Wi ⊆ Ci be as above. Call Wi a window in Ci if Wi contains
all chords in Ci whose two endpoints lie on dx and dy between the extreme points of Wi. In addition, we
regard the empty set as a window in Ci. A cast of G is a sequence W = (W1,W2, . . . ,W|I|) of windows
where Wi ⊆ Ci, for i ∈ I . Let ext(W) =

⋃

Wi∈W ext(Wi).

In the following definition, we partition the set of extreme points of a nontrivial window Wi into an
extreme-left set and an extreme-right set. Roughly speaking, this is done be choosing two arbitrary refer-
ence points (denoted mx and my) that lie in the middle of the extreme points of Wi and then splitting the
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k-gon into a left half and a right half.

Definition 3 (the extreme-left and extreme-right chords). Let Wi ⊆ Ci, |Wi| ≥ 2, be a window where
Ci is defined by the two polygon sides dx and dy , x > y. Let i1, i2 ∈ dx and i3, i4 ∈ dy be the extreme
points of Wi. Let mx ∈ [i1, i2] and my ∈ [i3, i4] be two points that are not end-points of any chord in the
diagram. Viewing Pt as a cycle on t vertices, let Pt(x→y) and Pt(y→x) be the two paths encountered in a
clockwise traversal of Pt from mx to my and from my to mx, respectively. Call the extreme points of Wi

lying on Pt(x→y) (similarly, Pt(y→x)) the extreme-right (respectively, extreme-left) points of Wi.
An extreme-left (extreme-right) chord is then an extreme chord with one left-extreme-point (respec-

tively, right-extreme-point) and the other end-point is either unlabelled or a left-extreme-point (respectively,
right-extreme-point). Denote the extreme-left and extreme-right chords of Wi by extl(Wi) and extr(Wi),
respectively.

In all other cases, (where |Wi| = 1 or |Wi| ≥ 2 and some extreme chord of Wi has its two end-points la-
belled extreme-left and extreme-right) the subgraph induced by ext(Wi) is connected. Here, the distinction
between left and right is immaterial; we set ext(Wi) = extl(Wi) = extr(Wi) to be the left/right chords.

Where the two halves Pt(x→y) and Pt(y→x) are defined by the context and i is a given end-point of some
chord, we write h(i) and oh(i) for the half of Pt containing i and the opposite half (that does not contain
i), respectively. Given a cast W , we next associate with each nonempty window Wi ∈ W a set of chords
Next(Wi) having the following properties: (i) Next(Wi) ⊆ ext(W) \ ext(Wi) and (ii) if α is a chord in
Wi that intersects some chord in some other window Wj ∈ W , i 6= j, then α intersects some chord in
Next(Wi). Hence, the set Next(Wi) summarizes the adjacency relation between Wi and the remaining
chords in W .

Definition 4 (the extreme neighbours). Let Wi be as in the previous definition. Denote by dom(W\Wi) the
subset of ext(W) \ ext(Wi) where each chord dominates (i.e. intersects) some chord in Wi. In addition, let
W ′

i ⊆ Wi be the set dominated by dom(W\Wi). We now identify a set Next(Wi) that contains a (nearly
minimal) subset of dom(W\Wi) that dominates W ′

i. Clearly, if dom(W\Wi) = φ then Next(Wi) = φ.
In addition, if dom(W\Wi) has a chord (l, l′) that dominates Wi then set Next(Wi) = (l, l′). Otherwise,
every chord in dom(W\Wi) has exactly one end-point on either [i1, i2] or [i3, i4].

Let the two halves (Pt(x→y) and Pt(y→x)) of Pt be as in Definition 3. For each possible point ik ∈

(i1, i2, i3, i4) let dom(W\Wi)d(ik),oh(ik) be the set of chords in dom(W\Wi) with one end-point on the
side d(ik) and the other on the half oh(ik). Note that dom(W\Wi)d(ik),oh(ik) does not depend on any exact
choice of mx and my in Definition 3. Now, for k = 1, . . . , 4, if dom(W\Wi)d(ik),oh(ik) 6= φ, let i′k be the
closest end-point to ik of a chord (i′k, i

′′
k) ∈ dom(W\Wi)d(ik),oh(ik). Assign the possible chords incident

to i′k, k = 1, . . . , 4, to Next(Wi). In addition, let Nextl(Wi) (also, Nextr(Wi)) be the subset of Next(Wi)

where each chord intersects some chord in extl(Wi) (respectively, extr(Wi)). See Figure 1 for an example.

We also need the following definitions.

Definition 5 (the representative graph of a cast). The representative graph of a cast W , denoted RW ,
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has two vertices corresponding to extl(Wi) and extr(Wi) for each Wi ∈ W where extl(Wi) 6= extr(Wi).
Otherwise, (if extl(Wi) = extr(Wi)) then RW has one vertex corresponding to ext(Wi). Hence, RW has
at most 2|W| vertices; some vertices may represent empty sets. In addition, (x, y) ∈ E(RW) if and only if
some chord in the set represented by x intersects a chord in the set represented by y.

Definition 6 (p-subgraphs). Given a probabilistic graph G, we define a p-subgraph of G to be any induced
subgraph G′ ⊆ G where V (G) \ V (G′) contains only unreliable vertices. We interpret that all vertices in
G′ are operational and the remaining are failed.

We recall that if G is a permutation graph whose vertices are labelled (1, 2, . . . , n) then G is described
by some permutation π of {1, 2, ..., n}. We write π as a sequence (π1, π2, ..., πn) and let π−1

i be the position
in the sequence where the number i can be found. By definition, (i, j) ∈ E(G) if and only if i > j and
π−1

i < π−1
j .

Throughout our presentation of the algorithms we find it convenient to initialize some variables to a
special value denoted ⊥ (called bottom). A variable assigned this value may appear in any of the four
basic arithmetic operations, the two boolean operations ∨ and ∧ or the two functions min() and max().
In each case, the value ⊥ is treated as the identity of the particular operation used. For instance, if x =⊥

and y ≥ 1 then x = ∞ when evaluating min(x, y). Testing whether or not a variable has the value ⊥ is
done in a straightforward way. However, the logical result of all comparisons using < or > and a variable
assigned the special value ⊥ is false. Using the above convention results in a more concise description of
the algorithms.

3 Outline of the Algorithms

We now outline the general structure of the main algorithms. Given an instance of the UN−RelK problem
or the K-resource reliability problem defined on a graph G that is represented by a polygon diagram. Let
W be a cast in the diagram. Denote by GW the subgraph of G induced by W . Assuming that all vertices in
ext(W) are perfectly reliable, let Rel(GW ) be the probability of obtaining an operational subgraph of GW .
Summing over all possible distinct casts in a polygon diagram of G we get

Rel(G) =
∑

W



Rel(GW )
∏

i∈ext(W)

pi

∏

j /∈GW

(1 − pj)



 . (1)

For the purpose of computing Rel(GW), we associate with each window Wi ∈ W the graph GW ,i

induced by Wi ∪ Next(Wi) in G.
The strategy is to compute Rel(GW) from certain probabilities associated with the subgraphs in GW =

{GW ,1, GW ,2, . . . , GW ,|I|}. We first specify (in the appropriate sections) a set of necessary conditions for
any p-subgraph G′

W ,i ⊆ GW ,i, i ∈ I , to be in some operational subnetwork of G. For the convenience
of presenting the strategy, we split the computations into two phases. In the first phase, we define a set
Si of short state-vectors. Each p-subgraph G′

W ,i ⊆ GW ,i satisfying the specified necessary conditions is
characterized by a unique state-vector in S i. And many subgraphs of GW ,i may have the same state-vector.

Given a function f i : GW → Si we denote by F(GW ,i, f
i) the set of p-subgraphs of GW ,i where each

member is in state f i(GW ,i). Likewise, let Pr(GW ,i, f
i) be the probability of obtaining a subgraph in
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F(GW ,i, f
i). In addition, let F(GW , f i) be the set {H| H ⊆ GW and H ∩ GW ,i ∈ F(GW ,i, f

i), i ∈ I}.
The probability Pr(GW , f i) of obtaining a p-subgraph in such a family is just

∏

i∈I Pr(GW ,i, f
i).

For each reliability problem in section 1, we define S i such that either all subgraphs in F(GW , f i) are
operational or failed. To determine their status, we define (in the appropriate section) a function Θ(GW , f i)

that evaluates to 1 if and only if all such subgraphs are operational. It then follows that

Rel(GW) =
∏

f i s.t.

Θ(GW , f i) = 1

Pr(GW , f i). (2)

To compute the factors Pr(GW , f i) in 2, for all possible functions f i, we define in the second phase
a set S ii of long state-vectors. If f ii : GW → Sii then we use the notations F(GW ,i, f

ii), Pr(GW ,i, f
ii),

F(GW , f ii) and Pr(GW , f ii) as above. Here, each p-subgraph G′
W ,i ⊆ GW ,i is characterized by a unique

vector in S ii (regardless of whether or not G′
W ,i is a candidate to appear in some operational subnetwork of

G). Thus, for any two states β1 and β2 in S ii the two sets F(GW ,i, β1) and F(GW ,i, β2) are disjoint.
Subsequently, we show how to compute Pr(GW ,i, α) for any state α ∈ S i given the set {Pr(GW ,i, β)|β ∈

Sii}. To this effect, we associate with each short state-vector α, α ∈ S i, a set (S ii)α (the restriction of S ii

to α) where (S ii)α = {β| β ∈ S ii and F(GW ,i, β) ⊆ F(GW ,i, α)}. Consequently, we have

Pr(GW ,i, α) =
∑

β∈(Sii)α

Pr(GW ,i, β). (3)

Finally, we deal with the following problem. Given an n-vertex graph GW ,i ∈ GW compute {Pr(GW ,i, β)| β ∈

Sii}. Note that, if |Next(Wi)| ≥ 2 then GW ,i may not be a permutation graph. Nevertheless, we exploit the
intersection structure of GW ,i in the following way. We label the vertices in GW ,i by 1, 2, . . . , n and define
a permutation π(GW ,i) of {1, 2, . . . , n} such that the permutation graph HW ,i corresponding to π(GW ,i)

satisfies: Pr(HW ,i, β) = Pr(GW ,i, β) for every β ∈ S ii. We then devise an algorithm to solve the problem
on permutation graphs. This completes the outline of the algorithms.

4 The K-terminal Reliability Problem

Following the above discussion, we start by defining a set S i of short state-vectors for the UN−RelK prob-
lem. Let W be a cast and GW ,i ∈ GW as above. Denote by KW ,i the terminals in GW ,i. A general p-
subgraph G′

W ,i of GW ,i may have one or more components, say N1, N2,. . . , N`. If extl(Wi) 6= extr(Wi)

then we adopt the convention extl(Wi) ⊆ V (N1) and extr(Wi) ⊆ V (N`). Otherwise, G′
W ,i has only

one component N1. In fact, since ext(Wi)
⋃

Next(Wi) are assumed to be perfectly reliable in GW ,i then
ext(Wi)

⋃

Next(Wi) ⊆ G′
W ,i. Furthermore, it is easy to check that, in GW ,i, the subgraph induced by

extl(Wi)
⋃

Nextl(Wi) (similarly, extr(Wi)
⋃

Nextr(Wi)) is connected. Hence, the above convention im-
plies Nextl(Wi) ⊆ N1 and Nextr(Wi) ⊆ N`. We then have

Lemma 4.1 Let G′
W ,i be a p-subgraph of GW ,i. In addition, let K ′

W ,i be the operational terminals in
G′

W ,i. Then G′
W ,i is a candidate to appear in some operational subnetwork of G if (i) K ′

W ,i = φ or (ii)
K ′

W ,i 6= φ and K ′
W ,i appears in exactly one component of G′

W ,i. In addition, if 1 ≤ |K ′
W ,i| < |K| and

N1 6= N` then either K ′
W ,i ⊆ N1 or K ′

W ,i ⊆ N`.
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Proof. It suffices to show that if Na and Nb, Na 6= Nb, are two different components in G′
W ,i then they

remain isolated from each other in any graph G′, G′
W ,i ⊆ G′ ⊆ G. Hence, if a and b are two operational

terminals where a ∈ Na and b ∈ Nb then a and b remain disconnected from each other in any network
G′ ⊇ G′

W ,i and consequently G′ is not operational. To see that, assume to the contrary that G′ ⊆ G and a

is connected to b by a path P in G′. Write P as (a, . . . , a′, . . . , b′, . . . , b) where a′ (b′) is the closest vertex
to a (respectively, b) on P and a′, b′ /∈ Wi (hence, a = a′ if a ∈ Next(Wi)).

Now, the two chords representing a′ and b′ can be written as (a′
in, a′out) and (b′in, b′out), respectively,

where a′in and b′in lie between the extreme points of Wi on the two polygon sides dx and dy defining Wi.
By the geometry of the polygon diagram, if a′

out and b′out lie on two different halves of Pt (cf. Definition
3) then P can not possibly exist. Hence, a′

out and b′out lie on the same half of Pt, say the left half. By
definition, every vertex in Wi that is dominated by a′ or b′ is also dominated by some vertex in Nextl(Wi).
By the properties of the polygon diagram, the subgraph induced by Nextl(Wi)

⋃

extl(Wi) is connected.
Hence, Na = Nb, a contradiction.

Define S i to be the set {φ,M,L,R,LR}. The state α of G′
W ,i is defined as follows:

1. α = φ if K ′
W ,i = φ. In the remaining cases K ′

W ,i 6= φ.

2. α = M if K ′
W ,i ⊆ Ni ⊆ G′

W ,i where Ni 6= N1 6= N`.

3. α = L if K ′
W ,i ⊆ N1 and N1 6= N`.

4. α = R if K ′
W ,i ⊆ N` and N1 6= N`.

5. α = LR if K ′
W ,i ⊆ N1 and N1 = N`.

Thus, any p-subgraph G′
W ,i that satisfies Lemma 4.1 is characterized by a unique state-vector in S i.

Given a function f i : GW → Si we now describe an algorithm to compute the function Θ(GW , f i) which
evaluates to 1 if and only if all members in F(GW , f i) are operational.

Algorithm 4.1:
Input: a polygon diagram of G, a set K of terminals, a cast W and f i as above.
Output: Θ(GW , f i).

1. Construct the graph R′
W by adding the following set of new edges to the representative graph RW

(cf. Definition 5): {(x, y)| x and y represent extreme chords in the same window, say Wi, and

f i(GW ,i) = LR}. Define a target vertex in R′
W to be one that represents some extreme-left

(extreme-right or left/right) set in a window Wi where f i(GW ,i) = L (respectively, f i(GW ,i) = R or
f i(GW ,i) = LR). Set Θ(GW , f i) = 1 if R′

W has no targets or if all possible targets are connected in
the modified graph R′

W . This step requires O(t2) time.

2. end.

Correctness of the above algorithm is straightforward. Given a cast W we outline in the next section an
O(n4) algorithm to compute {Pr(GW ,i, α)| GW ,i ∈ GW and α ∈ S i}(cf. Lemma 4.6). Assuming the
correctness of this latter algorithm, we now proof the main theorem of this section.
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Theorem 4.1 Given a t-gon representation of G, |V (G)| = n, the UN−RelK reliability problem on G can
be solved in O(nO(t2)) time.

Proof: There are O(n4) windows in the given representation and each cast has at most
(t
2

)

windows. Hence,
there are O(n4(t

2)) casts. For every cast W , the algorithm computes in one step Pr(GW ,i, α), for every
α ∈ S i and GW ,i ∈ GW . Now, the total number of vertices in GW = {GW ,1, . . . , GW ,|I|} is at most
n + 4|W| (∈ O(n)) (since each member GW ,i has at most |Wi| + 4 vertices). By Lemma 4.6, the above
probabilities can be computed in O(n4) time.

Now, |S i| = 5 and hence the total number of functions f i : GW → Si is 5(
t
2). Subsequently, the

algorithm computes Pr(GW , f i), Θ(GW , f i) and Rel(GW ), for every such function f i. For each f i, the
algorithm computes the above values in O(t2). Hence, the algorithm requires O(n4 + 5(

t

2)t2) to compute
Rel(GW ) for each cast and consequently O(n4(t

2)(n4 + 5(
t
2)t2)) time to process all casts.

4.1 The K-terminal Reliability Problem on Permutation Graphs

Let W be a cast and GW ,i ∈ GW be as in the previous section. Our objective is to compute Pr(GW ,i, α),
α ∈ S i. To this end, we define a set S ii of state vectors (applicable to the p-subgraphs of GW ,i). Sub-
sequently, we define the conditioned sets (S ii)α, α ∈ S i, required in equation 3. In the next section, we
show how to compute the probabilities Rel(GW ,i, β), β ∈ S ii. An essential ingredient in defining S ii and
proving some of its properties is the permutation π(GW ,i) defined below.

Definition 7. Consider the restriction of the polygon diagram of G to chords in GW ,i. Let dx and dy

be the two sides defining Wi. For each chord c ∈ Next(Wi) having no end-point on dx (also dy) extend c

and dx (respectively, dy) until both line segments intersect each other. Denote the extended line segments
dx and dy by d′x and d′y, respectively. The diagram of the line segments Wi

⋃

Next(Wi) between d′x and
d′y is a permutation diagram and hence we may view d′

x and d′y as two horizontal lines with d′
x drawn

above d′y.
With this in mind, define the left-side (right-side) of the diagram to be the side where the end-point

of d′y is also an end-point of some chord in extl(Wi)
⋃

Nextl(Wi) (respectively, extr(Wi)
⋃

Nextr(Wi)).
Assume that |V (GW ,i)| = n. We then assign the labels 1, 2, . . . , n (in that order) to the chords whose
end-points are encountered when traversing d′

y from left to right. Let π(GW ,i) = (π1, π2, . . . , πn) be the
permutation induced by the ordering of the end-points on d′

x when traversed from left to right.
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In our example (Figure 1), let W = {C1, . . . , C6}. Then V (GW ,5) = {2, 3, 6, 7, 9, 10, 11}. The permutation
diagram defined above for GW ,5 is shown in Figure 2(a). Relabelling the vertices 1, 2, . . . , etc. we get the
diagram in Figure 2(b). Hence, π(GW ,5) = (5, 2, 7, 1, 3, 6, 4). Note that, the set of vertices {1, π1} ∈

extl(Wi)
⋃

Nextl(Wi) according to the new labelling of the vertices . By symmetry, we also have {n, πn} ∈

extr(Wi)
⋃

Nextr(Wi)

Let HW ,i be the permutation graph defined by π(GW ,i). Before defining the set S ii, we introduce the
following result used to prove some important properties of S ii.

Lemma 4.2 The components of any p-subgraph G′
W ,i ⊆ GW ,i are identical to the components of the

subgraph induced by V (G′
W ,i) in HW ,i.

Proof. It is easy to see that if GW ,i 6= HW ,i then HW ,i can be obtained from GW ,i be adding at most 2 edges,
each possible edge joins two vertices in Nextl(Wi) or Nextr(Wi). Furthermore, in GW ,i the subgraphs in-
duced by extl(Wi)

⋃

Nextl(Wi) and extr(Wi)
⋃

Nextr(Wi) are connected. The result then follows since
extl(Wi)

⋃

Nextl(Wi) and extr(Wi)
⋃

Nextr(Wi) are assumed to be perfectly reliable in GW ,i and G′
W ,i.

Assuming that V (GW ,i) has been relabelled as in Definition 7, we now introduce the set S ii. Let
{N1, N2, ..., N`} be the possible components of a given p-subgraph G′

W ,i ⊆ GW ,i where extl(Wi)
⋃

Nextl(Wi)

⊆ N1 and extr(Wi)
⋃

Nextr(Wi) ⊆ N`, as above. That is, the vertices {1, π1} ⊆ N1 and {n, πn} ⊆ N`.
Define the leader of a component Ni to be the largest labelled vertex in that component. Roughly speaking,
the S ii-state of G′

W ,i keeps information about the existence of operational terminals in two components:
N1 and a second component (denoted N1+ε) that includes the first operational terminal in the sequence
π(GW ,i) that is not included in N1. Additional information is kept for the operational terminals that are not
included in N1

⋃

N1+ε.
More to the point, the state β ∈ S ii of G′

W ,i is a 5-tuple (l1, s, l2, l3, u), where

1. β[l1] is the leader of N1.

2. β[s] = 1 if N1 contains at least one operational terminal, otherwise, β[s] =⊥.
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3. If N1 does not contain all the operational terminals then set β[l2] to be the leader of a component
N1+ε containing the first operational terminal πi in the sequence (π1, π2, ..., πn) where πi /∈ N1.
Otherwise, β[l2] =⊥.

4. β[l3] is the largest labelled operational vertex in G′
W ,i.

5. If G′
W ,i has a set K ′′

W ,i of operational terminals that are not contained in N1
⋃

N1+ε then β[u] is the
smallest labelled operational terminal in K ′′

W ,i. Otherwise, β[u] =⊥.

Using Lemma 4.2, we now draw some basic remarks on the state β of G′
W ,i. First, if N1, N1+ε 6= φ

then every vertex x ∈ N1 that occurs before β[l2] in π(GW ,i) satisfies x < β[l2]. Otherwise, β[l2] ∈ N1,
contradicting the definition. In fact, all vertices in N1 occur in π(GW ,i) before β[l2]. To see this, assume
(to derive a contradiction) that y ∈ N1 and y occurs in π(GW ,i) after β[l2]. Clearly, y > β[l2] otherwise
β[l2] ∈ N1, a contradiction. Now, y ∈ N1 if and only if there exist two vertices x and z, such that x,
β[l2], y and z appear in π(GW ,i) in that order and x, y > z. It then follows from our first remark that
β[l2] > x. Hence, β[l2] > z; consequently β[l2] ∈ N1, a contradiction. Thus, if β[l1], β[l2] ≥ 1 then
β[l1] < β[l2] ≤ β[l3]. Finally, if β[u] ≥ 1 then G′

W ,i violates the conditions in Lemma 4.1.
We now define (S ii)α for each α ∈ S i:

1. (S ii)φ ={β| β ∈ S ii, β[u] =⊥, β[s] =⊥ and β[l2] =⊥}

2. (S ii)M ={β| β ∈ S ii, β[u] =⊥, β[s] =⊥ and ⊥6= β[l2] 6= n}

3. (S ii)L ={β| β ∈ S ii, β[u] =⊥, β[s] = 1, ⊥6= β[l1] 6= n and β[l2] =⊥}

4. (S ii)R ={β| β ∈ S ii, β[u] =⊥, β[s] =⊥ and β[l2] = n}

5. (S ii)LR ={β| β ∈ S ii, β[u] =⊥, β[s] = 1 and β[l1] = n}

Lemma 4.3 Let S ii and (S ii)α, α ∈ S i be as above. Then equation 3 can be used to compute Pr(GW ,i, α),
α ∈ S i.

Proof. By inspection of the above definitions, one may verify that: (1) any p-subgraph G ′
W ,i ⊆ GW ,i is

characterized by a unique vector in S ii, (2) if β ∈ (S ii)α then F(GW ,i, β) ⊆ F(GW ,i, α) and (3) the sets
(Sii)α, α ∈ S ii, are disjoint.

4.2 Computing the Refined Probabilities

A procedure for computing the list L = (Pr(GW ,i, β)|β ∈ S ii) for a given graph GW ,i ∈ GW now follows.
Let π(GW ,i) and HW ,i be as above. The procedure is based on the following observation

Lemma 4.4 For any state β ∈ S ii, Pr(GW ,i, β) = Pr(HW ,i, β).
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Proof. The state β of a p-subgraph G′
W ,i ⊆ GW ,i is determined by the components of G′

W ,i. By
Lemma 4.2, G′

W ,i ∈ F(GW ,i, β) if and only if G′
W ,i ∈ F(HW ,i, β).

We henceforth use HW ,i to compute Pr(GW ,i, β), β ∈ S ii. For convenience, let Hj , 1 ≤ j ≤ n, be
the subgraph of HW ,i induced by the set {π1, . . . , πj} of vertices and let H0 denote the empty graph. In
addition, denote by Lj , 0 ≤ j ≤ n, the list (Pr(Hj, β)|β ∈ S ii) where β is a possible state of Hj . Thus,
the required list L is just Ln. Viewing Lj as an array, we write Lj[β] for Pr(Hj, β).

The algorithm works iteratively be considering the vertices π1, π2, . . . , πn in that order. Initially, L0 has
one state β whose 5 indices are initialized to the special value ⊥ (cf. section 2). In addition, L0[β] =⊥.
Subsequently, at the jth step the algorithm computes Lj by including and excluding the vertex πj to and
from each entry in Lj−1.

Adding a vertex πj to a subgraph of Hj−1 in state β results in a larger subgraph in some state β ′. We
write β′ = β ⊕ πj . The details of computing β ′ is given by Algorithm 4.2 below. The inclusion step sets
Lj[β ⊕ πi] = Lj[β ⊕ πi] + (Lj−1[β] × pπj

). The exclusion step is performed if pπj
< 1; here we set

Lj[β] = Lj [β] + (Lj−1[β] × (1 − pπj
)). In the above assignment expressions, entries of Lj that appear in

the right-hand side with no pre-assigned values are assumed to be equal to ⊥.

Algorithm 4.2
Input: a state β of a p-subgraph H ′ ⊆ Hj−1 and a vertex πj .
Output: the state β ′ = β ⊕ πj of H ′ ⋃ πj .

1. β′ = β;

2. if (β[l1] =⊥) then {β ′[l1] = πj ; if (πj ∈ K) then β ′[s] = 1}.

3. if (β[l1] ≥ 1 and β[l2] =⊥) then

(a) if πj < β[l1] then
{β′[l2] = β′[u] =⊥; β′[l1] = β[l3]; if (πj ∈ K) then β ′[s] = 1};

(b) if (β[l1] < πj and πj ∈ K) then β ′[l2] = max(β[l3], πj);

4. if (β[l1], β[l2] ≥ 1) then

(a) if (πj < β[l1]) then use rule (a) above;

(b) if (β[l1] < πj < β[l2]) then β′[l2] = β[l3];

(c) if (β[l2] < πj and πj ∈ K) then β ′[u] = min(β[u], πj);

5. β′[l3] = max(β[l3], πj);

6. end.

Lemma 4.5 Let β and H ′ be as specified in Algorithm 4.2. The algorithm computes the state β ′ of H ′ ∪πj .
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Proof. By exhausting all possible cases. We first partition the state-vectors in S ii into 3 classes based on the
values of the indices l1 and l2 being (i) equal to ⊥, (ii) β[l1] ≥ 1 and β[l2] =⊥ and (iii) β[l1], β[l2] ≥ 1.
Following the assignment β ′ = β in step 1, the algorithm assigns possible new values to certain indices in
β′ as required. Steps 2, 3 and 4 handle cases i, ii and iii, respectively. Now, assume that the components
N1, N2, ..., N` of H ′ are labelled as above with the set of vertices {1, π1} ∈ N1 and {n, πn} ∈ N`. We
show two sample cases; the remaining cases follow using a similar argument.

Case 3.b: By assumptions, β[l1] ≥ 1 (hence, N1 6= φ) and β[l2] =⊥ (hence, all operational terminals of
H ′ belong to N1 ⊆ H ′). If β[l1] < πj and πj ∈ K then πj is the first operational terminal not in N1. Denote
the component of H ′ ⋃ πj that contains πj by N1+ε. We now verify the instructions in 3.b. If β[l3] > πj

then β[l3] ∈ N1+ε (since β[l3] occurs before πj in π). In any case, (i.e. whether β[l3] < or > πj) the leader
β′[l2] of N1+ε is max(β[l3], πj). On the other hand, if β[l1] < πj and πj /∈ K the only required step is 5.
Note that throughout case 3 whether πj ∈ K or not we have β ′[u] = β[u] =⊥.

Case 4.c: By assumptions, N1, N1+ε 6= φ and β[l2] < πj . If πj ∈ K then πj appears in H ′ ∪ πj in a
component different from N1 and N1+ε, hence the assignment β ′[u] = min(β[u], πj). On the other hand,
if πj /∈ K then πj can only affect the value of β ′[l3], as in step 5.

Lemma 4.6 Let GW ,i, |V (GW ,i)| = n, and S ii be as in this section. The above algorithm computes
Pr(HW ,i, β) = Pr(GW ,i, β), β ∈ S ii, in O(n4) time. Hence, {Pr(GW ,i, α)| α ∈ S i} can be computed
in O(n4) time.

Proof.
Correctness: It suffices to show that Lj , j ≥ 1, is complete (that is, Lj contains an entry for each possible
state β ∈ S ii of Hj) and correct given that Lj−1 is complete and correct (with respect to Hj−1). The com-
pleteness part follows since the algorithm computes Lj by performing inclusion and exclusion steps of πj

on each entry in Lj−1. Hence, exhausting all the possibilities. The correctness part follows from Lemma 4.5.

Timing: The total number of distinct states in S ii is O(n3) and hence the number of entries in each list
Lj , 1 ≤ j ≤ n, is at most O(n3). Furthermore, in constructing a list Lj from a previous list Lj−1 the
algorithm processes each entry in Lj−1 in O(1) time. Thus, Pr(GW ,i, β), β ∈ S ii, can be computed in
O(n4) time.
Finally, it is easy to that {Pr(GW ,i, α) | α ∈ S i} can be computed simultaneously with Ln.

5 The K-Resource Reliability Problem

As in section 4, let W be a cast and GW ,i ∈ GW . Denote the set of terminals (service centers) in GW ,i

by KW ,i. In addition, let G′
W ,i be a p-subgraph of GW ,i with components labelled N1, N2, . . . , N` where

extl(Wi)
⋃

Nextl(Wi) ⊆ N1 and extr(Wi)
⋃

Nextr(Wi) ⊆ N`, as before. Furthermore, denote the op-
erational terminals in G′

W ,i by K ′
W ,i. The following lemma is analogous to Lemma 4.1. The proof is

straightforward and hence omitted.

Lemma 5.1 G′
W ,i is a candidate to appear in some operational subnetwork of G if every possible nonempty

(internal) component Ni, i 6= 1, `, of G′
W ,i has at least one operational terminal. That is, it is possible that

neither N1 nor N` contains an operational terminal of G′
W ,i.
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Define S i to be the set {A0, A1, D0, DL, DR, DLR}. We use A0 and A1 to characterize p-subgraphs
with N1 = N`. The remaining states (i.e. D0, DL, DR and DLR) are used to characterize p-subgraphs
with N1 6= N`. For the purpose of defining the exact state α of G′

W ,i we introduce the new variables
T1, T` ∈ {true, false}, a ∈ {0, 1} and and b ∈ {0, L,R,LR}. Set T1 = true (T` = true) if N1

(respectively, N`) contains an operational terminal. Otherwise, T1 = false (T` = flase). Assign values
to a and b as follows. If T1 T2 then a = b = 0 else a = 1. In addition, if T1T2 (by symmetry, T1T2) then
b = L (respectively, b = R). Finally, if T1T2 then b = LR. We now define α as follows:

1. If N1 = N` then α = Aa.

2. Otherwise, if N1 6= N` and every component Ni, 1 < i < ` contains a terminal then α = Db.

A straightforward algorithm to compute Θ(GW , f i) for a given function f i : GW → Si now follows.

Algorithm 5.1:
Input: a polygon diagram of G, a set K of terminals, a cast W and f i as above.
Output: Θ(GW , f i).

1. Construct the graph R′
W by adding the following set of new edges to the representative graph RW (cf.

Definition 5): {(x, y)| x and y represent chords in the same window, say Wi, where f i(GW ,i) = A0

or A1}. Using the information encoded in f i(GW ,i), GW ,i ∈ GW , identify the components of R′
W

that contain terminals.

2. Set Θ(GW , f i) = 1 if R′
W = φ or if R′

W 6= φ and every component in R′
W contains a terminal.

3. end.

The above algorithm requires O(t2) time. As will be shown in Lemma 5.2, the set {Pr(GW ,i, α)|

α ∈ S i} can be computed in O(nk+4) where k = |K|. We then have

Theorem 5.1 Given a t-gon representation of G, |V (G)| = n, the K-resource reliability problem on G can
be solved in O(nO(t2+k)).

Proof: By Lemma 5.2 and the structure of S i one can deduce the following time bound O(n4(t

2) (nk+4 +

6(
t

2)t2)).

5.1 The K-Resource Reliability Problem on Permutation Graphs

For convenience, let ki = |KW ,i| throughout this section. In addition, assume that V (GW ,i) has been
relabelled as in Definition 7. If G′

W ,i satisfies Lemma 5.1 then it has at most ki +2 components. Each state
in S ii is a vector in {⊥, 1, 2, . . . , |V (GW ,i)|}

2(ki+3). Briefly, the S ii-state of a p-subgraph G′
W ,i keeps track

of the existence of operational service centers in the first possible ki +2 components (assuming that we start
from the component N1 and scan the vertices from left to right according to the permutation π(GW ,i)). We
require a total of 2ki + 4 numbers to encode this information. The existence of operational service centers
in the remaining possible components of G′

W ,i is encoded (in less detail) by two additional numbers in the
state-vector. We now describe the structure of any state-vector in detail. The coordinates of each vector are
denoted (l1, r1, l2, r2, . . . , lki+3, rki+3). If G′

W ,i has ` ≥ 0 components then define its state β as follows.
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1. β[li] , 1 ≤ i ≤ min(`, ki + 2), is the leader of component Ni. For all other possible values of i in the
range: min(`, ki + 2) < i ≤ ki + 2, β[li] =⊥. In addition, if ` > ki + 2 then β[lki+3] is the largest
labelled vertex in {Nki+3, . . . , N`}; otherwise, β[lki+3] =⊥.

2. For 1 ≤ i ≤ ki + 2, β[ri] = 1 if Ni contains a terminal; otherwise, β[ri] =⊥. Furthermore, if
` > ki + 2 then β[rki+3] = 1 if any component in {Nki+3, . . . , N`} contains a terminal. Otherwise,
β[rki+3] =⊥.

Conversely, if β ∈ S ii then any p-graph G′
W ,i characterized by β has the following properties. (We

assume that the possible components N1, . . . , N` of G′
W ,i are labelled as above. In addition, we use T1 and

T` as in the definition of S i.)

1. ` ≤ ki + 2 if and only if β[lki+3] =⊥.

2. If ` ≤ ki + 2 then every possible component Ni, 1 < i < ki + 2, has an operational service center if
and only if β[ri] = 1.

3. N1 = N` if and only if β[l1] = n.

4. T1 = true (T` = true) if and only if β[r1] = 1 (respectively, β[r`] = 1).

Using the above observations, one can readily compute each set (S ii)α, α ∈ S i, required in equation 3.

5.2 Computing The Refined Probabilities

Let π(GW ,i) and HW ,i be as in section 4.1. One may then verify that Lemma 4.4 holds for any state
β ∈ S ii. Hence, it suffices to compute {Pr(HW ,i, β)| β ∈ S ii)}. We use the inclusion/exclusion algorithm
presented in section 4.2 combined with Algorithm 5.2 shown below.

Algorithm 5.2:

Input: a state β of a p-subgraph H ′ ⊆ Hj−1 and a vertex πj .
Output: the state β ′ = β ⊕ πj of H ′ ⋃ πj .
Notation: Recall that ki = |KW ,i|. Let ` be the largest index such that β[l`] > 1,

otherwise, ` =⊥. In addition, let x be the smallest index such that πj < β[lx].
If no such x exists then x =⊥. Also, let term(πj) = 1 if πj ∈ K ,
otherwise, term(πj) =⊥.

1. β′ = β;

2. if (` > 1 and πj < β[l`]) then {

β′[lx] = max(β[l`], β[lki+3]);
β′[rx] = β[rx] ∨ β[rx+1] ∨ . . . ∨ β[r`] ∨ term(πj);
if (x ≤ k + 2) then β ′[lx+1, . . . , rki+3] =⊥};

3. if (` =⊥ or πj > β[l`]) then {
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β′[lmin(`+1,ki+3)] = πj ;
β′[rmin(`+1,ki+3)] = term(πj); };

4. end.

As in Lemma 4.5, one can proof the correctness of the above algorithm by exhausting all possible cases.
Here, any state vector in S ii satisfies either the conditions in step 2 or those in step 3. If the conditions in
step 2 hold then adding πj to H ′ joins the components Nx, Nx+1, . . ., N` into a new component denoted
Nx in H ′ ⋃ πj . This new component will have an operational service center if either πj ∈ K or one of its
subcomponents include an operational service center. On the other hand, the conditions in step 3 are satisfied
if either H ′ is empty (the case where ` =⊥) or H ′ ⋃ πj has one more component than H ′ (this occurs if
πj > β[l`]). In either case, verification of the corresponding executable statements is straightforward. We
then have the following

Lemma 5.2 The set {Pr(GW ,i, α)| α ∈ S i} can be computed in O(nk+4) time.

6 Concluding Remarks

In this paper we outlined two polynomial time algorithms to solve the UN−RelK problem and the K-
resource reliability problem on t-polygon graphs, for fixed t. An approach for solving a number of opti-
mization problems on t-polygon graphs also appears in [6]. The applicability of the above algorithms relies
on the availability of a polygon representation of the input graphs. Recognizing t-polygon graphs, for fixed
t ≥ 3, seems to be an open problem that warrants further research. Nevertheless, given a graph G one can
use the circle representation produced by the algorithm of [7] to find an upper bound on the minimum t such
that G is a t-polygon graph.
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