
Final version appears in Discrete Mathematics 114 (1993).

Reliable Assignments of Processors to
Tasks and Factoring on Matroids

Charles J. Colbourn
Department of Combinatorics and Optimization

University of Waterloo
Waterloo, Ontario N2L 3G1

Canada
Ehab S. Elmallah

Department of Computing Science
University of Alberta

Edmonton, Alberta T6G 2H1
Canada

Abstract

In the simple assignment problem, there are n processors, m tasks, and a relation between the proces-
sors and tasks; this relation indicates the ability of the processor to perform the task. When the processors
fail independently with known probabilities, two performance issues arise. First, with what probability
can the operating processors all be kept busy? Second, with what probability can the operating proces-
sors perform the same number of tasks that all processors could? We formulate these questions on the
underlying transversal matroid. We first prove that counting minimum cardinality circuits in this matroid
is #P-complete, and hence that both questions are also #P-complete. Secondly, we devise a factoring al-
gorithm with series and parallel reductions to compute exact solutions of the above problems. We then
outline some efficient strategies for bounding the probabilities.

1 Introduction

Consider a multiprocessor system having a set C= c1, c2, . . . , cn of processors available for executing a set
T= t1, t2, . . . , tm of tasks at a certain time. During a time interval of interest, a processor ci operates with
a certain probability pi independent of other processors. Each processor is capable of executing a certain
subset of tasks in T , depending on its hardware configuration. However, during the time interval of interest
a processor can only be assigned to execute at most one task. The situation can be modelled by forming
a bipartite graph B on vertices C representing processors and T representing tasks. Vertices c i and tj are
adjacent if and only if processor ci is capable of performing task tj . A valid assignment of processors to
tasks corresponds to a matching in B. (For background on matchings, see [LP86]). we denote the cardinality
of a maximum matching in B by r(B).

There are two natural goals: to maximize processor utilization, and to maximize throughput (the number
of tasks performed). To achieve both, we choose an assignment that is a maximum matching; we denote the
cardinality of such a matching by r(B). Two simplified reliability problems now arise. First, what is the
probability that the operating processors can still perform r(B) tasks? And what is the probability the
operating processors can all be assigned tasks simultaneously? We refer to the two problems as the task-
reliability (TRel) and the processor-reliability (PRel) problems, respectively.

1

Final version appears in Discrete Mathematics 114 (1993) 2

Before formulating these questions more precisely, it is perhaps important to remark that the simple
model introduced here omits more information that is essential in practical multiprocessor scheduling, most
importantly time-dependent behaviour. Nevertheless, it captures the basics of the scheduling problem at one
instant of time.

Define a state to be a subset S of the processors; we interpret that all processors in S are operating,
while all others have failed. A state S is processor-operational if all processors in S can be assigned tasks
simultaneously; in other words, the processors of S form the endvertices of edges in some matching of B.
In this case, S is a matchable set. A state S is task-operational if using processors in this state, r(B) tasks
can be assigned; in other words, S contains at least a matchable set of cardinality r(B).

The set of matchable sets in a bipartite graph form the independent sets of a matroid, the transversal
matroid TM(B). A basis of this matroid is precisely a matchable set of cardinality r(B). Now if a state
S is task-operational, S contains a base of TM(B). The task-operational states are precisely the sets that
span TM(B) (i.e., those that contain at least a basis of TM(B)). Equivalently, S̄ is a subset of a dual basis
of TM(B), and hence the task-operational states are precisely complements of the independent sets in the
dual of TM(B). Duals of transversal matroids form a special class of linking systems [Sc79] called strict
gammoids (see for example [Mc72], [IP73] and [Br87]), and hence we denote the dual matroid by SG(B).

Now we can formulate our reliability questions precisely. Two classes of reliability problems are of
interest. In the general problem the operational probabilities of the elements in E are specified by a vector p̃.
The special problem where all elements operate with the same probability p is called a functional reliability
problem. Given a matroid M = (E, I) having a rank function r(M) with |E| = n, the independence
polynomial Ind(M; p) is the polynomial

∑i=r
i=0 Fip

i(1 − p)n−i, where Fi is the number of independent
sets of cardinality i in M. The span polynomial Span(M; p) is the polynomial

∑i=n
i=r Sip

i(1 − p)n−i,
where Si is the number of sets of cardinality i that contain a basis of M. By duality, Ind(M; p) =

Span(dual(M); 1 − p).
For the functional reliability problems, we define the processor reliability PRel(B; p) to be Ind(TM(B); p);

this is precisely the probability that the operating processors form a matchable set. Similarly, we define the
task reliability TRel(B; p) to be Span(TM(B); p); again, this is the probability that r(B) tasks can still be
performed. Computing processor and task reliabilities are precisely the problems we introduced earlier. In
the general case, the Span reliability of M, denoted SRel(M, p̃), is the probability of obtaining a spanset
of M. Thus, TRel(B, p̃) is just SRel(TM(B), p̃), and by duality, PRel(B, p̃) (the Independence reliability
IRel(TM(B), p̃)) is SRel(dual(TM(B)),1 − p̃), where 1 is a vector of 1’s of length |E|.

Naturally, this translation to the matroid domain does not make the problems any easier; however, it
does suggest employing techniques that have been useful in other matroid reliability problems. The primary
example of this is the network reliability problem. Given a graph G = (V,E) in which edges operate
independently with probability p, the functional all-terminal reliability is the polynomial Span(Gr(G); p)

where Gr(G) is the graphic matroid of G; more usually, this is formulated as Ind(Cog(G); 1 − p) where
Cog(G) is the cographic matroid of G. A very large literature exists on network reliability; see [Co87] for
an introduction. In particular, a number of results on all-terminal reliability rely on matroid structure, and
one can therefore hope to extend them to our problems here.

Before returning to processors and tasks, it is worth remarking on a further matroid reliability analysis
problem, suggested in [CP89]. What is Ind(Gr(G); p)? It is the probability that the operating edges of G

form an acyclic subgraph, and hence that the failed edges form an edge feedback set (set of edges whose
removal destroys all cycles) for G. Thus Ind(Gr(G); 1 − p) is the probability that the “operating” edges

Final version appears in Discrete Mathematics 114 (1993) 3

form an edge feedback set. While we know of no concrete application for such a reliability computation, we
expect that it may prove useful.

In the following, we consider the four matroid reliability analysis problems: task reliability, processor
reliability, all-terminal reliability and acyclicity. We assume throughout that the matroid is presented as the
corresponding graph.

2 Counting Independent and Spanning Sets

Determining any independence polynomial exactly amounts to determining each of its coefficients exactly
(see for example [PB83]). If any coefficient is difficult to compute, so therefore is the polynomial. Let us
first determine what information can be extracted from an independence polynomial. One can determine the
rank r and the number of bases Fr of the matroid. One can determine the total number of independent sets.
Now suppose that c is the cardinality of a smallest circuit of the matroid. For i < c, we must have F i =

(n
i

)

.
If there are Cc circuits of cardinality c, Fc =

(n
c

)

− Cc. Hence from the independence polynomial, we can
determine c and Cc.

For cographic matroids, determining the number of bases is just counting spanning trees. The circuit
size c is just the edge-connectivity of the graph. Finally, Bixby [Bi75] and Lomonosov and Polesskii [LP72]
show that Cc is polynomially bounded (in fact, [DKL76] gives a structural description of the minimum cuts);
computing it in polynomial time is then straightforward [RC87]. Nevertheless, all-terminal reliability is a
#P-complete problem: computing the total number of independent sets is #P-complete [PB83].

For graphic matroids, counting bases is counting spanning trees. Determining c is computing the girth
(the size of the shortest cycle) of the graph. Determining Cc, the number of shortest cycles, seems not
to have been addressed; we outline an efficient algorithm here. First suppose c is even. Every shortest
cycle contains c/2 pairs of vertices at distance c/2 in the graph. To count shortest cycles, for each pair of
vertices at distance c/2, find all paths of length c/2 between these two vertices. These paths are necessarily
internally vertex-disjoint since the girth is c. Hence there are O(n) such paths, and any two form a c-cycle
giving O(n2) c-cycles for this pair. Hence the total number of c-cycles is O(n4). (This is best possible; Kn,n

has n2(n − 1)2/4 4-cycles). When c is odd, pick a pair of vertices at distance (c − 1)/2. This short path is
necessarily unique. A cycle is completed by any path of length (c + 1)/2; since there are O(n) candidates
for such a path, there are O(n3) shortest cycles in total. (This is also best possible, upon consideration of
the complete graph). The factoring technique of [RC87] can be applied to compute the exact number Cc in
polynomial time given these bounds on the magnitude. Perhaps surprisingly, for graphic matroids it does
not appear to be known that computing the independence polynomial is computationally difficult.

Finally, we return to our main interest: transversal matroids. The main result we obtain in this case
follows:
Theorem 2.1: Given a bipartite graph B, determining the minimum cardinality of a circuit of TM(B) is
NP-hard, and counting circuits of specified cardinality is #P-complete.
Proof:

We reduce the k-clique problem, k ≥ 3, to the circuit problem in polynomial time. An instance of the
clique problem is a graph G = (V,E) and an integer k. Now let ` =

(k
2

)

− k − 1 =
(k−1

2

)

. Define a
bipartite graph B as follows. One class of the bipartition is E; the other is V ∪ {z1, . . . , z`}. Edges are
placed between all {zi} and all vertices corresponding to E, and between vertex v and edge e if and only
if edge e is incident to vertex v. Now choose a set K ⊆ E. Suppose that |K| <

(k
2

)

. We claim that K

Final version appears in Discrete Mathematics 114 (1993) 4

is matchable. To see this, we must only ensure that |K| − ` edges in K are incident with at least |K| − `

different vertices, as the remaining elements of K can be matched to the {zi}. If K has fewer than ` edges,
the result is immediate.

Otherwise,
(k−1

2

)

≤ |K| <
(k
2

)

and K forms a subgraph H of G on at least k − 1 vertices. Denote by
Ht and Hc the union of the (possibly empty) acyclic and cyclic connected components of H , respectively.
Thus, H = Ht ∪ Hc. All the edges E(Ht) can be matched to distinct vertices of Ht and all the vertices
V (Hc) can be matched to distinct edges in Hc. Thus, it suffices to show that |E(Ht)| + |V (Hc)| ≥ |K| − `

in each of the following cases:

1. If
(k−1

2

)

< |E(Hc)| then |V (Hc)| ≥ k ≥ |K| − `.

2. If
(k−2

2

)

< |E(Hc)| ≤
(k−1

2

)

then |V (Hc)| ≥ k − 1 ≥ |K| − ` − 1. Thus, if |K| − ` ≤ k − 1 we are
done, otherwise, |K|−` = k and one more edge can be matched in Ht since |E(Ht)| = |K|−|E(Hc)|

≥ |K| −
(k−1

2

)

= |K| − ` = k ≥ 3.

3. Finally, if |E(Hc)| ≤
(k−2

2

)

then k ≥ 4 and |E(Ht)| = |K| − |E(Hc)| > |K| −
(k−1

2

)

= |K| − `.

At this point, we know that there is no circuit of size less than
(k
2

)

. Now consider a set K of size
(k
2

)

. If K induces a k-clique, it is not matchable, since the neighbourhood of K in B contains at most
k + ` <

(k
2

)

vertices. If on the other hand K does not induce a k-clique, it must induce a subgraph with at
least k + 1 vertices, and is therefore matchable. This establishes that the k-cliques of G are in one-to-one
correspondence with the k-circuits of B.

Since the clique problem is NP-hard, and counting cliques is #P-complete, we have the required results.

Corollary 2.2: Computing the processor reliability is #P-complete.
Proof:

Computing Ind(TM(B); p) determines, among other things, the size and number of minimum cardi-
nality circuits.

It is worth remarking that Theorem 2.1 establishes a complexity result of independent interest. We
define a Hall set to be a set of vertices that is matchable to a unique set of vertices in the other class of the
bipartition. Hall sets arise in algorithms for finding maximum matchings [LP86]. By incrementing ` by one
in the proof of Theorem 2.1, we obtain
Corollary 2.3: Counting Hall sets of minimum cardinality is #P-complete.

Next we turn to task reliability. We expect that counting circuits is difficult here as well; this amounts
to counting cocircuits (“cutsets”) given the bipartite graph. However, no result of this type is known. Nev-
ertheless, we can prove the following simple lemma:
Lemma 2.4: Provided that equal operation probabilities are not stipulated, computing processor reliability
is polynomially reducible to computing task reliability.
Proof:

Given a bipartite graph B = (X ∪ Y,E) in which elements of X represent processors that operate
with known probabilities, we construct a graph B ′ as follows. One class of the bipartition is X . The other
contains Y and |X| vertices X ′ = {x′ : x ∈ X}. Vertices in Y are assigned operation probability 1. Each
vertex x′ is assigned 1 − px, where px is the operation probability of x in B. Edges in B ′ between X and
Y are as in B; edges between X and X ′ are all edges of the form {x, x′} for x ∈ X . In B ′ the elements of
Y ∪ X ′ represent processors and r(B ′) = |X|.

Final version appears in Discrete Mathematics 114 (1993) 5

To complete the proof we show that processor reliability in B is task reliability in B ′. This follows from
the following remarks:

1. A state S is processor-operational in B if and only if the state Y ∪ (X ′−S′) is task operational in B ′,
where S′ = {x′ : x ∈ S}.

2. The probability of having a state S in B equals the probability of having the state Y ∪ (X ′ − S′) in
B′.

Performing contractions on the nodes of Y in B ′ leads to the strict gammoid SG(B); however, this proof
enables us to convert among transversal matroids, providing not all vertices need have the same operation
probability.

At this point, we conclude that both task and processor reliability are computationally difficult problems.
Hence we are left with serious problems: first, can we extend the well known class of graph factoring
algorithms (see [Co87] for a background) to solve our present problems on matroids? Second, can we
approximate, or bound, the reliabilities efficiently? We devote the remainder of the paper to the above
questions.

3 The Factoring Algorithm

Using common reliability terminology, we call the system (M, p̃) a probabilistic matroidal system. The
bases and the spansets of M are called minpaths and pathsets, respectively, of the system. To simplify
notation, p denotes a vector of probabilities throughout this section. We also need the following definitions
on matroids (e.g. see [We76]). Let M = (E, I) be a matroid and X be a subset of E. The matroid obtained
by deleting X is denoted M − X , M − X = (E − X, Id) where Id contains all subsets of E − X that
belong to I . The matroid obtained by contracting X is denoted M • X (the notation M/X is also a
common notation for the contracted matroid). If X = {e}, where e is an element in some basis of M, then
a set I is a basis of M•X if and only if I ∪{e} is a basis of M. In general, the rank of a set S in M•X is
given by rM•X(S) = rM(S ∪X)− rM(X). The order of deleting a subset X of elements and contracting
another disjoint subset Y to form a minor is immaterial.

A pivotal decomposition of the pathsets of M with respect to e is a partitioning into two disjoint subsets
depending on whether or not e appears in a pathset. Hence, we have

SRel(M, p) = pe SRel(M• e, p) + (1 − pe) SRel(M− e, p) (1)

where SRel(M• e, p) and SRel(M− e, p) are the probabilities of obtaining a pathset in E − e of M• e

and M, respectively. The analogous expression for computing the all-terminal reliability of a graph G,
ARel(G, p),

ARel(G, p) = pe ARel(G • e) + (1 − pe) ARel(G − e) (2)

is well known. Here, e is any edge in the graph and G − e and G • e denote the graphs obtained by deleting
and contracting e respectively.

The factoring algorithm applies equation 1 recursively using a sequence of pivots. For this purpose, we
rewrite equation 1 in a form suitable to describe the span reliability of any intermediate minor M0 in the
algorithm. M0 is obtained from M be contracting a subset Ec

0 and deleting some other subset. Any spanset
of M0 can be extended to a spanset of M by adding the elements of E c

0 to it. We use the expanded notation

Final version appears in Discrete Mathematics 114 (1993) 6

SRelM•Ec

0
(M0, p) to denote the probability of obtaining a spanset of the matroid M• E c

0 whose elements
are in M0. Using the expanded notation, we may now write

SRelM•Ec

0
(M0, p) =

pe SRelM•{Ec

0
∪e}(M0 • e, p) + (1 − pe) SRelM•Ec

0
(M0 − e, p) (3)

and SRel(M, p) is just SRelM•φ(M, p).

3.1 Series and Parallel Reliability Transformations

The SP-factoring algorithm reduces the work done by performing series and parallel reliability reductions
whenever possible. To set a background, recall that a bridge in M is an element that is contained in every
basis and a loop is a circuit of one element. Two elements e1 and e2 are in series if e2 is a bridge in M− e1.
Similarly, two non-loop elements e1 and e2 are in parallel if e2 is a loop in M • e1. Series and parallel
relations are symmetric and transitive. Degenerate cases where any two non-loop elements of M are in
series or in parallel occur when r(M) = |E| and r(M) = 1, respectively. The above definition of series
elements extends the classical definition of series edges in a graph, when applied to its forest matroid. For
example, any two edges in a graph that form a cut-set are now considered in series. The following lemma
specifies the exact transformations used.
Lemma 3.1: Let (M, p) be a probabilistic matroidal system and x and y be two of its elements.

1. The Series Reduction: if x and y are in series then contract x and assign the new probability p ′
y =

pxpy/α, where α = px+py−pxpy, to y; call the resulting probability vector p1. Now, SRel(M, p) =

α SRel(M• x, p1).

2. The Parallel Reduction: if x and y are in parallel then delete x and assign the new probability value
px + py − pxpy to y; call the resulting probability vector p1. Then SRel(M, p) = SRel(M, p1).

Proof: Straightforward by using x and y as pivots in equation 1.
We now outline the important steps in an SP-factoring algorithm that performs reductions before and

after each pivoting step. As shown below, four input parameters are used to specify a minor M0 of a given
matroid M and its associated probability vector p0 to the function SRel. M0 is assumed to be obtained
from M be contracting Ec

0 and deleting Ed
0 from E.

Function SRel(M, Ec
0, E

d
0 , p0).

1. Starting with the system (M0, p0), repeat the following steps until no more reduction is possible:
remove all possible loops, contract all possible bridges and perform all possible series and parallel
reductions. Call the new system (M1, p1) where M1 = (M− Ed

1) • Ec
1. Denote by α1 the product

of the operation probabilities of all contracted bridges and the α parameters from any possible series
reductions. If no bridge contraction or series reduction has been applied then set α1 = 1.

2. If M1 is empty then Return (α1), otherwise, choose any element e, e ∈ E1, as a pivot.

3. Repeat step (1) on the system (M1 • e, p1). Call the new system (M2, p2) and the multiplicative
parameter α2. If M2 is empty then set Pc = α2. Else, Pc = α2 SRel(M, Ec

2 ∪ {e}, Ed
2 , p2).

Final version appears in Discrete Mathematics 114 (1993) 7

4. Repeat step (1) on (M1 − e, p1). Call the new system (M3, p3) and the multiplicative parameter α3.
If M3 is empty then set Pd = α3. Else, Pd = α3 SRel(M, Ec

3, E
d
3 ∪ {e}, p3).

5. Return (α1 (pePc + (1 − pe)Pd)).

6. End.

A measure of the efficiency of this algorithm is the number of calls to SRel; these calls can be repre-
sented in a binary “computation tree”, denoted TSP (M). Hence, an equivalent measure is the number of
leaves in this computation tree.

3.2 Recognizing Series and Parallel Reductions

An efficient strategy for identifying series and parallel elements throughout the algorithm follows from the
three points mentioned below. The method requires an efficient method for computing the rank function of
the given matroid M to decide whether any two given elements x and y are in series or in parallel in a minor
M0, M0 = (M− Ed

0) • Ec
0.

1. Recall that r(M0) is by definition rM0
(E − {Ed

0 , Ec
0}). For any set S

rM0
(S) = rM(S ∪ Ec

0) − rM(Ec
0).

2. x and y are in series if and only if

(a) x and y are not bridges in M0, i.e. r(M0) = r(M0 − x) = r(M0 − y) and

(b) x is a bridge in M0 − y, i.e. r(M0 − {x, y}) < r(M0).

3. x and y are in parallel if and only if

(a) neither x nor y is a loop in M0, i.e. rM0
(x) = rM0

(y) = 1 and

(b) y is a loop in M0 • x, i.e. rM0•x(y) = 0.

Correctness of the above remarks follows immediately from the definitions. Finding a possible pair of
series or parallel elements can then be accomplished by testing all possible pairs of elements. Since testing
any such pair requires a fixed number of evaluations of the rank function, one can easily obtain the following
timing result.
Lemma 3.2: Let M be a matroid on n elements whose rank function can be computed in O(f(n)) time, for
some function f(n), and let M0 be one of its minors. One can decide whether a pair of the n0 elements of
M0 is in series or in parallel in time O(n2

0f(n)).
In the case of the underlying transversal matroid M of a bipartite graph B = (T,C), the rank of a

subset S of C is the size of a maximum matching in the subgraph induced by (T, S). Maximum matchings
in bipartite graphs can be computed in O(n2.5) time [HK73]. The same algorithm can be used to compute
the rank of any subset S in the dual matroid M∗ of M using rM∗(S) = |S| − r(M) + rM(E − S).

Final version appears in Discrete Mathematics 114 (1993) 8

3.3 Performance of the Algorithm

In general, the number of nodes in a computation tree generated by the factoring algorithm grows exponen-
tially with the number of elements in the system. However, by a careful choice of the pivoting elements one
may obtain substantial improvements for systems that can be greatly reduced using series and parallel re-
ductions. To gain more insight into the situation, we start by recalling that an upper bound on the minimum
possible number of leaf nodes of TSP (M) can be obtained by evaluating any invariant function f(M) that
obeys

(A-i) the deletion-contraction rule: for any nonloop element e, f(M) = f(M− e)+f(M• e) and

(A-ii) f(B) = 1 for any basis B of M and f(B) = 0 if B is a proper subset of a basis.

The function #B(M) whose value is the number of bases of a given matroid M is an obvious example
that satisfies conditions (A-i) and (A-ii). However, one may not expect this function to give a tight upper
bound on the number of leaves of TSP (M) since its value is not generally preserved under series and parallel
reductions. That is, if M∗ is obtained from M by a series or a parallel reduction then #B(M∗) is usually
less than #B(M) by a nonconstant factor, depending on M.

In a search for a more useful function, Satyanarayana and Chang [SC83] have studied the domination
function on graphs with remarkable results. The definition of such a function, as will be shown shortly,
depends on the set of minpaths defining the reliability problem under consideration. For the K-terminal
reliability problem, [SC83] have shown that the domination function satisfies conditions (A-i) and (A-ii)
above. Moreover, it is invariant under parallel reductions and a special type of series reductions. Other
extensions of such results appear in [AS84] and [Wo85]. We also refer the reader to [AB84] for a related
survey. Our main results in this section is to show that similar results hold for the domination function
defined with respect to the span reliability of matroids.

For convenience, we start by reproducing some definitions from [SC83] and [AB84] when applied to a
matroid M. An element e is said to be irrelevant if it is not contained in any minpath (base), otherwise,
it is relevant. A formation of a subset E ′ of elements having no irrelevant element is a set of minpaths
whose union is E ′. A subset may have no formation if at least one of its elements is irrelevant. In general,
there can be more than one possible formation for E ′. A formation is odd or even depending on whether
the number of its elements (minpaths) is odd or even. The signed domination of E ′ with respect to the set
Bases(M), denoted sdom(E ′, Bases(M)), is the number of odd formations minus the number of even
formations. If E ′ does not have any formation then its signed domination equals zero. The domination of
E′, denoted DOM(E ′, Bases(M)), equals the absolute value of the signed domination. For convenience,
let sdom(M) (DOM(M)) denote sdom(E,Bases(M)) (DOM(E,Bases(M)), respectively).

From the above definitions, it is immediate that the DOM function satisfies condition (A-ii) above for
matroids. To show that it obeys the deletion-contraction rule we use an elegant result of Barlow [Ba82]
(mentioned also in [AB84]) on the signed dominations of coherent systems, where
Definition. A coherent system is a pair (E, ρ) where E is a finite set of elements and ρ = {P1, . . . , Pk} is
a family of subsets of E such that

(B-i) no Pi is contained in another member of the family and

(B-ii) E = ∪k
i=1Pi.

Final version appears in Discrete Mathematics 114 (1993) 9

Naturally, we will use for ρ the minpaths of a matroid. Following [AB84], a pivotal decomposition
of the set ρ using an element e yields the two subsets ρ(ē) = {Pi|e /∈ Pi and Pi ∈ ρ} and ρ(e) =

{Pi|e ∈ Pi and Pi ∈ ρ} corresponding to the cases where e is failed and e is operating, respectively.
The system (E − e, ρ(ē)) associated with the set ρ(ē) might not be coherent since ∪Pi∈ρ(ē)Pi might be a
proper subset of E − e. The system (E − e, η(ρ − e)) corresponding to e operating is defined as follows.
First, let ρ − e = {P1 − e, . . . , Pk − e}. Second, let η(ρ − e) be the set simplification of ρ − e, that is
η(ρ − e) is obtained from (ρ − e) by omitting a set Pi − e if it contains another set Pj − e. For example, if
ρ − e = {(1, 2), (1)} then η(ρ − e) = {(1)}. Barlow’s signed domination theorem can now be stated

sdom(E, ρ) = sdom(E − e, η(ρ − e)) − sdom(E − e, ρ(ē)) (4)

If the system (E, ρ) fails to satisfy condition (B-ii) then E has no formation, the left hand side of equation 4
is, by definition, zero, and the two terms on the right hand side are equal.

Our objective now is to show that a specialized form of equation 4 exists for matroids, using the con-
traction and deletion operations. Clearly, for a matroid M and one of its nonbridge elements e, if ρ(ē) =

{Pi|e /∈ Pi and Pi ∈ Bases(M)} the two systems (E − e, ρ(ē)) and (E − e,Bases(M− e)) are equal.
Otherwise, (if e is a bridge) then (E − e, ρ(ē)) = (E − e, φ). The remaining ingredient is
Lemma 3.3: Let M be a matroid and e be one of its elements then

(E − e,Bases(M• e)) = (E − e, η(Bases(M) − e)).

Proof:
We show that Bases(M • e) = η(Bases(M) − e). The statement follows easily if e is a loop. So,

assume that e is a not a loop. If P ∈ Bases(M•e) then P +e ∈ Bases(M) and hence P ∈ Bases(M)−e.
Moreover, there is no element in Bases(M) − e that is contained in P , so P ∈ η(Bases(M) − e).

Now, assume that P ∈ η(Bases(M) − e). Two possibilities arise: (1) P + e is a basis of M and (2)
P is a basis of M and e /∈ P . In the first case, P ∈ Bases(M • e) follows by definition. The second
case leads to a contradiction. To see this, note that for some element x in P the set P + e − x is a basis
of M, this implies that P − x ∈ Bases(M) − e. But P − x ⊂ P , contradicting the assumption that
P ∈ η(Bases(M) − e).

Barlow’s result then implies:
Lemma 3.4: Let M be a matroid and e be one of its elements then

sdom(M) = sdom(M• e) − sdomM(M− e) (5)

where sdomM(M− e) = sdom(E − e,Basis(M)) (= sdom(M− e) if e is not a bridge).
Equation 5 opens the way to prove that the domination function obeys the deletion-contraction rule (the

proof follows [SC83] very closely):
Lemma 3.5: Let M be a matroid on n elements. Then for any element e

1. sdom(M) = (−1)n−r(M)DOM(M) and

2. if e is a not a loop then DOM(M) = DOM(M• e) + DOMM(M− e).

Proof:

Final version appears in Discrete Mathematics 114 (1993) 10

1. By induction on |E| = n. The statement follows easily for any matroid on a single element. Assume
(1) holds for all matroids with fewer than n elements and let M be a matroid with n elements. If
r(M) = 0 then sdom(M) = 0 and the statement follows easily. Otherwise, let e be a non-loop
element in M. By equation 5 and the induction hypothesis one may write

sdom(M) =

(−1)n−1−r(M•e)DOM(M• e) − (−1)n−1−r(M−e)DOMM(M− e) (6)

If e is not a bridge then r(M•e) =r(M)−1 and r(M−e) =r(M). the right hand side of equation 6
simplifies to

= (−1)n−r(M)DOM(M• e) − (−1)n−1−r(M)DOMM(M− e).

= (−1)n−r(M)(DOM(M• e) + DOMM(M− e)) (7)

If e is a bridge then r(M• e) =r(M) − 1, sdom(M • e) =sdom(M) and sdomM(M − e) = 0.
Again equation 7 holds. Taking the absolute value of both sides yields

DOM(M) = DOM(M• e) + DOMM(M− e)

and statement (1) follows.

2. Statement (2) follows easily from the proof of part (1).

A second immediate consequence of equation 5 is that the value of the domination function is preserved
under parallel reductions since for any two parallel elements x and y, sdom(M• x) = 0. Thus, the number
of leaves of a tree Tp(M) resulting from a P -factoring algorithm is exactly DOM(M). In this latter case,
a Tp(M) tree obtained by choosing at each step a pivot that results in two substructures having nonzero
dominations has the minimum possible total number of nodes. Any element whose contraction does not
create a loop satisfies this requirement.

On the other hand, domination is not in general invariant under series reductions. Satyanarayana and
Chang, however, identified a special case of series reductions in which a similar statement on Ts(M) holds.
The special case arises in computing the K-terminal reliability of a graph G having a vertex v of degree
2, v /∈ K , incident to two edges e and e′. Here, DOM(G − e) = 0 since e′ becomes irrelevant. Hence,
domination is preserved under this type of reductions. Naturally, the same argument does not hold for any
vertex v, v ∈ K , of degree 2. An analogous situation does not seem to apply for the TRel or the PRel

problems.

4 Packing Bases and Circuits

One main strategy for obtaining bounds is to attempt to bound each coefficient of the independence polyno-
mial. The most powerful current method known that applies to matroids is due to Ball and Provan [BP82].
However, one of the primary required pieces of information in the upper bound is the size of a minimum
cardinality circuit. In view of Theorem 2.1, then, we do not expect to find useful upper bounds here; this
contrasts with network reliability where the Ball-Provan bounds are among the best efficiently computable
bounds currently available. For lower bounds, application of the Ball-Provan method requires knowledge of

Final version appears in Discrete Mathematics 114 (1993) 11

the number of bases. At present, no efficient algorithm is known for counting bases in transversal matroids.
Hence we resort to other techniques.

Let M = (X, I) be a matroid. A packing of M by bases (circuits) is a collection of disjoint bases
(resp., circuits) of M. Suppose that X1, . . . , Xs is a packing of M with bases. If any basis operates, the
overall state must be operational; since the bases chosen are disjoint, they operate independently. Hence we
have that

SRel(M, p̃) ≥ 1 −
s

∏

i=1

1 −
∏

x∈Xi

px

 .

The above inequality has been derived and used for graphic matroids in [Po70]; see [Co87] for some
generalizations to other reliability problems on graphs. Any packing by bases leads to a lower bound on
the independence probability; close inspection shows that a better bound is obtained by taking more bases.
Using Edmonds’s matroid partition algorithm [Ed65], we can pack with the maximum number of bases
efficiently. Thus for any matroid reliability problem, we can obtain an efficient lower bound. Remark that
lower bounds on span probabilities lead to lower bounds on independence probabilities in the dual, and vice
versa. One very important remark here is that the method can be applied even when operation probabilities
are allowed to be different.

A similar strategy can be applied to packings by circuits. Let C1, . . . , Ct be a packing by circuits. If all
elements in any one of the circuits are chosen, the set cannot be independent. We have

IRel(M, p̃) ≤
t

∏

i=1

1 −
∏

x∈Ci

px

 .

Other types of upper bounds in this direction appear in [Lo74] (see also [Co87]). Once again, any packing by
circuits gives an upper bound that is computable efficiently. However, finding packings with the most circuits
is apparently much more difficult. For graphic matroids, this is the problem of edge-partition into cycles, and
is known to be NP-hard [Ho81]. For cographic matroids, the problem is edge-packing by network cutsets,
and is also known to be NP-hard [Co88]. No previous research on this problem for transversal matroids has
been done; however, the problem is hard here as well:
Theorem 4.1: Deciding whether a transversal matroid (presented as a bipartite graph) can be packed with
at least m circuits is NP-hard.
Proof:

Holyer [Ho81] proves that, for any fixed k ≥ 3, determining whether a graph can be edge-partitioned
into k-cliques is NP-hard. Colbourn [Co84] used Holyer’s method to show that determining whether a
tripartite graph has an edge partition into triangles is NP-hard. Suppose that such a graph has tripartition
X ∪Y ∪Z , and edge set E = EXY ∪EXZ ∪EY Z (with the obvious interpretation). Form a bipartite graph
B with one class being X ∪ Y ∪ Z , and the other containing E together with E ′

XY , a second copy of the
edges in EXY . A vertex and an “edge”, primed or not, are adjacent in B if they are incident in the original
graph. Let TM(B) be defined on the set E ∪ E ′

XY .
The minimum size of a circuit in TM(B) is four and TM(B) can be packed with at least |E∪E ′

XY |/4

disjoint circuits if and only if every circuit is of the form {{x, y}, {x, z}, {y, z}, {x, y} ′}. Now, such a
packing of TM(B) with circuits is precisely an edge-partition of the original graph into triangles.

In all of these cases, one can still obtain useful bounds by adopting a greedy strategy to construct a
packing by circuits; however, the complexity results limit the accuracy one can hope to achieve by such
heuristics.

Final version appears in Discrete Mathematics 114 (1993) 12

5 Concluding Remarks

In this first study of reliability in assignment problems, we have found a number of striking similarities
with the network reliability problem. Largely, these are a consequence of the matroid structures of the
problems, and hence we have highlighted that structure here. As a direct consequence, we have been able
to devise a factoring algorithm with series and parallel reductions. We recall that the class of matroids in
which each member can be constructed using series and parallel extensions have been studied in [Br71]
as a generalization of the well known class of series-parallel graphs; [Ox86] mentions some interesting
relations along this line. We have also encountered some important differences. The biggest difference is
the difficulty of determining the size and number of minimum circuits.

Some other reliability problems that can be analyzed in a similar way are now in order. Consider the
problem of scheduling a set of tasks on a single processor system. Each task is assumed to require one time
unit and has a release time ri and a deadline time di, di > ri. Each task is available to the processor with a
given probability. The situation can be formulated on a bipartite graph having an edge between a vertex τ i

representing the ith time unit of the processor and a task ti if ri ≤ τi ≤ di.
Here, the TRel problem corresponds to computing the probability of finishing the maximum possible

number of tasks before the deadlines. Equivalently, it is the probability of using the maximum number
of time slots, and hence keeping the processor as busy as possible. Similarly, PRel corresponds to the
probability that each available task can be completed on time.

Second, we observe that our assignment problem can be extended to model a situation where proces-
sors require different classes of computational resources (R1, R2, . . . , Rk) to operate. Such resources may
correspond for example to the availability of adequate space in the hierarchy of the memory system. A
computing element can only produce a useful work if it is operational and is matched to a job and a compu-
tational resource in each of the k classes. It then follows that a set of processors is active if each processor
can be matched in each of the bipartite graphs (C, J), (C,R1), . . ., (C,Rk). The resulting structure is the
intersection of k + 1 transversal matroids; this case warrants more research.

Despite the inherent complexity of assigning tasks to unreliable processors, we have been able to develop
efficiently computable bounding methods for task and processor reliability. We expect that the development
of improvements on the methods here would be fruitful, both in theoretical questions on transversal matroids,
and practical concerns with task-processor assignment.

Acknowledgements

We thank Bill Pulleyblank for many stimulating discussions on this research, Janelle Harms for pointing
out the construction in Lemma 2.4, and the referees for many helpful comments. Research of the authors is
supported by NSERC Canada under grant number A0579 (CJC) and OGP36899 (ESE).

References

[AB84] A. Agrawal and R.E. Barlow, “A Survey of Network Reliability and Domination Theory”, Oper-
ations Research 32, 3 (1984) 478-492.

[AS84] A. Agrawal and A. Satyanarayana, “An O(|E|) Time Algorithm for Computing the Reliability of
a Class of Directed Networks”, Operations Research 32, 3 (1984) 493-515.

Final version appears in Discrete Mathematics 114 (1993) 13

[BP82] M.O. Ball and J.S. Provan, “Bounds on the reliability polynomial for shellable independence
systems”, SIAM J. Alg. Disc. Meth. 3 (1982) 166-181.

[Ba82] R.E. Barlow, “Set Theoretic Signed Domination for Coherent Structures”, Report ORC 82-1,
Univ. California Berkeley, 1982.

[Bi75] R.E. Bixby, “The minimum number of edges and vertices in a graph with edge-connectivity n and
m n-bonds”, Networks 5 (1975) 253-298.

[Br87] R.A. Brualdi, “Transversal matroids”, in: Combinatorial Geometries (N. White, editor) Cam-
bridge University Press, Cambridge (1987) 72-97.

[Br71] T. Brylawski, “A Combinatorial Model for Series-Parallel Networks”, Trans. of the American
Math. Soc. 154 (1971) 1-22.

[Co84] C.J. Colbourn, “The complexity of completing partial latin squares”, Discrete Applied Math. 8
(1984) 25-30.

[Co87] C.J. Colbourn, The Combinatorics of Network Reliability, Oxford University Press, 1987.

[Co88] C.J. Colbourn, “Edge-packings of graphs and network reliability”, Discrete Math. 72 (1988) 49-
61.

[CP89] C.J. Colbourn and W.R. Pulleyblank, “Matroid Steiner problems, the Tutte polynomial and net-
work reliability”, J. Combinatorial Theory (B) 41 (1989) 20-31.

[DKL76] E.A. Dinic, A.V. Karzanov, M.V. Lomonosov, “The Minimum Cuts’ Structure of a Graph”, in:
Issledovaniya po diskretnoi optimizaccii, Moscow, Nauka (1976) 290-306 (Russian).

[Ed65] J. Edmonds, “Minimum partition of a matroid into independent subsets”, J. Res. NBS B68 (1965)
67-72.

[Ho81] I. Holyer, “The NP-completeness of some edge-partition problems”, SIAM J. Computing 10
(1981) 713-717.

[HK73] J. Hopcroft and R.M. Karp, “An n2.5 Algorithm for Maximum Matching in Bipartite Graphs”,
SIAM Journal on Computing 2 (1973) 223-231.

[IP73] A.W. Ingleton and M.J. Piff, “Gammoids and Transversal Matroids”, J. of Combinatorial Theory
(B) 15 (1973) 51-68.

[Lo74] M.V. Lomonosov, “Bernoulli Scheme with Closure”, Problemy Peredachi Informacii, 10, 1
(1974) 91-101 (Russian).

[LP72] M.V. Lomonosov and V.P. Polesskii, “Lower bounds of network reliability”, Problems of Infor-
mation Transmission 8 (1972) 118-123.

[LP86] L. Lovász and M.D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.

[Mc72] C. McDiarmid, “Strict Gammoids and Rank Functions”, Bull. London Math. Soc. 4 (1972) 196-
198.

Final version appears in Discrete Mathematics 114 (1993) 14

[Ox86] J. Oxley, “Graphs and Series-Parallel Networks”, in Theory of Matroids, ed. by White N., Cam-
bridge University Press, 1986.

[Po70] V.P. Polesskii, “On a Method for Constructing Reliable Communication Networks”, in Discrete
Automata and Communication Networks, Moscow, Nauka, (1970) 13-19. (Russian).

[PB83] J.S. Provan and M.O. Ball, “The complexity of counting cuts and of computing the probability
that a graph is connected”, SIAM J. Computing 12 (1983) 777-788.

[RC87] A. Ramanathan and C.J. Colbourn, “Counting almost minimum cutsets with reliability applica-
tions”, Math. Programming 39 (1987) 253-261.

[SC83] A. Satyanarayana and M.K. Chang, “Network Reliability and the Factoring Theorem”, Networks
13 (1983) 107-20.

[Sc79] A. Schrijver “Matroids and Linking Systems”, J. of Combinatorial Theory (B) 26 (1979) 349-369.

[We76] D.J.A. Welsh, Matroid Theory, Academic Press, London, 1976.

[Wo85] R.K. Wood, “A Factoring Algorithm Using Polygon-to-Chain Reductions for Computing K-
Terminal Network Reliability”, Networks 15 (1985) 173-190.

