
Partitioning the Edges of a Planar Graph
into Two Partial K-Trees

Ehab S. Elmallah and Charles J. Colbourn

Department of Computing Science
University of Alberta,

Edmonton, Canada
and

Department of Combinatorics and Optimization
University of Waterloo,

Waterloo, Canada.

ABSTRACT
In this paper we prove two results on partitioning the edges of a planar graph into two

partial k-trees, for fixed values of k. Interest in this class of partitioning problems arises since
many intractable graph and network problems admit polynomial time solutions on k-trees and
their subgraphs (partial k-trees).

The first result shows that every planar graph is a union of two partial 3-trees. Furthermore,
such a partitioning can be computed in linear time. Second, we show a recursive procedure to
construct an infinite family of planar graphs in which every member does not admit a partitioning
into a partial 1-tree (forest) and a partial 2-tree (series-parallel graph).

1. Introduction

The classes of k-trees, k ≥ 1, have been introduced in [BP71] as generalizations of trees as
follows. The complete graph on k vertices, denoted Kk , is a k − tree. Furthermore, if G is a
k − tree then so is the graph obtained from G by adjoining a new vertex, and making it adjacent to
ev ery vertex in a complete subgraph on k vertices of G. Hence, trees are 1-trees. Moreover, k-
trees are all triangulated graphs (e.g. see [Go80]).

A partial k-tree is a subgraph of a k-tree. Examples of well known families of such graphs
include: outerplanar graphs (⊂ partial 2-trees), series − parallel graphs (partial 2-trees) (e.g.
[WC83]), Halin graphs (⊂ partial 3-trees) (e.g. [EC86]) and ∆ − Y − reducible graphs (⊂ partial
4-trees) [EC85]. Note that, for a given k, the class of partial k-trees is exactly the graphs of tree-
width at most k [RS86].

The class of planar graphs is not contained in the class of partial k-trees for any fixed k. In
particular we note that, for any giv en k, a 2-dimensional (k + i × k + i) grid graph Hk+i , i ≥ 1, is
not a partial k-tree. The above remark follows since every k-tree G on n vertices, n > k, contains
a complete subgraph on k vertices whose removal splits G into components, each of size at most
n/2 [GRE84]. Hence, if G′ is a partial k-tree then it contains a subset of k vertices whose removal
splits G′ in the above way. Howev er, no subset of k vertices in Hk+i satisfies this latter condition.
It then follows that Hk+i is not a partial k-tree.
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Our interest in partitioning the edges of a planar graph into partial k-trees arises in the
following ways. First, we recall that a number of problems have been shown to be NP-complete
on planar graphs (e.g. see [GJ79]). Examples of such problems include: determining the
chromatic number of a planar graph, finding a minimum cost Steiner tree in planar networks and
determining whether a planar graph is Hamiltonian. In addition, many other problems remain
open and challenging on planar graphs.

On the other hand, the classes of partial k-trees (for k = 1, 2, . . .) form a hierarchy of graphs
having unified paradigms for solving a variety of hard problems in polynomial times (e.g. see
[AP84b], [Jo85] and [RS86] and the references therein). Hence, one may combine existing
polynomial time algorithms for partial k-trees with suitable decomposition schemes for planar
graphs to devise approximate algorithms for planar graphs.

The second motivation arises from a number of existing results and open problems
mentioned in the context of studying other graph theoretic concepts. In particular, recall that the
arboricity of a graph G is the minimum number of spanning forests into which E(G) can be
decomposed. Similarly, the outerthickness of G is the minimum number of outerplanar graphs
into which E(G) can be decomposed.

The first result of interest is due to [Tu61] and independently [Na61] on the arboricity of a
graph G. A generalization of that result appears in [Ed65]. The result proves that the arboricity

of G equals max 

(|E(G′)| )/(|V (G′)| −1)


, where the maximum is taken over all induced subgraphs

G′ of G. This latter result together with the inequality |E(G′)| ≤ 3|V (G′)| − 6 for any planar graph
G′ implies that 3 spanning forests suffice to cover the edges of any planar graph. Hence, it
becomes natural to investigate cases where two partial k-trees suffice to cover the edges of a
planar graph.

It is then interesting to note that the outerthickness of a graph G determines an upper bound
on the minimum number of partial 2-trees necessary to cover E(G). This latter observation
follows since every outerplanar graph is a partial 2-tree. The problem of determining the
outerthickness of planar graphs has been suggested, among other problems, in the work of
Chartrand et al. [CGH71] on graph properties unifying various graph theoretic concepts. In this
latter paper, the following conjecture has been mentioned.
Conjecture [CGH71]: The Outerthickness of any planar graph is at most 2.

In fact, a second result of Tutte on the Hamiltonicity of 4-connected planar graphs [Tu56]
leads to a rather interesting consequence: the outerthickness of a 4-connected planar graph equals
2. To explain this, fix an embedding of any giv en 4-connected planar graph G in the plane.
Denote one of its Hamiltonian cycles by C. Now, C splits the plane into two regions which we
denote by Rin and Rout . Furthermore, denote the set of chords that lies in Rin (or Rout) by Ein

(respectively, Eout). The result now follows since each of the following two graphs
Gin = (V (G), E(C)∪ Ein) and Gout = (V (G), E(C)∪ Eout) is an outerplanar graph. In addition,
any edge of E(G) belongs to at least one such subgraph. The above observation implies that
ev ery 4-connected planar graph is a union of two partial 2-trees. The work presented in this paper
does not resolve the above conjecture; however, it narrows down two of its sides further.

The rest of this paper is organized as follows. Section 2 introduces some basic definitions
required throughout this paper. In sections 3 we prove that every planar graph is coverable by two
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partial 3-trees of particular structure. Moreover, such a covering can be computed in linear time
using a linear time planarity testing algorithm such as the one developed in [HT74]. An overview
of the partitioning algorithm is presented in section 4. Thirdly, we show in section 5 that the
above result can not be further strengthened to a covering by a forest (partial 1-tree) and a partial
2-tree. The proof shows an infinite family of planar graphs for which such a covering does not
exist. Finally, we draw some conclusions in section 6.

2. Definitions and Notations

Throughout this paper a graph G = (V (G), E(G)) is considered to be finite and loopless.
The degree of a vertex v in a graph G is denoted degG(v), its set of neighbours is NG(v) and its set
of incident edges is ΓG(v). In addition, if X⊆V (G) then NG(X) = (

v∈X
∪ NG(v)) \X . The minimum

degree in G is denoted δG . The subgraph induced by a subset E ′ of edges (V ′ of vertices) is
denoted G[E ′] (respectively, G[V ′]). A k − clique is a complete graph on k vertices. Subscripts
of a variable and qualifiers of a certain graph are at times omitted when no confusion can arise.

A k − leaf of a k-tree G is a vertex whose neighbours induce a k-clique. The following
properties are easy consequences of the above definition (for other properties see also [Go80] and
[AP84a]):
Lemma 1.

1) If G is a k-tree on n vertices and m edges then m = kn − k(k +1) /2.

2) Every k-tree that is not a complete graph has at least two nonadjacent k-leaves.

The classes of partial k-trees, for k = 1, 2, . . ., form a hierarchy of graphs since any
(k − i)-tree, k > i ≥ 1, is a partial k-tree. A leaf of a partial k-tree G is a vertex x, degG(x) ≤ k,
which is a k-leaf in some embedding of G in a k-tree G′, G⊆G′. By Lemma 1 (2), every partial
k-tree that is not a complete graph has at least two nonadjacent leaves.

A complete elimination of a vertex v from G is the elimination of v and its incident edges
and the addition of the necessary edges to complete N (v) to a complete subgraph; if degG(v) ≤ k
then the graph obtained by eliminating v in this way is denoted Pk(G, v). The composition of two
complete eliminations Pk(Pk(G, v1), v2) is denoted Pk(G, < v1, v2 >). A k-complete elimination
sequence (k-CES) of a graph G is an ordering of V (G) such that degG(v1) ≤ k and for any i,
2 ≤ i < n, the degree of vi in Pk(G, < v1, . . . , vi−1 >) is at most k. Thus, a graph is a partial k-tree if
and only if it has a k − CES.

The following results can be easily derived from the above definitions; for completeness we
sketch a proof.
Lemma 2.

i) Given a k-tree G and a complete subgraph H of G, H=∼∼Kk , there exists an ordering S of
V \V (H) such that Pk(G, S) = H.

ii) Let G1 and G2 be two k-trees. Let H1 and H2 be two k-cliques in G1 and G2, respectively.
Then the graph G obtained from G1 and G2 by identifying V (H1) and V (H2) pairwise is a k-
tree.
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Proof. To show (i) observe that if G=/∼∼H then, by Lemma 1 (2), G has at least one k-leaf x such
that Γ(x)∩E(H) = ∅. Hence, the required sequence S can always be constructed. To show (ii)
let Si , i = 1, 2, be an ordering of V (Gi)\V (Hi) such that Pk(Gi, Si) = Hi . Such sequences exist by
part (i). Then, S =< S1, S2 > is a prefix of a k-complete elimination sequence that reduces G to
H1 (or H2). Hence, G is a k-tree.
Similarly, we hav e the following result for partial k-trees:
Corollary 1.

i) Given a partial k-tree G and a complete subgraph H of G on at most k vertices, there exists
an ordering S of V \V (H) such that Pk(G, S) = H.

ii) Let G1 and G2 be two partial k-trees. Let H1 and H2 be two complete subgraphs on at most
k vertices in G1 and G2, respectively. Then the graph G obtained from G1 and G2 by
identifying V (H1) and V (H2) pairwise is a partial k-tree.

We say that G is a partial (k1, k2)-tree if the edges of G can be covered by two subgraphs:
one is a partial k1-tree and the other is a partial k2-tree.

3. Covering Planar Graphs by Two Partial 3-Trees

In this section we show that every planar graph is a partial (3,3)-tree. The strategy is to
partition G into a number of partial 3-trees, each has a particular structure, called an IO-graph
hereafter. A partitioning of E(G) into two partial 3-trees is then formed by taking a disjoint union
of a family of the obtained IO-subgraphs. Specifically, we hav e:
Definition 1. A 2-connected planar graph H is an IO-graph if H is an outerplanar graph or H
has an embedding in the plane such that:
(1) the removal of some independent subset of vertices, say V I(H), of V (H) leaves a 2-connected

outerplanar subgraph H ′ and

(2) the exterior face of H ′, ext(H ′), is the same as the exterior face of H, ext(H), relative to that
particular embedding.

Accordingly, if C is the unique Hamilton cycle of H ′ then each edge of H is either an edge
of C, a chord of C or it has one vertex in V I(H) and the other in VC(H) (for example, see Figure
1).

The following lemma is an easy consequence of the above definition, and for completeness we
include a proof.
Lemma 3. Every IO-graph H is a partial 3-tree.
Proof. The lemma follows easily if H is an outerplanar graph. So, assume that V I(H) ≠ ∅. The
proof proceeds by induction on |V (H)|. The case when H⊆K4 follows immediately. Suppose it
holds inductively for all IO-graphs having less than n vertices, n ≥ 3. Let H be an IO-graph on
exactly n vertices. By definition of IO-graphs δ H ≥ 2. If H has a vertex v of degree 2 then
P2(H , v) is an IO-graph. Otherwise, δ H ≥ 3. In this case, one may verify that H has at least
one vertex, say v in V I(H) such that v has at least 3 consecutive neighbours, say (u1, u2, u3),
occurring on the Hamilton cycle of H \V I(H) in that order, where degH(u2) = 3. Again, the
graph P3(H , u2) is an IO-graph. In each of the above cases the reduced graph has fewer than n
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Figure 1. An IO-graph.

vertices and the lemma follows by induction.
We note that planar partial 3-trees has been recently characterized using 2 forbidden minors

[EC88]. A more general result appears in [APC86] where the class of partial 3-trees has been
characterized using four forbidden minors. Using such characterization results one may derive
Lemma 3 easily.
Theorem 1. Let G be a planar graph. Then E(G) can be partitioned into E1 and E2 such that
G[E1] and G[E2] are partial 3-trees consisting of disjoint unions of trees and IO-graphs.

Proof. Fix an embedding of G in the plane. Partition V (G) into levels recursively as follows.
First, let V0 be the set of vertices lying on the exterior face of G, ext(G). Subsequently, the ith
subset Vi in the partition exists if V \{V0, . . . , Vi−1} ≠ ∅; it corresponds to the set of vertices lying
on the exterior face of the possibly disconnected graph Gi = G\(V0∪ . . . ∪Vi−1). Denote by l the

index of the last subset obtained in that way. Thus, V (G) =
l

i=0
∪Vi .

If V0 = V (G) then let H0 = G. Otherwise, l > 0. Let Hi , l > i ≥ 0, be the subgraph of G
whose set of edges E(Hi) equals {(x, y)|x ∈Vi and y∈Vi or Vi+1}. Also, if l > 0 set E(Hl) =
{(x, y)|x, y ∈Vl}. Each component of Hi that does not contain a cut-vertex is either an edge or
an IO-graph. By Lemma 3, each such 2-connected component is a partial 3-tree. By Corollary 1
(2) each Hi is a partial 3-tree. Note that V (Hi)∩V (Hi+2) = ∅ for 0 ≤ i ≤ l − 2. Now, set
E1 =

0≤i≤l
∪ E(Hi), i is even, and E2 =

0≤i≤l
∪ E(Hi), i is odd. The theorem then follows since each

of the two subgraphs induced by Ei , i = 1, 2, is a union of a number of vertex-disjoint partial
3-trees.

4. The Partitioning Algorithm

In this section we use the constructive proof of Theorem 1 to devise a linear time algorithm
for computing such a partitioning. We use a planar adjacency list A[1 . . . n] (n = |V (G)|) which
represents some embedding of G in the plane. Each location A[i] contains a pointer to a doubly
linked circular list containing NG(vi). For simplicity, we associate the list pointed at by the
variable A[i] with the name A[i]. More importantly, the vertices of NG(vi) appear in the list
A[i] in the same order in which they appear around v according to a particular embedding of G.
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That is, for a neighbour v j of vi in the list A[i], the ‘‘next’’ pointer points to a vertex v j+1 such
that the edge (vi, v j+1) appears after (vi, v j) in a counter-clockwise scan of the edges incident to
vi according to that particular embedding of G. Conversely, the ‘‘previous’’ pointer is associated
with the clockwise direction (see for example Figure 2). This representation can be constructed
in linear time by the Hopcroft-Tarjan planarity algorithm [HT74].

1
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1011
12
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16

12

3 16 1

2 3 10

2A[1]

A[2]

A[16]

Figure 2. A planar graph and one of its planar adjacency list representations.

Furthermore, we assume that the two occurrences of an edge, say (v0, v1), in the two lists
A[0] and A[1 ] are linked to each other. Using this link we can jump from one list to another in
constant time. An edge (v0, v1) is said to be traversed in the direction v0 → v1 if the traversal is
accomplished by visiting the cell containing v1 in the list of A[0] in the data structure.

Now, we are ready to describe a procedure, called IFB, which identifies an edge-boundary
of a face f containing an edge (v0, v1) in O(|E( f )| ) time.
Procedure IFB (v0, v1):

Trav erse the edge (v0, v1) in the direction v0 → v1. Jump to the list A[1 ] and let v2 be the
next vertex to v0 on the list A[1 ]. Traverse the edge (v1, v2) in the direction v1 → v2.
Repeat the above steps until finally the edge (v0, v1) is traversed again in the direction
v0 → v1.

End of IFB.

Using the above procedure we next show how to classify V (G) into levels V0, V1, . . . , Vl in
linear time, taking any arbitrary face of G as being the outer face.
Lemma 4. Let G be a planar connected graph on n vertices. Then V (G) can be partitioned into
levels as described above in O(n) time.

Proof. Use the Hopcroft-Tarjan [HT74] algorithm to compute a planar adjacency list of G. In
addition, use the array Level[1 . . . n] to record the level numbers of the vertices identified so far.
Pick an arbitrary edge (v0,v1) of G and use the IFB procedure to identify the set of vertices V0
defining the boundary of a face f containing that edge. Now, f is taken as the outer face of G.
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Suppose that the subset Vi , 0 ≤ i < l, has been computed so far. We now show how to
identify Vi+1. First, observe that V0∪ . . . ∪Vi can be deleted from the planar adjacency list
A[1 . . . n] to yield another planar adjacency list Ai+1[1 . . . n] for the subgraph
Gi+1 = G\V0∪ . . . ∪Vi . Hence, the IFB procedure can be applied to Ai+1[1 . . . n].

Second, observe that any vertex x, x ∈Vi+1, can be reached from a vertex x′ (possibly
x′ = x), x′ ∈NG(Vi)∩Vi+1, by a path consisting of vertices of Vi+1. The above two observations
together with the correctness of procedure IFB are the basic ingredients to establish the
correctness of the the following steps to compute Vi+1:

1) Set all vertices in Vi to be unvisited .
2) Repeat until every vertex in Vi has been visited .

2.1) Let vl be the next unvisited vertex in Vi .
2.2) Jump to Ai[l]. Find the next vertex vl+1 to vl on the list Ai[l] whose level number

has not been determined yet. By the definition of Vi+1 we know that vl+1 ∈Vi+1.
Assign level i +1 to vl+1. If no such a vertex exists go to statement 2.5.

2.3) Otherwise, jump to Ai[l +1]. Find a vertex vl+2 next to vl on that list (thus, vl , vl+1
and vl+2 share a face of G) whose level number has not been determined yet. If no
such a vertex exists go to statement 2.5.

2.4) Otherwise, by the properties of Ai[1 . . . n], vl+2 ∈Vi+1. Call IFB(vl+1, vl+2) and assign
level i +1 to all vertices visited by the IFB procedure.

2.5) Flag the vertex vl as being visited.

2.6) End.
One may verify that the time required to identify Vi+1 is proportional to

x ∈Vi

Σ deg(x) + |Vi+1|.

Hence, computing the level numbers of V (G) requires time proportional to 2|E(G)| + n. That is,
the overall computation can be done in O(n) time.

Having computed the level numbers of V (G) in the array Level[1 . . . n], one can assign
each edge of G to E1 or E2 in constant time. Hence,
Lemma 5. Let G be an n vertex planar graph. Then a partitioning of E(G) into two partial
3-trees can be computed in O(n) time.

5. Planar Graphs not Coverable by partial 1- and 2-Trees

In this section we show an infinite family of triangulated 3-connected planar graphs each of
which is not a partial (1,2)-tree. The construction is carried recursively using the following
operation. Suppose G and H are two triangulated planar graphs embedded in the plane. Denote
by I(G ← H) the planar graph obtained by inserting a copy of H into every face of G. The
insertion is done by identifying the three vertices lying on the exterior face of H with the three
vertices lying on the face of G in which H is to be inserted. For example, if G is triangulated
planar graph embedded in the plane then I (G ← K4) is obtained by adding a new vertex x f to
each face f of G and adjoining it to each of the three vertices in V ( f ). Now we are ready to
prove the following theorem:
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Theorem 2. There exists an infinite family of 3-connected triangulated planar graphs that are
not partial (1,2)-trees.

Proof. Let G1 be a 5-connected triangulated planar graph. Thus, |V (G1)| ≥ 12. Fix an
embedding of G1 in the plane. Let G2 = I(G1 ← K4), G3 = I(G2 ← K4), G4 = I(G3 ← P6),
where P6 is the platonic graph on six vertices, illustrated in Figure 3 (b). In addition, if A is a
triangle of G1 (a face of G1) then denote the subgraph of Gi , 1 ≤ i ≤ 4, embedded inside A and
including the edges of A by Ai . That is, A1=∼∼ A, A2=∼∼ I(A1 ← K4), A3=∼∼ I(A2 ← K4) and
A4=∼∼ I(A3 ← P6).

Our objective is to show that G4 is not a partial (1,2)-tree. An infinite family of such graphs
can then be constructed from the infinite set of 5-connected planar triangulated graphs. To derive
a contradiction, suppose that G4 can be covered by a partial 2-tree S4 and a partial 1-tree T4.
Consequently, any graph Gi , 1 ≤ i ≤ 3, is covered by the partial 2-tree Si = (V (Gi),
E(Gi)∩E(S4)) and the partial 1-tree Ti = (V (Gi), E(Gi)∩E(T4)). Let us denote the restriction
of Si , 1 ≤ i ≤ 4, to the subgraph Ai contained inside a triangle A of G1 by Si|Ai . That is,
Si|Ai = (V (Ai), E(Ai)∩E(Si)).

Now, each Gi , 1 ≤ i ≤ 4, is a triangulated planar graph (hence, |E(Gi)| = 3|V (Gi)| − 6 ) and
consequently 2|V (Gi)| − 5 ≤ |E(Si)| ≤ 2|V (Gi)| − 3 and |V (Gi)| − 3 ≤ |E(Ti)| ≤ |V (Gi)| −1.
Hence, we may need to add at most two edges to complete Si , 1 ≤ i ≤ 4, to a 2-tree. Denote such
a possible set of edges by M(Si). Note that M(Si) is not necessarily unique. We now prove the
following claims in order.
1) S1 contains at least 5 triangular faces of G1.

For convenience, we call a triangle A of G1 defective in Gi , i = 2 or 3, if the restriction
Si|Ai is a partial 2-tree but not a 2-tree. In contrast, it is good if it is not defective in G2 and
G3.

2) G1 has at least one good triangle.
3) If A is a good triangle then either the restriction S4|A4 contains a homeomorph from K4 or

T4|A4 contains a cycle.
The theorem then follows since claim (3) implies that either S4 is not a partial 2-tree or T4 is not
a forest, contradicting the assumption.
Proof of claim (1). Consider a possible set M(S1). If |M(S1)| = 0 then S1 is a 2-tree having
|V (G1)| − 2 triangles (≥ 10) and the claim holds. Otherwise, 1 ≤ |M(S1)| ≤ 2. Note that M(S1)
may contain edges not in E(G1). Let |V (G1)| − 2 − k, k ≥ 1, denote the number of triangles in
S1. We show that k ≤ 5. If |M(S1)| = 1, say M(S1) = {e}, then e can not be shared between three
or more triangles in S1 + e. Otherwise, S1 would contain a subgraph isomorphic to K2, 3 and
consequently, G1 contains such a subgraph, contradicting the connectivity of G1. Thus,
|M(S1)| = 1 implies k ≤ 2.

The remaining case when |M(S1)| = 2, say M(S1) = {e1, e2} is treated similarly. Here,
there may be at most 2 triangles in the 2-tree S1 + e1 + e2 containing any single edge e1 or e2.
Moreover, there may be at most one triangle in S1 + e1 + e2 containing both e1 and e2. Hence,
k ≤ 5 and the claim follows.
Proof of claim (2). By claim (1), G1 has a set A = {A(l)|l = 1, 2, . . . , 5} of triangles. As
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mentioned above, |M(Si)| ≤ 2 for every i, 1 ≤ i ≤ 4. Now, for each defective triangle A(l)
i , i > 1,

A(l) ∈A, one can add an edge (x, y), x, y ∈V (A(l)
i ), to the set of edges E(Si) such that the

resulting graph is a partial 2-tree. Hence, at most 2 distinct triangles in A are defective in Gi ,
i = 2 or 3. Thus, at most 4 triangles in A are not good and one is good in G1, G2 and G3.
Proof of claim (3). Suppose A is a good triangle. One may verify that at least one of the 9
internal triangular faces of A3, say (a, b, c), has the following two properties (refer to Figure 3
(a)):
(1) one edge of A, say (a, b), belongs to S3. The other two edges belong to T3.
(2) if Pac (or Pbc) is an (a, c)-path (respectively, (b, c)-path) through the vertices of the copy

of P6 inserted in the triangle (a, b, c) (hence, it is vertex-disjoint from V (A3)\{a, b, c})
then the subgraph S3 + Pac (respectively, S3 + Pbc) contains a subgraph homeomorphic
from K4.

T3-edge

S3-edge edges to be classified

a b

c c

b

a

(a) (b)

Figure 3. (a) A good triangle A. (b) A copy of P6 in (a, b, c).

Now, let H be the copy of P6 that has been inserted in the face (a, b, c) of G3 to obtain G4,
as illustrated in Figure 3 (b). Here, (a, b)∈S4 (the thick edge) and (b, c), (a, c)∈T4 (the light
edges). By exhausting a few cases, one may verify that any further partitioning of the remaining
edges of H (the splines) into a partial 2-tree and a partial 1-tree results in a partial 2-tree which
contains an (a, c)-path or a (b, c)-path or a partial 1-tree that forms a cycle with the other edges
of T3. In any case, a contradiction arises. This completes the proof of the theorem.

6. Concluding Remarks

In this paper we showed that planar graphs are all partial (3,3)-trees but not necessarily
partial (1,2)-trees. A linear time algorithm to partition the edges of any giv en planar graph to two
partial 3-trees is presented. The algorithm uses the planarity testing algorithm of [HT74]. A next
interesting step in this direction is to determine whether there exists an efficient algorithm to
compute a partial (1,2)-tree cover of the edges of a given planar graph whenever possible.
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On the other hand, deciding whether planar graphs are partial (2,2)-trees or (2,3)-trees seem
to be more challenging problems. Moreover, resolving any such problem seems to be a
reasonable step to solve the outerthickness conjecture of planar graphs suggested by [CGH71] as
mentioned in the introduction.
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