
Efficient Monte Carlo Counterfactual Regret
Minimization in Games with Many Player Actions

Richard Gibson, Neil Burch, Marc Lanctot, and Duane Szafron
Department of Computing Science, University of Alberta

Edmonton, Alberta, T6G 2E8, Canada
{rggibson | nburch | lanctot | dszafron}@ualberta.ca

Abstract

Counterfactual Regret Minimization (CFR) is a popular, iterative algorithm for
computing strategies in extensive-form games. The Monte Carlo CFR (MCCFR)
variants reduce the per iteration time cost of CFR by traversing a smaller, sampled
portion of the tree. The previous most effective instances of MCCFR can still be
very slow in games with many player actions since they sample every action for a
given player. In this paper, we present a new MCCFR algorithm, Average Strat-
egy Sampling (AS), that samples a subset of the player’s actions according to the
player’s average strategy. Our new algorithm is inspired by a new, tighter bound on
the number of iterations required by CFR to converge to a given solution quality.
In addition, we prove a similar, tighter bound for AS and other popular MCCFR
variants. Finally, we validate our work by demonstrating that AS converges faster
than previous MCCFR algorithms in both no-limit poker and Bluff.

1 Introduction

An extensive-form game is a common formalism used to model sequential decision making prob-
lems containing multiple agents, imperfect information, and chance events. A typical solution con-
cept in games is a Nash equilibrium profile. Counterfactual Regret Minimization (CFR) [12] is an
iterative algorithm that, in 2-player zero-sum extensive-form games, converges to a Nash equilib-
rium. Other techniques for computing Nash equilibria of 2-player zero-sum games include linear
programming [8] and the Excessive Gap Technique [6]. Theoretical results indicate that for a fixed
solution quality, CFR takes a number of iterations at most quadratic in the size of the game [12, The-
orem 4]. Thus, as we consider larger games, more iterations are required to obtain a fixed solution
quality. Nonetheless, CFR’s versatility and memory efficiency make it a popular choice.

Monte Carlo CFR (MCCFR) [9] can be used to reduce the traversal time per iteration by considering
only a sampled portion of the game tree. For example, Chance Sampling (CS) [12] is an instance of
MCCFR that only traverses the portion of the game tree corresponding to a single, sampled sequence
of chance’s actions. However, in games where a player has many possible actions, such as no-limit
poker, iterations of CS are still very time consuming. This is because CS considers all possible
player actions, even if many actions are poor or only factor little into the algorithm’s computation.

Our main contribution in this paper is a new MCCFR algorithm that samples player actions and is
suitable for games involving many player choices. Firstly, we provide tighter theoretical bounds on
the number of iterations required by CFR and previous MCCFR algorithms to reach a fixed solution
quality. Secondly, we use these new bounds to propel our new MCCFR sampling algorithm. By
using a player’s average strategy to sample actions, convergence time is significantly reduced in
large games with many player actions. We prove convergence and show that our new algorithm
approaches equilibrium faster than previous sampling schemes in both no-limit poker and Bluff.

1

2 Background

A finite extensive game contains a game tree with nodes corresponding to histories of actions h 2 H
and edges corresponding to actions a 2 A(h) available to player P (h) 2 N [{c} (where N is the
set of players and c denotes chance). When P (h) = c, �c(h, a) is the (fixed) probability of chance
generating action a at h. Each terminal history z 2 Z has associated utilities ui(z) for each player
i. We define �i = maxz,z02Z ui(z) � ui(z

0
) to be the range of utilities for player i. Non-terminal

histories are partitioned into information sets I 2 Ii representing the different game states that
player i cannot distinguish between. For example, in poker, player i does not see the private cards
dealt to the opponents, and thus all histories differing only in the private cards of the opponents are
in the same information set for player i. The action sets A(h) must be identical for all h 2 I , and we
denote this set by A(I). We define |Ai| = maxI2Ii |A(I)| to be the maximum number of actions
available to player i at any information set. We assume perfect recall that guarantees players always
remember information that was revealed to them and the order in which it was revealed.

A (behavioral) strategy for player i, �i 2 ⌃i, is a function that maps each information set I 2 Ii to
a probability distribution over A(I). A strategy profile is a vector of strategies � = (�1, ...,�|N |) 2
⌃, one for each player. Let ui(�) denote the expected utility for player i, given that all players play
according to �. We let ��i refer to the strategies in � excluding �i. Let ⇡�

(h) be the probability
of history h occurring if all players choose actions according to �. We can decompose ⇡�

(h) =

Q

i2N[{c} ⇡
�
i (h), where ⇡�

i (h) is the contribution to this probability from player i when playing
according to �i (or from chance when i = c). Let ⇡�

�i(h) be the product of all players’ contributions
(including chance) except that of player i. Let ⇡�

(h, h0
) be the probability of history h0 occurring

after h, given h has occurred. Furthermore, for I 2 Ii, the probability of player i playing to reach I
is ⇡�

i (I) = ⇡�
i (h) for any h 2 I , which is well-defined due to perfect recall.

A best response to ��i is a strategy that maximizes player i’s expected payoff against ��i. The
best response value for player i is the value of that strategy, bi(��i) = max�0

i2⌃i
ui(�

0
i,��i). A

strategy profile � is an ✏-Nash equilibrium if no player can unilaterally deviate from � and gain
more than ✏; i.e., ui(�)+ ✏ � bi(��i) for all i 2 N . A game is two-player zero-sum if N = {1, 2}
and u1(z) = �u2(z) for all z 2 Z. In this case, the exploitability of �, e(�) = (b1(�2)+b2(�1))/2,
measures how much � loses to a worst case opponent when players alternate positions. A 0-Nash
equilibrium (or simply a Nash equilibrium) has zero exploitability.

Counterfactual Regret Minimization (CFR) [12] is an iterative algorithm that, for two-player zero
sum games, computes an ✏-Nash equilibrium profile with ✏! 0. CFR has also been shown to work
well in games with more than two players [1, 3]. On each iteration t, the base algorithm, “vanilla”
CFR, traverses the entire game tree once per player, computing the expected utility for player i at
each information set I 2 Ii under the current profile �t, assuming player i plays to reach I . This
expectation is the counterfactual value for player i, vi(I,�) =

P

z2ZI
ui(z)⇡

�
�i(z[I])⇡

�
(z[I], z),

where ZI is the set of terminal histories passing through I and z[I] is that history along z contained
in I . For each action a 2 A(I), these values determine the counterfactual regret at iteration t,

rti(I, a) = vi(I,�
t
(I!a))� vi(I,�

t
),

where �(I!a) is the profile � except that at I , action a is always taken. The regret rti(I, a) measures
how much player i would rather play action a at I than play �t. These regrets are accumulated to
obtain the cumulative counterfactual regret, RT

i (I, a) =

PT
t=1 r

t
i(I, a), and are used to update

the current strategy profile via regret matching [5, 12],

�T+1
(I, a) =

RT,+
i (I, a)

P

b2A(I) R
T,+
i (I, b)

, (1)

where x+
= max{x, 0} and actions are chosen uniformly at random when the denominator is zero.

It is well-known that in a two-player zero-sum game, if both players’ average (external) regret,

RT
i

T
= max

�0
i2⌃i

1

T

T
X

t=1

�

ui(�
0
i,�

t
�i)� ui(�

t
i ,�

t
�i)
�

,

is at most ✏/2, then the average profile �̄T is an ✏-Nash equilibrium. During computation, CFR
stores a cumulative profile sTi (I, a) =

PT
t=1 ⇡

�t

i (I)�t
i(I, a) and outputs the average profile

2

�̄T
i (I, a) = sTi (I, a)/

P

b2A(I) s
T
i (I, b). The original CFR analysis shows that player i’s regret

is bounded by the sum of the positive parts of the cumulative counterfactual regrets RT,+
i (I, a):

Theorem 1 (Zinkevich et al. [12])

RT
i

X

I2I
max

a2A(I)
RT,+

i (I, a).

Regret matching minimizes the average of the cumulative counterfactual regrets, and so player i’s
average regret is also minimized by Theorem 1. For each player i, let Bi be the partition of Ii such
that two information sets I, I 0 are in the same part B 2 Bi if and only if player i’s sequence of
actions leading to I is the same as the sequence of actions leading to I 0. Bi is well-defined due to
perfect recall. Next, define the M -value of the game to player i to be Mi =

P

B2Bi

p

|B|. The
best known bound on player i’s average regret is:

Theorem 2 (Lanctot et al. [9]) When using vanilla CFR, average regret is bounded by

RT
i

T

�iMi

p

|Ai|p
T

.

We prove a tighter bound in Section 3. For large games, CFR’s full game tree traversals can be very
expensive. Alternatively, one can traverse a smaller, sampled portion of the tree on each iteration
using Monte Carlo CFR (MCCFR) [9]. Let Q = {Q1, ..., QK} be a set of subsets, or blocks, of
the terminal histories Z such that the union of Q spans Z. For example, Chance Sampling (CS)
[12] is an instance of MCCFR that partitions Z into blocks such that two histories are in the same
block if and only if no two chance actions differ. On each iteration, a block Qj is sampled with
probability qj , where

PK
k=1 qk = 1. In CS, we generate a block by sampling a single action a at

each history h 2 H with P (h) = c according to its likelihood of occurring, �c(h, a). In general, the
sampled counterfactual value for player i is

ṽi(I,�) =
X

z2ZI\Qj

ui(z)⇡
�
�i(z[I])⇡

�
(z[I], z)/q(z),

where q(z) =

P

k:z2Qk
qk is the probability that z was sampled. For example, in CS, q(z) =

⇡�
c (z). Define the sampled counterfactual regret for action a at I to be r̃ti(I, a) = ṽi(I,�

t
(I!a))�

ṽi(I,�
t
). Strategies are then generated by applying regret matching to ˜RT

i (I, a) =
PT

t=1 r̃
t
i(I, a).

CS has been shown to significantly reduce computing time in poker games [11, Appendix A.5.2].
Other instances of MCCFR include External Sampling (ES) and Outcome Sampling (OS) [9].
ES takes CS one step further by considering only a single action for not only chance, but also for
the opponents, where opponent actions are sampled according to the current profile �t

�i. OS is the
most extreme version of MCCFR that samples a single action at every history, walking just a single
trajectory through the tree on each traversal (Qj = {z}). ES and OS converge to equilibrium faster
than vanilla CFR in a number of different domains [9, Figure 1].

ES and OS yield a probabilistic bound on the average regret, and thus provide a probabilistic guar-
antee that �̄T converges to a Nash equilibrium. Since both algorithms generate blocks by sampling
actions independently, we can decompose q(z) =

Q

i2N[{c} qi(z) so that qi(z) is the probability
contributed to q(z) by sampling player i’s actions.

Theorem 3 (Lanctot et al. [9]) 1 Let X be one of ES or OS (assuming OS also samples opponent
actions according to ��i), let p 2 (0, 1], and let � = minz2Z qi(z) > 0 over all 1 t T . When
using X , with probability 1� p, average regret is bounded by

RT
i

T

Mi +

p

2|Ii||Bi|p
p

!

✓

1

�

◆

�i

p

|Ai|p
T

.

1The bound presented by Lanctot et al. appears slightly different, but the last step of their proof mistakenly
used Mi �

p
|Ii||Bi|, which is actually incorrect. The bound we present here is correct.

3

3 New CFR Bounds

While Zinkevich et al. [12] bound a player’s regret by a sum of cumulative counterfactual re-
grets (Theorem 1), we can actually equate a player’s regret to a weighted sum of counterfac-
tual regrets. For a strategy �i 2 ⌃i and an information set I 2 Ii, define RT

i (I,�i) =

P

a2A(I) �i(I, a)R
T
i (I, a). In addition, let �⇤

i 2 ⌃i be a player i strategy such that
�⇤
i = argmax�0

i2⌃i

PT
t=1 ui(�

0
i,�

t
�i). Note that in a two-player game,

PT
t=1 ui(�

⇤
i ,�

t
�i) =

Tui(�
⇤
i , �̄

T
�i), and thus �⇤

i is a best response to the opponent’s average strategy after T iterations.

Theorem 4
RT

i =

X

I2Ii

⇡�⇤

i (I)RT
i (I,�

⇤
i).

All proofs in this paper are provided in full as supplementary material. Theorem 4 leads to a tighter
bound on the average regret when using CFR. For a strategy �i 2 ⌃i, define the M -value of �i to
be Mi(�i) =

P

B2Bi
⇡�
i (B)

p

|B|, where ⇡�
i (B) = maxI2B ⇡�

i (I). Clearly, Mi(�i) Mi for all
�i 2 ⌃i since ⇡�

i (B) 1. For vanilla CFR, we can simply replace Mi in Theorem 2 with Mi(�
⇤
i):

Theorem 5 When using vanilla CFR, average regret is bounded by

RT
i

T

�iMi(�
⇤
i)
p

|Ai|p
T

.

For MCCFR, we can show a similar improvement to Theorem 3. Our proof includes a bound for CS
that appears to have been omitted in previous work. Details are in the supplementary material.

Theorem 6 Let X be one of CS, ES, or OS (assuming OS samples opponent actions according to
��i), let p 2 (0, 1], and let � = minz2Z qi(z) > 0 over all 1 t T . When using X , with
probability 1� p, average regret is bounded by

RT
i

T

Mi(�
⇤
i) +

p

2|Ii||Bi|p
p

!

✓

1

�

◆

�i

p

|Ai|p
T

.

Theorem 4 states that player i’s regret is equal to the weighted sum of player i’s counterfactual
regrets at each I 2 Ii, where the weights are equal to player i’s probability of reaching I under �⇤

i .
Since our goal is to minimize average regret, this means that we only need to minimize the average
cumulative counterfactual regret at each I 2 Ii that �⇤

i plays to reach. Therefore, when using
MCCFR, we may want to sample more often those information sets that �⇤

i plays to reach, and less
often those information sets that �⇤

i avoids. This inspires our new MCCFR sampling algorithm.

4 Average Strategy Sampling

Leveraging the theory developed in the previous section, we now introduce a new MCCFR sam-
pling algorithm that can minimize average regret at a faster rate than CS, ES, and OS. As we just
described, we want our algorithm to sample more often the information sets that �⇤

i plays to reach.
Unfortunately, we do not have the exact strategy �⇤

i on hand. Recall that in a two-player game, �⇤
i is

a best response to the opponent’s average strategy, �̄T
�i. However, for two-player zero-sum games,

we do know that the average profile �̄T converges to a Nash equilibrium. This means that player i’s
average strategy, �̄T

i , converges to a best response of �̄T
�i. While the average strategy is not an exact

best response, it can be used as a heuristic to guide sampling within MCCFR. Our new sampling al-
gorithm, Average Strategy Sampling (AS), selects actions for player i according to the cumulative
profile and three predefined parameters. AS can be seen as a sampling scheme between OS and ES
where a subset of player i’s actions are sampled at each information set I , as opposed to sampling
one action (OS) or sampling every action (ES). Given the cumulative profile sTi (I, ·) on iteration
T , an exploration parameter ✏ 2 (0, 1], a threshold parameter ⌧ 2 [1,1), and a bonus parameter
� 2 [0,1), each of player i’s actions a 2 A(I) are sampled independently with probability

⇢(I, a) = max

(

✏,
� + ⌧sTi (I, a)

� +

P

b2A(I) s
T
i (I, b)

)

, (2)

4

Algorithm 1 Average Strategy Sampling (Two-player version)
1: Require: Parameters ✏, ⌧,�
2: Initialize regret and cumulative profile: 8I, a : r(I, a) 0, s(I, a) 0

3:
4: WalkTree(history h, player i, sample prob q):
5: if h 2 Z then return ui(h)/q end if
6: if h 2 P (c) then Sample action a ⇠ �c(h, ·), return WalkTree(ha, i, q) end if
7: I Information set containing h , �(I, ·) RegretMatching(r(I, ·))
8: if h /2 P (i) then
9: for a 2 A(I) do s(I, a) s(I, a) + (�(I, a)/q) end for

10: Sample action a ⇠ �(I, ·), return WalkTree(ha, i, q)
11: end if
12: for a 2 A(I) do
13: ⇢ max

n

✏, �+⌧s(I,a)
�+

P
b2A(I) s(I,b)

o

, ṽ(a) 0
14: if Random(0, 1) < ⇢ then ṽ(a) WalkTree(ha, i, q ·min{1, ⇢}) end if
15: end for
16: for a 2 A(I) do r(I, a) r(I, a) + ṽ(a)�

P

a2A(I) �(I, a)ṽ(a) end for
17: return

P

a2A(I) �(I, a)ṽ(a)

or with probability 1 if either ⇢(I, a) > 1 or � +

P

b2A(I) s
T
i (I, b) = 0. As in ES, at opponent and

chance nodes, a single action is sampled on-policy according to the current opponent profile �T
�i

and the fixed chance probabilities �c respectively.

If ⌧ = 1 and � = 0, then ⇢(I, a) is equal to the probability that the average strategy �̄T
i =

sTi (I, a)/
P

b2A(I) s
T
i (I, b) plays a at I , except that each action is sampled with probability at least

✏. For choices greater than 1, ⌧ acts as a threshold so that any action taken with probability at least
1/⌧ by the average strategy is always sampled by AS. Furthermore, �’s purpose is to increase the
rate of exploration during early AS iterations. When � > 0, we effectively add � as a bonus to the
cumulative value sTi (I, a) before normalizing. Since player i’s average strategy �̄T

i is not a good
approximation of �⇤

i for small T , we include � to avoid making ill-informed choices early-on. As
the cumulative profile sTi (I, ·) grows over time, � eventually becomes negligible. In Section 5, we
present a set of values for ✏, ⌧ , and � that work well across all of our test games.

Pseudocode for a two-player version of AS is presented in Algorithm 1. In Algorithm 1, the recursive
function WalkTree considers four different cases. Firstly, if we have reached a terminal node, we
return the utility scaled by 1/q (line 5), where q = qi(z) is the probability of sampling z contributed
from player i’s actions. Secondly, when at a chance node, we sample a single action according to �c

and recurse down that action (line 6). Thirdly, at an opponent’s choice node (lines 8 to 11), we again
sample a single action and recurse, this time according to the opponent’s current strategy obtained
via regret matching (equation (1)). At opponent nodes, we also update the cumulative profile (line
9) for reasons that we describe in a previous paper [2, Algorithm 1]. For games with more than two
players, a second tree walk is required and we omit these details.

The final case in Algorithm 1 handles choice nodes for player i (lines 7 to 17). For each action a, we
compute the probability ⇢ of sampling a and stochastically decide whether to sample a or not, where
Random(0,1) returns a random real number in [0, 1). If we do sample a, then we recurse to obtain
the sampled counterfactual value ṽ(a) = ṽi(I,�

t
(I!a)) (line 14). Finally, we update the regrets at I

(line 16) and return the sampled counterfactual value at I ,
P

a2A(I) �(I, a)ṽ(a) = ṽi(I,�
t
).

Repeatedly running WalkTree(;, i, 1) 8i 2 N provides a probabilistic guarantee that all players’
average regret will be minimized. In the supplementary material, we prove that AS exhibits the same
regret bound as CS, ES, and OS provided in Theorem 6. Note that � in Theorem 6 is guaranteed
to be positive for AS by the inclusion of ✏ in equation (2). However, for CS and ES, � = 1 since
all of player i’s actions are sampled, whereas � 1 for OS and AS. While this suggests that fewer
iterations of CS or ES are required to achieve the same regret bound compared to OS and AS,
iterations for OS and AS are faster as they traverse less of the game tree. Just as CS, ES, and OS

5

have been shown to benefit from this trade-off over vanilla CFR, we will show that in practice, AS
can likewise benefit over CS and ES and that AS is a better choice than OS.

5 Experiments

In this section, we compare the convergence rates of AS to those of CS, ES, and OS. While AS can
be applied to any extensive game, the aim of AS is to provide faster convergence rates in games
involving many player actions. Thus, we consider two domains, no-limit poker and Bluff, where we
can easily scale the number of actions available to the players.

No-limit poker. The two-player poker game we consider here, which we call 2-NL Hold’em(k),
is inspired by no-limit Texas Hold’em. 2-NL Hold’em(k) is played over two betting rounds. Each
player starts with a stack of k chips. To begin play, the player denoted as the dealer posts a small
blind of one chip and the other player posts a big blind of two chips. Each player is then dealt two
private cards from a standard 52-card deck and the first betting round begins. During each betting
round, players can either fold (forfeit the game), call (match the previous bet), or raise by any
number of chips in their remaining stack (increase the previous bet), as long as the raise is at least as
big as the previous bet. After the first betting round, three public community cards are revealed (the
flop) and a second and final betting round begins. If a player has no more chips left after a call or a
raise, that player is said to be all-in. At the end of the second betting round, if neither player folded,
then the player with the highest ranked five-card poker hand wins all of the chips played. Note that
the number of player actions in 2-NL Hold’em(k) at one information set is at most the starting stack
size, k. Increasing k adds more betting options and allows for more actions before being all-in.

Bluff. Bluff(D1, D2) [7], also known as Liar’s Dice, Perduo, and Dudo, is a two-player dice-bidding
game played with six-sided dice over a number of rounds. Each player i starts with Di dice. In each
round, players roll their dice and look at the result without showing their opponent. Then, players
alternate by bidding a quantity q of a face value f of all dice in play until one player claims that
the other is bluffing (i.e., claims that the bid does not hold). To place a new bid, a player must
increase q or f of the current bid. A face value of six is considered “wild” and counts as any other
face value. The player calling bluff wins the round if the opponent’s last bid is incorrect, and loses
otherwise. The losing player removes one of their dice from the game and a new round begins.
Once a player has no more dice left, that player loses the game and receives a utility of �1, while
the winning player earns +1 utility. The maximum number of player actions at an information set
is 6(D1 +D2) + 1 as increasing Di allows both players to bid higher quantities q.

Preliminary tests. Before comparing AS to CS, ES, and OS, we first run some preliminary exper-
iments to find a good set of parameter values for ✏, ⌧ , and � to use with AS. All of our preliminary
experiments are in two-player 2-NL Hold’em(k). In poker, a common approach is to create an ab-
stract game by merging similar card dealings together into a single chance action or “bucket” [4]. To
keep the size of our games manageable, we employ a five-bucket abstraction that reduces the branch-
ing factor at each chance node down to five, where dealings are grouped according to expected hand
strength squared as described by Zinkevich et al. [12].

Firstly, we fix ⌧ = 1000 and test different values for ✏ and � in 2-NL Hold’em(30). Recall that
⌧ = 1000 implies actions taken by the average strategy with probability at least 0.001 are always
sampled by AS. Figure 1a shows the exploitability in the five-bucket abstract game, measured in
milli-big-blinds per game (mbb/g), of the profile produced by AS after 1012 nodes visited. Recall
that lower exploitability implies a closer approximation to equilibrium. Each data point is averaged
over five runs of AS. The ✏ = 0.05 and � = 10

5 or 106 profiles are the least exploitable profiles
within statistical noise (not shown).

Next, we fix ✏ = 0.05 and � = 10

6 and test different values for ⌧ . Figure 1b shows the abstract
game exploitability over the number of nodes visited by AS in 2-NL Hold’em(30), where again each
data point is averaged over five runs. Here, the least exploitable strategies after 1012 nodes visited
are obtained with ⌧ = 100 and ⌧ = 1000 (again within statistical noise). Similar results to Figure
1b hold in 2-NL Hold’em(40) and are not shown. Throughout the remainder of our experiments, we
use the fixed set of parameters ✏ = 0.05, � = 10

6, and ⌧ = 1000 for AS.

6

Exploitability (mbb/g)

100 101 102 103 104 105 106 107 108 109

β

0.01
0.05

0.1
0.2
0.3
0.4
0.5

ε

 0

 0.2

 0.4

 0.6

 0.8

 1

(a) ⌧ = 1000

10-1

100

101

102

1010 1011 1012

A
bs

tra
ct

 g
am

e
ex

pl
oi

ta
bi

lit
y

(m
bb

/g
)

Nodes Visited

τ=100

τ=101

τ=102

τ=103

τ=104

τ=105

τ=106

(b) ✏ = 0.05,� = 106

Figure 1: (a) Abstract game exploitability of AS profiles for ⌧ = 1000 after 1012 nodes visited
in 2-NL Hold’em(30). (b) Log-log plot of abstract game exploitability over the number of nodes
visited by AS with ✏ = 0.05 and � = 10

6 in 2-NL Hold’em(30). For both figures, units are in
milli-big-blinds per hand (mbb/g) and data points are averaged over five runs with different random
seeds. Error bars in (b) indicate 95% confidence intervals.

Main results. We now compare AS to CS, ES, and OS in both 2-NL Hold’em(k) and Bluff(D1, D2).
Similar to Lanctot et al. [9], our OS implementation is ✏-greedy so that the current player i samples
a single action at random with probability ✏ = 0.5, and otherwise samples a single action according
to the current strategy �i.

Firstly, we consider two-player 2-NL Hold’em(k) with starting stacks of k = 20, 22, 24, ..., 38,
and 40 chips, for a total of eleven different 2-NL Hold’em(k) games. Again, we apply the same
five-bucket card abstraction as before to keep the games reasonably sized. For each game, we ran
each of CS, ES, OS, and AS five times, measured the abstract game exploitability at a number of
checkpoints, and averaged the results. Figure 2a displays the results for 2-NL Hold’em(36), a game
with approximately 68 million information sets and 5 billion histories (nodes). Here, AS achieved
an improvement of 54% over ES at the final data points. In addition, Figure 2b shows the average
exploitability in each of the eleven games after approximately 3.16⇥ 10

12 nodes visited by CS, ES,
and AS. OS performed much worse and is not shown. Since one can lose more as the starting stacks
are increased (i.e., �i becomes larger), we “normalized” exploitability across each game by dividing
the units on the y-axis by k. While there is little difference between the algorithms for the smaller
20 and 22 chip games, we see a significant benefit to using AS over CS and ES for the larger games
that contain many player actions. For the most part, the margins between AS, CS, and ES increase
with the game size.

Figure 3 displays similar results for Bluff(1, 1) and Bluff(2, 1), which contain over 24 thousand and
3.5 million information sets, and 294 thousand and 66 million histories (nodes) respectively. Again,
AS converged faster than CS, ES, and OS in both Bluff games tested. Note that the same choices
of parameters (✏ = 0.05, � = 10

6, ⌧ = 1000) that worked well in 2-NL Hold’em(30) also worked
well in other 2-NL Hold’em(k) games and in Bluff(D1, D2).

6 Conclusion

This work has established a number of improvements for computing strategies in extensive-form
games with CFR, both theoretically and empirically. We have provided new, tighter bounds on the
average regret when using vanilla CFR or one of several different MCCFR sampling algorithms.
These bounds were derived by showing that a player’s regret is equal to a weighted sum of the
player’s cumulative counterfactual regrets (Theorem 4), where the weights are given by a best re-
sponse to the opponents’ previous sequence of strategies. We then used this bound as inspiration for
our new MCCFR algorithm, AS. By sampling a subset of a player’s actions, AS can provide faster

7

10-1

100

101

102

103

104

1010 1011 1012

A
bs

tra
ct

 g
am

e
ex

pl
oi

ta
bi

lit
y

(m
bb

/g
)

Nodes Visited

CS
ES
OS
AS

(a) 2-NL Hold’em(36)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

106 107 108

A
bs

tra
ct

 g
am

e
ex

pl
oi

ta
bi

lit
y

(m
bb

/g
) /

 k

Game size (# information sets)

k=20

k=30

k=40

CS
ES
AS

(b) 2-NL Hold’em(k), k 2 {20, 22, ..., 40}

Figure 2: (a) Log-log plot of abstract game exploitability over the number of nodes visited by CS,
ES, OS, and AS in 2-NL Hold’em(36). The initial uniform random profile is exploitable for 6793
mbb/g, as indicated by the black dashed line. (b) Abstract game exploitability after approximately
3.16 ⇥ 10

12 nodes visited over the game size for 2-NL Hold’em(k) with even-sized starting stacks
k between 20 and 40 chips. For both graphs, units are in milli-big-blinds per hand (mbb/g) and data
points are averaged over five runs with different random seeds. Error bars indicate 95% confidence
intervals. For (b), units on the y-axis are normalized by dividing by the starting chip stacks.

10-5

10-4

10-3

10-2

10-1

100

107 108 109 1010 1011 1012 1013

Ex
pl

oi
ta

bi
lit

y

Nodes Visited

CS
ES
OS
AS

(a) Bluff(1, 1)

10-5

10-4

10-3

10-2

10-1

100

107 108 109 1010 1011 1012 1013

Ex
pl

oi
ta

bi
lit

y

Nodes Visited

CS
ES
OS
AS

(b) Bluff(2, 1)

Figure 3: Log-log plots of exploitability over number of nodes visited by CS, ES, OS, and AS in
Bluff(1, 1) and Bluff(2, 1). The initial uniform random profile is exploitable for 0.780 and 0.784
in Bluff(1, 1) and Bluff(2, 1) respectively, as indicated by the black dashed lines. Data points are
averaged over five runs with different random seeds and error bars indicate 95% confidence intervals.

convergence rates in games containing many player actions. AS converged faster than previous MC-
CFR algorithms in all of our test games. For future work, we would like to apply AS to games with
many player actions and with more than two players. All of our theory still applies, except that
player i’s average strategy is no longer guaranteed to converge to �⇤

i . Nonetheless, AS may still find
strong strategies faster than CS and ES when it is too expensive to sample all of a player’s actions.

Acknowledgments

We thank the members of the Computer Poker Research Group at the University of Alberta for help-
ful conversations pertaining to this work. This research was supported by NSERC, Alberta Innovates
– Technology Futures, and computing resources provided by WestGrid and Compute Canada.

8

References
[1] Nick Abou Risk and Duane Szafron. Using counterfactual regret minimization to create com-

petitive multiplayer poker agents. In Ninth International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 159–166, 2010.

[2] Richard Gibson, Marc Lanctot, Neil Burch, Duane Szafron, and Michael Bowling. Generalized
sampling and variance in counterfactual regret minimization. In Twenty-Sixth Conference on
Artificial Intelligence (AAAI), pages 1355–1361, 2012.

[3] Richard Gibson and Duane Szafron. On strategy stitching in large extensive form multiplayer
games. In Advances in Neural Information Processing Systems 24 (NIPS), pages 100–108,
2011.

[4] Andrew Gilpin and Tuomas Sandholm. A competitive Texas Hold’em poker player via au-
tomated abstraction and real-time equilibrium computation. In Twenty-First Conference on
Artificial Intelligence (AAAI), pages 1007–1013, 2006.

[5] Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated equi-
librium. Econometrica, 68:1127–1150, 2000.

[6] Samid Hoda, Andrew Gilpin, Javier Pe˜na, and Tuomas Sandholm. Smoothing techniques
for computing Nash equilibria of sequential games. Mathematics of Operations Research,
35(2):494–512, 2010.

[7] Reiner Knizia. Dice Games Properly Explained. Blue Terrier Press, 2010.
[8] Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Fast algorithms for finding

randomized strategies in game trees. In Annual ACM Symposium on Theory of Computing
(STOC’94), pages 750–759, 1994.

[9] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte Carlo sampling
for regret minimization in extensive games. In Advances in Neural Information Processing
Systems 22 (NIPS), pages 1078–1086, 2009.

[10] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte Carlo sampling
for regret minimization in extensive games. Technical Report TR09-15, University of Alberta,
2009.

[11] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret min-
imization in games with incomplete information. Technical Report TR07-14, University of
Alberta, 2007.

[12] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret mini-
mization in games with incomplete information. In Advances in Neural Information Processing
Systems 20 (NIPS), pages 905–912, 2008.

9

