Descriptions - a viable choice for video game authors

Neesha Desai
Department of Computing Science
University of Alberta
neesha@ualberta.ca

ABSTRACT

Modern video game development activities have become as
specialized as movie-making activites. Gifted story-writers,
artists, and animators have replaced programmers in most
content creation activities. However, there is still one area
where computer programmers play a big role. Stories, char-
acters, and events are still controlled by scripts that are
written in “C-like” languages. Therefore, scripting the video
game content usually requires a high level of programming
knowledge. Some scripting is simple, such as specifying spe-
cific game objects. However, in order to take advantage of
knowledge learned during game play, authors need to be able
to specify dynamic game objects. This often requires au-
thors to create complex definitions, which are composed of a
series of variable assignments in programming languages. In
this paper, we show how these definitions can be replaced by
a more natural mechanism, which we call descriptions. We
also present the results of a user study that shows that au-
thors with no programming skills can use descriptions more
effectively than definitions and that the authors prefer de-
scriptions.

Categories and Subject Descriptors

D.3.3 [Software]: Programming Languages—General

1. INTRODUCTION

Video games have become a major part of our culture.
The games continue to become longer and more compli-
cated. Many games now have multiple ways to complete
the game, which can provide the player with a difference ex-
perience each time they play the game. Tools like Alice [2],
Storytelling Alice [3], and Scratch [6] are helping to make it
possible for non-programmers to create their own animated
interactive stories and simple video games.

While more people are becoming interested in creating
their own video games, the tools being used by professional
game designers are not accessible for the average non-progra-
mmer. More and more video games are including authoring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FDG’11, June 29-July 1, Bordeaux, France.
Copyright 2011 ACM 978-1-4503-0804-5/11/06 ... $10.00.

Duane Szafron
Department of Computing Science
University of Alberta
dszafron@ualberta.ca

tools as part of the game package, like Neverwinter Nights [1]
or as the game itself, like Kodu [7]. However, many of these
games require the author to learn a scripting language spe-
cific to the game, like NWScript for Neverwinter Nights or
TES Script used in the The Elder Scrolls (TES) construc-
tion kit [4]. These scripting languages are usually similar to
C or Java. Tools like Scratch, Alice, and Kodu are easier to
use, but are not capable of expressing the complex character
behaviors seen in popular commercial games.

When designing a video game, it is easy for novice game
authors to specify a specific game object such as a chest,
door or creature as this is equivalent to a single variable
assignment. However, we have identified that dynamic as-
signments of game objects is a challenge for authors who
do not have programming experience. For example, imagine
the following scenario:

You enter a room and the door locks behind
you. Inside the room there is a troll and five
chests. You are not able to defeat the troll, so
you quickly look through the chests until, in the
fourth one, you find a magic sword allowing you
to defeat the troll. Not long after, your char-
acter dies and you must restart from an earlier
checkpoint. Again, you end up in the room with
the troll. This time you go straight to the fourth
chest, but the sword is not there. Now you must
search all the chests to find the sword before you
can kill the troll.

This type of scenario is common in games. Having the sword
appear in a random chest during game play increases the re-
play value. But, in order to do this, what chest to place
the sword cannot be pre-specified and instead must be de-
cided during game play. Other examples of dynamic deci-
sions made during game play include having the creature
closest to a door open it, or deciding where to place extra
health and ammo in a first person shooter game.

To create a dynamic assignment, authors often need to
link together multiple dependent varaibles, a task which is
difficult for non-programers. Unfortunately, authors who
avoid dynamic assignments have limited ability to determine
and act on information discovered during game play. We
present a new method to create dynamic object identifica-
tion that we call descriptions.

2. DESCRIPTIONS

Most game scripting languages contain a large set of def-
initions (usually as function calls) that an author can use

to get information about the game. Example calls are “Get
Nearest Creature” or “Toggle Door.” Each call usually has
a set of parameters to be set, such as the nearest creature
to what or what door to toggle. By using these calls, and
often linking multiple ones together, an author can define a
binding to a dynamic game object.

Descriptions are a new method we created to allow au-
thors to build these dynamic variable assignments without
having to write any code. They are built on top of a script-
ing language. Authors describe the dynamic variable assign-
ment they want as a plain english sentence, and the scripting
code is then generated from the description. Descriptions
are built upon three main ideas: variable context, a graph
abstraction, and backward chaining.

First, a description requires knowledge of the variable it
is going to set, specifically the type (creature, door, object,
etc) of the variable. This knowledge can be used to filter
and only show authors applicable definitions. That is, if the
author is describing a door, it will not show descriptions that
return a creature. While programmers are use to matching
return types, non-programmers are not.

The second idea is based on abstraction. Knowing the
intended type of a description reduces what definitions the
author can choose from. However, in most cases the re-
sulting list is still much longer than desired. Fortunately,
we discovered that multiple definitions could be grouped to-
gether to create an acyclic graph, where each path through
the graph represents a different definition. An example of
a graph is shown in Figure 1. This graph representation
dramatically reduces the number of descriptions that need
to be shown to the author without decreasing expressibility.
In addition, graph creation sometimes reveals useful descrip-
tions that may be initially missing as individual definitions,
so expressibility can actually be enhanced. Each graph is
constructed so that the descriptions it contains can be read
as sentences, making the descriptions easier to understand.
The graphs are made up of start nodes (no incoming ar-
rows), end nodes (either no outgoing arrows or all outgoing
arrows go to optional nodes), red option nodes (need to be
set by the author), green optional nodes (nodes that can be
included to generalize the description), and black text nodes
(to provide structure to the resulting sentence created by the
graph). Each path through a graph will produce a different
game script.

Using the graph, the author chooses a category of descrip-
tions to work with, instead of choosing a specific definition.
In Figure 1, the default description is ”Find nearest creature
to object”. Given the default description, the author is able
to modify it by adding or changing the description to corre-
spond to any path through the graph. The author can edit
this description using a small number of structured editing
operations based on the internal graph representation.

The third idea involves the mechanism by which a se-
ries of dependent variable assignments is constructed. The
variable assignment authoring process uses forward chain-
ing while descriptions use backward chaining. For example,
consider a situation where the author wants to award 100
gold pieces (GP) for each level that the PC has, rather than
giving a fixed reward. Assume there is an action that can
assign an arbitrary number of GP with the number as an
option: Assign <amount> GP to <recipient>. With defini-
tions, the author’s goal is to create a definition for 100*(The
PC’s total levels) and use this definition as the amount. This

creature

ﬁ
(b)

different
@

Describe Nearest Creature to an Object with same tag as another Creature
Describe Nearest Creature to an Object

Describe N-th Nearest Creature to an Object

Describe N-th Nearest Creature with same tag as another Creature
Describe Different Nearest Creature to an Object

Figure 1: Example graph representation of the
“Nearest Creature” graph with the five original defi-
nitions that were used to create the graph. However,
the graph can be used to create six different defini-
tions. The color of each node is also marked with a
“b” (black), “r” (red) or “g” (green) for viewing in
grayscale.

requires two definitions. The first defines the player’s total
levels and the second multiplies this number by 100 to de-
termine the amount of GP to award. This is a forward
chaining process: Define The Total Level as < Creature>’s
total level, with the < Creature> option set to “PC” and then
Define Product as <numberl> times <number2>, with the
<numberl> option set to “100” and the <number2> option
set to "The Total Level”. This order is necessary since the
second variable assignment cannot be completed until the
first variable assignment exists. However, this order is not
very intuitive for non-programmers, since the author must
reason abstractly from the assign GP action all the way back
to the first definition without authoring anything.

With descriptions, the author starts with the action: As-
sign <amount> GP to <recipient>. Then, by selecting the
goal option: <amount>, the author launches a describer
that can be used to construct a description for this option
using backward chaining from the goal. As indicated earlier,
since the describer “knows” that the author is setting a num-
ber, the describer can limit author choices to descriptions of
numbers. In this case, the author selects a description cate-
gory (math) that multiplies two numbers together. The au-
thor can set one of the numbers to to the constant 100. Next,
the author can decide to further describe the other number.
This creates another description in the describer, where the
description type is again number. This time the author se-
lects a different description category (Creature Statistics),
sets the creature to the PC and specifies the statistic as the
creatures level.

We believe that authors will prefer to use goal-driven de-
scriptions to definitions that can be created with no context
and that authors will be more effective using descriptions.
To test this hypothesis, we conducted a user study.

3. METHODOLOGY AND RESULTS

We conducted a user study to evaluate our new method of
descriptions. To conduct this experiment, we implemented
descriptions in ScriptEase. ScriptEase [8, 5] is an ongo-
ing project at the University of Alberta aimed at creating
a tool to allow non-programmers to create their own video
game stories without having to learn to program. Currently,
ScriptEase allows non-programmers to create game modules
for Neverwinter Nights [1]. ScriptEase contains a large gen-
eralized pattern catalogue of common events and actions
that occur in video games. Authors choose generic patterns
and then customize them for their story by setting options
(such as which game objects to use in the pattern) and by
adding and removing actions. Once all options have been
set, ScriptEase generates the scripting code. The original
method in ScriptEase for selecting dynamic game objects
was through choosing and linking a series of definitions.

Our primary goal was to discover which method the par-
ticipants preferred and our secondary goal was to determine
which method was more efficient. Each participant was
given two different test sets (A and B) and used one method
(descriptions or the original definitions) on each set. Half
of the participants used test set A with descriptions while
the other half used B. In addition, half of the participants
started with descriptions and the other half with definitions.
Each test set contained 5 statements, each specifying a series
of variable assignments to complete the statement.

The participants were undergraduate students in the Uni-
versity of Alberta’s Psychology 104/105 classes in the Win-
ter 2009 semester. They were 18 to 22 years old (mean and
median: 19), 1st to 3rd year (mean: 1.7, median: 1) and re-
ceived course credit for participating. We had 49 complete
data records representing 33 females and 16 males.

A 3-factor ANOVA test was run to compare the main
effects and interaction effects of the order (definitions or de-
scriptions first), method (descriptions or definitions), and
test set (A or B) on the number of statements the partici-
pants were able to complete. All three factors produced sta-
tistically significant main effects at a confidence level of 99%.
The method result (p=2.84e-4) provides evidence that the
students completed significantly more statements using de-
scriptions than using definitions. The results also show that
order (p=6.93e-8) was important; the students completed
more statements using their second method which implies
that learning took place from one method to the other. The
study also showed that the Test Set (p=6.58e-3) influenced
the results; students were able to complete more statements
in Test Set B than Test Set A. Our hypothesis that descrip-
tions are more efficient is true based on the greater number
of statements the participants completed using descriptions
as compared to definitions.

None of the interaction effects (pairs of effects) were sig-
nificant at the 99% confidence level. The participants com-
pleted an almost identical number of statements using defini-
tions regardless of which Test Set (A=1.08 vs B=1.00) they
were working on and whether definitions were used first or
second (1st=1.00 vs 2nd=1.07). However, the participants
were able to complete more statements in Test Set B than
Test Set A when using descriptions (A=1.42 vs B=2.42),
but the order had less of an impact (1st=1.77 vs 2nd=2.09).

We also had the participants fill out a survey where they
were asked which method was easier, faster, more intuitive,
and better overall. We tested whether descriptions were bet-

ter at a 99% confidence level for each aspect. And the results
indicate that descriptions are faster (p=0.0061) and better
overall (p=0.00082) but not significantly easier (p=0.011)
or more intuitive (p=0.077). Our hypothesis that descrip-
tions are preferred is true based on the better overall survey
result.

4. CONCLUSION

There is a rise in the number of individuals who want to
author their own video games. This trend is increasing the
demand for more tools to aid non-programmers in authoring
their own games. Tools like ScriptEase and Kodu, that are
focused on game creation, Alice, which can be used to create
animated stories and Scratch, which simplifies programming
can all be used to lower the entry bar for prospective game
authors.

This paper has revealed an important impediment to game
authorship, the difficulty of specifying a game object whose
identity is not known until game time. We have proposed an
alternative solution to the current use of a series of variable
declarations that we call descriptions. Descriptions aid the
author by limiting the number of selections to only those
that describe game objects with the correct type for the
given context. A user study showed that authors were more
efficient when using descriptions. Since the results of the
user study were so promising, ScriptEase 2, which is cur-
rently in development, will replace definitions with descrip-
tions. Perhaps other similar tools should observe the lessons
of this user study as well and consider replacing free format
forward chaining series of components by context sensitive
backward chaining components that can reduce the number
of inapplicable components the author must select from.

5. ACKNOWLEDGMENTS

The financial support of Alberta’s Informatics Circle of
Research Excellence (iICORE), Canada’s Natural Sciences
and Engineering Research Council (NSERC) and the Cana-
dian Graphics, Animation and New Media Networks of Cen-
tres of Excellence (GRAND-NCE) is greatly appreciated.
We also acknowledge the great work of the entire ScriptEase
team, past and present.

6. REFERENCES

[1] BioWare. Neverwinter nights. Website, 2009.
http://nwn.bioware.com/.

[2] CMU. Alice. Website, 2009. http://www.alice.org.
[3] CMU. Storytelling alice. Website, 2009. http://www.
alice.org/kelleher/storytelling/index.html.

[4] B. S. LLC. The elder scrolls. Website, 2011.
http://www.elderscrolls.com/.

[5] M. McNaughton, M. Cutimisu, D. Szafron, J. Schaeffer,
J. Redford, and D. Parker. Scriptease: Generative
design patterns for computer role-playing games. In
19th IEEE International Conference on Automated
Software Engineering (ASE), pages 88-99, 2004.

[6] MIT. Scratch. Website, 2009.
http://scratch.mit.edu.

[7] M. Research. Kodu. Website, 2009. http:

//research.microsoft.com/en-us/projects/kodu/.

ScriptEase. Scriptease. Website, 2010.

http://webdocs.cs.ualberta.ca/ script/.

8

