
Using Support Vector Machines to Learn How to Compile a Method

Ricardo Nabinger Sanchez† José Nelson Amaral† Duane Szafron† Marius Pirvu‡

Mark Stoodley‡

Abstract

The question addressed in this paper is what subset
of code transformations should be attempted for a given
method in a Just-in-Time compilation environment. The so-
lution proposed is to use a Support Vector Machine (SVM)
to learn a model based on method features and on the mea-
sured compilation and execution times of the methods. An
extensive exploration phase collects a set of example compi-
lations to be used by the SVM to train the model. This paper
reports on a work in progress. So far, linear-SVM models,
applied to benchmarks from the SPECjvm98 suite, have not
outperformed the compilation plans engineered by the de-
velopment team over many years. However the models al-
most match that performance for the javac benchmark.

1 Introduction

Modern Just-in-Time (JiT) compilers have many code
transformations that could be applied to each method that is
compiled. However, with compilation competing with the
execution of the application for resources, code transforma-
tions for each method must be selected carefully. Methods
are compiled at different levels of optimization based on an
estimation of the future execution frequency of the method.
A significant amount of effort is spent in the design of a
commercial compiler to determine the combination of code
transformations that should be included in each one of these
levels of compilation. However, once a method is selected
for compilation at a certain level, all the code transforma-
tions that are applicable at that level are attempted.

† Department of Computing Science, University of Alberta, Edmonton,
AB, Canada
‡ IBM Toronto Software Laboratory, Markham, ON, Canada
This research is supported by fellowships and grants from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC) through its
Collaborative Research and Development (CRD) program, and by the IBM
Center for Advanced Studies. We thank Kevin Stoodley for the initial dis-
cussions and encouragement for this project and many developers at the
IBM Toronto Software Laboratory for insights and assistance along the
way.

The premise of this paper is that one-size-fits-all may not
be the best approach when deciding which code transforma-
tions to apply to a given method. It is possible that some
code transformations have no effect in some methods, and
others may even result in slower code. We propose that it is
sometimes possible to predict which code transformations
should be attempted in a given method based on a set of
features that can be easily extracted from the method before
dynamic compilation takes place.

This paper reports on continuing research that investi-
gates the potential compilation and execution time reduc-
tions that may be achieved when an SVM is used to predict
which transformations should be used. This experimental
evaluation uses a development version of Testarossa, the
IBMTM JiT commercial compiler for Java. Section 7 com-
pares this approach with the closely related work by Cava-
zos and O’Boyle [2] and by Eeckout et al. [7].

The implementation of the infrastructure for learning in
a large-scale commercial compiler is non-trivial. For in-
stance, code transformations are not isolated stand-alone
functions that can be composed at will. In Testarossa,
collections of individual transformations are organized in
a transformation pipeline. Two changes required for the
learning framework interfere with these transformation
pipelines: (a) selecting a combination of transformations
that were not intended to be used by the compiler engineers;
and (b) instrumenting execution to investigate the space of
code transformations. The transformations in a pipeline
are tailored to a set of compilation plans that is deployed
with the commercial compiler. Therefore the composition
of transformations is constrained by engineering decisions
in the design of the compiler.

Even though there are readily available profiling solu-
tions, they tend to be excessively intrusive (sometimes pro-
filing the compiler itself) and tend to impose an overwhelm-
ing overhead that dramatically changes the behavior of Tes-
tarossa. Keeping this overhead to a low level required a cus-
tomized infrastructure for both the instrumentation mecha-
nism and the storage of collected data. Our instrumentation
approach incurs 124 CPU cycles (on average) per measure-
ment instance. Our profiling infrastructure generates no ex-

duane
Text Box
This is a preprint of an article that will appear in Proceedings of the 22nd International Symposium on Computer Architecture and High Performance Computing (SBAC), 8 ms, Rio de Janeiro, Brazil. October 2010. IEEE Press

tra I/O activity while the compiler is operating because it
saves collected data to disk only after the application com-
pletes execution.

After the model is learned, there is no instrumentation or
additional memory costs for compilations, only the time re-
quired to communicate with the model and for it to perform
the classification, averaging 214 µs per request in our setup.

This paper reports on a work in progress. The principal
contributions so far include:

• We are the first group to develop a framework to en-
able the application of SVM to learn method-specific
compilation strategies in a commercial compiler envi-
ronment.

• We describe the complete framework to integrate
learning in the compiler. This framework can be used
with alternative learning strategies to create different
prediction models.

• Our preliminary experimental results indicate that
machine-learned method-specific compilation plans
can match the hand-tuned adaptive compilation strate-
gies in a commercial compiler.

Section 2 gives a brief overview of the organization of
the compiler. Section 3 contains a brief review of SVMs.
The data collection process is presented in Section 4. Sec-
tion 5 describes the training of a model. Section 6 describes
the experimental evaluation of the technique and Section 7
discusses related work.

2 Organization of the JiT Compiler

Testarossa is a state-of-the-art JiT compiler employed in
the IBM J9TMJava Virtual Machine (JVM) [5, 8]. Its goal is
to improve the performance of Java applications by convert-
ing bytecodes into native code during program execution.
A balance needs to be struck between the overhead and the
benefits resulting from JiT compilation because this con-
version is done at runtime. Therefore, Testarossa focuses
its efforts only on methods that are frequently executed.

In Testarossa, a method can be compiled multiple times
at different optimization levels. Higher optimization lev-
els are expected to generate faster executing code at the ex-
pense of more compilation time. Adjectives normally asso-
ciated with temperature (cold, warm, hot, very hot, scorch-
ing) are used to refer to estimates of the frequency of exe-
cution of a method and to the compilation levels. These es-
timates, based on a combination of sampling and invocation
counting mechanisms, are used to decide how much compi-
lation effort to invest in attempting to increase the execution
speed of a particular method.

Testarossa is composed of four major building blocks:
(1) the IL Generator converts bytecodes into an intermedi-
ate language (IL) representation that is more amenable to
optimizations; (2) the Optimizer applies code transforma-
tions to improve the quality of the IL code;1 (3) the Code
Generator transforms the optimized IL into native code
(there is one code generator for each target platform x86,
PPC, s390, MIPS, ARM, etc.); (4) the Compilation Control
block makes compilation decisions (what methods to com-
pile, when to compile them and at what level). Of these four
building blocks, the Optimizer consumes the most time and
requires the most memory.

Each compilation level has an associated compilation-
strategy table that defines both the code transformations to
be applied to a method and the order in which to apply them.
In principle, the same set of code transformations is ap-
plied to all methods compiled at a given level. However, to
conserve compilation resources, some transformations are
associated with a conditional flag that controls their appli-
cation (e.g. loop transformations are not attempted on a
method that is known to have no loops). The compilation
strategies are quite rich in transformations. For example,
the cold strategy includes over 20 transformations, whereas
the scorching one has more than 170. This number includes
repeated applications of the same transformation. For in-
stance, dead tree elimination is performed multiple times to
clean-up after other code transformations are applied.

JiT compilations are performed in the background by a
dedicated thread. Most compilations are asynchronous to
the application’s execution. A small subset may pause an
application thread to wait for the compilation of a method.
A case in point is when a compiled body that employs
the invariant-argument-pre-existence transformation [3] be-
comes invalid due to an incompatible change in the JVM’s
class hierarchy.

3 A Primer on Support Vector Machines

This section presents a brief primer of SVMs, which are
thoroughly described in the literature, to help the reader un-
derstand the remainder of the paper. It also discusses lim-
itations of available implementations of SVMs that hinder
their use for problems with large training sets.

SVMs are statistical learning models that work by find-
ing maximum separation margins within a data set [6]. Each
data point is composed of a feature vector that represents
observations (e.g.: code size and presence of loops in a
method to be compiled) and a label denoting its class. In
our case, each class represents a different set of code trans-
formations that can be applied to a method. The training
of an SVM with a data set produces a matrix of weights of

1These transformations are very complex and are also referred to as
“optimizations” in the literature.

Figure 1. An example of a non-separable
case, where some amount of miss-
classification (arrows) based on the mar-
gins (dashed lines) must be allowed during
hyperplane placement (solid line).

the contributions from each element of the feature vector
to the classification function. Classifying an unseen feature
vector consists of computing the product of the matrix with
the feature vector to produce a vector with one component
for each class. The component representing each class can
be used to compute the relative confidence that the feature
vector should be classified as belonging to that class. The
simplest SVMs deal will a single class, and classification
consists of deciding whether a data point belongs to that
single class or not. For a single-class SVM, the classifica-
tion result is given by the sign of the feature vector applied
to the classification function.

The SVM implementation used in this study, LIBLIN-
EAR [4], uses a one-versus-all approach to make class pre-
dictions. The one-versus-all approach trains one classifier
for each class, which computes the confidence that the data
point belongs to a given class, and the class with the highest
confidence is selected. The confidence in the one-versus-
all approach is the distance from the data point to the given
classifier boundary. The boundaries of a classifier are hy-
perplanes separating the classes in the feature space and are
found during the training of the model.

It is often the case that the data is not linearly separable
in the original feature space. For those cases, SVMs em-
ploy kernel functions that map the original features into a
higher-dimensional space, where they can be separated us-
ing hyperplanes. There are many kernel functions in the
literature, and the most common ones are the Radial Basis
Function (RBF) and d-th Degree Polynomial [6]. An itera-
tive optimization process searches for the positioning of the
hyperplanes that maximizes the margins of separation of the
data, as illustrated in Figure 1. The figure shows an example
where some amount of miss-classification is inevitable. The
amount of miss-classification (arrows) in an SVM model is

given by a cost parameter C specified by the user. C spec-
ifies how large the margins (dashed lines) can be from the
separating hyperplane (solid line). Moreover, C also influ-
ences the orientation of the hyperplane because this orienta-
tion depends on how the overlapping data points2 will shift
the margins.

For larger data sets, either with a large number of sam-
ples and/or features, using a non-linear kernel may be im-
practical. First, non-linear kernels often require more mem-
ory and longer training times. Second, the resulting models
are very large (several gigabytes in our experience). Large
models are too slow to be used online during just-in-time
compilation. Third, the point of using a non-linear kernel
is to increase the separability of the data by projecting it
into a higher dimension. However if the data is already in
a high-dimensional space, moving it to a higher dimension
may not have much effect in its separability. As a conse-
quence, for high-dimensional data a non-linear kernel may
exhibit similar performance to a linear kernel. For problems
involving many data samples and a large number of features
LIBLINEAR employs an identity kernel that acts as a linear
one [9].

The number of features in the most common applications
of SVM is in the 20–30 range. In this study, 81 features are
used to describe each method. The set of features collected
for each method include counters (e.g.: number of parame-
ters received), attributes (e.g.: presence of loops), and dis-
tributions computed in a single pass over the intermediate
representation of the method. These distributions charac-
terize the operations and types of operands for the method.

4 Data Collection

For data collection, a benchmark is run with the JiT sys-
tem executing in experimentation mode. In this mode, a
method is selected for recompilation when it reaches a cer-
tain invocation threshold since the last compilation.3 The
value of this threshold is estimated for each method based
on its first 8 invocations after it is initially compiled. The
goal is to balance this threshold for both long and short run-
ning methods, ranging from 50 to 50, 000 invocations. In
most cases, this threshold range allows methods to accu-
mulate approximately 10 ms of execution between compi-
lations.

Once the method is selected for recompilation, Tes-
tarossa selects a compilation plan based on the optimiza-
tion level. In experimentation mode, code transformations
are randomly removed from the plan, according to a mod-
ifier, to explore the space of possible code transformation

2Points of a given class located in a region populated by points belong-
ing to other classes.

3If Testarossa decides to promote the optimization level for the method,
the exploration will continue on the next level in the same way.

VM

JiT

Compiled MethodsInterpreted Methods
(f)

(e)(d)

(b)

(a)

Queue

(c)

Compilation Plan

Modifier

^

Figure 2. Data Collection during training.

combinations. Whenever the compiled method is executed,
the running time of the method is recorded along with an
identifier for the compilation plan used. The average run-
ning time from all invocations of the method compiled with
a given plan is then combined with a weighted value for
the compilation time to create a training point. This data is
stored in compact structures that are kept in memory.

An alternative for the exploration of the space of code
transformations would be to generate a random set of trans-
formations to be applied when a method is compiled. How-
ever, because this is a complex compilation system de-
veloped over many years in an industrial setting, there
are many dependencies between code transformations that
would be violated by such an approach. Thus, the more con-
servative alteration of existing compilation plans through
the random removal of code transformations is a safer alter-
native that implicitly satisfies dependencies between code
transformations. The disadvantage of this approach is that
it limits the exploration of the space of code transformations
and thus might fail to discover combinations that were not
considered by the compiler designers.

The block diagram in Figure 2 illustrates the data collec-
tion process. Before the execution of the program starts, a
list of modifiers for compilation plans is created. Each mod-
ifier will be used for the compilation of k distinct methods.4

Whenever a given method is recompiled, a different modi-
fier is used. The number of modifiers to pre-compute for a
given benchmark is determined experimentally by running
the application once to measure the number of plans effec-
tively used.5 Pre-computing the modifiers has the advan-
tages that it is trivial to (i) track which plans were used on a
given method to avoid repetition and to (ii) apply the same
modified plan to the compilation of different methods.

The first compilation of a method (Figure 2(a)) is trig-
gered by the policies implemented in the virtual machine.
Once a method is selected for compilation (b), the JiT data
collection process starts. A modifier from the pre-computed

4The experiments reported in this paper use k = 50, which was deter-
mined empirically.

5For the analysis described in this paper using SPECjvm98 bench-
marks [13], 8192 dynamic compilation plans were necessary for all ap-
plications in the suite using the largest inputs and 10 benchmark iterations.

list (c) is used to modify the compilation plan for the opti-
mization level selected by the VM (d). A modifier does
not change the order of the transformations. Moreover,
the elimination of transformations from a plan must obey
dependency constraints between the code transformations.
For instance, some clean-up transformations are never dis-
abled because the absence of a clean-up might lead to the
generation of invalid code. Once the compilation is com-
pleted, the instrumented method is placed in the pool of
compiled methods (e). This process is also used for meth-
ods selected for recompilation (f), either by a VM decision
(e.g.: the method is invoked frequently enough to be recom-
piled at a higher optimization level) or due to a recompila-
tion requested after its invocation count reaches the recom-
pilation threshold used by the instrumentation mechanism.

5 Learning a Model

The goal is to create a model that maps a set of method
features into a successful compilation plan. Therefore this
model should be trained with a collection of such plans.
The random exploration of the space of possible compila-
tion plans yields both good and bad compilation plans. Thus
the first step in the creation of the model is to rank the ex-
plored compilation plans to select the most effective ones
that will be used to train the model.

The data preparation for the training of the model uses
the following ranking function:

Vi =
Ri

Ii

+
Ci

Th

(1)

where Ri is the total running time for all invocations of
method i between two compilations of the method; Ii is
the number of invocations since the last recompilation; Ci

is the compilation time for method i; and Th is the trigger-
ing value used by Testarossa for recompiling at compila-
tion level h (h is used to reflect the “hotness” level). The
value Vi is used to rank all compilation plans generated for
method i at compilation level h. The top t compilation plans
for each method at each compilation level are selected to
train the model. The set of plans is further tuned by enforc-
ing a cut-off value relative to the best plan in the set.6

After the ranking is complete, the data points that are se-
lected as input for the training are normalized to ensure that
all data values are in the [0, 1] range. Normalization is not
strictly required for the training of SVMs, but it is recom-
mended to improve numerical stability [9] and to improve
the chances that the iterative training process will converge
to a solution in a reasonable amount of time. At runtime,
when the model is used to select compilation plans, the
compiler will be producing raw data values. Therefore the

6In the experiments reported, t = 3 and the relative cut-off is 95%.

normalization parameters are saved for use by the compiler
during production runs.

The specification of a compilation plan is encoded in 58
bits for the version of the Testarossa compiler used in this
research. Using this binary representation to represent each
plan in the model created by the SVM would result in 258

possible plans. However not every 58-bit binary combina-
tion is a legal plan. Moreover, LIBLINEAR assumes that
a class is encoded in 32 bits. The solution is to remap the
plans into a new space. Remapping is accomplished by as-
signing a sequential integer number, starting from 1 (an-
other requirement of LIBLINEAR) to each unseen plan and
to maintain an index file to map from these unique iden-
tifiers to the compilation plans. This simple approach is
transparent to the learning process and has negligible over-
head.

An important parameter to specify for an SVM is the
misclassification cost C. This parameter determines how
the SVM should deal with misclassifications while trying to
find the best separating margins between classes. The value
of C is especially important for larger data sets where multi-
ple class overlappings are likely to occur. In such situations
some amount of misclassification is necessary to enable the
model to converge to a solution.7

6 Experimental Evaluation

The overall strategy is to train a separate model for each
compilation level (cold, warm, hot, and scorching). This
paper presents results only for the hot optimization level.
Therefore the experimental evaluation using the various
models are compared both with the original compiler and
with a version in which all methods are compiled at the hot
level — which we call the hot compiler. In Figures 3 and 4
the hot compiler is the baseline. This experimental evalua-
tion resulted in the following main findings:

• The overhead of applying the learned model during JiT
compilation is very low for an SVM using a linear ker-
nel, accounting for less than 0.1% of the total running
time of the application.

• Training times for a widely used set of benchmarks are
manageable in a few minutes after data set ranking.

• The ability of Testarossa to adapt the level of opti-
mization produces significant speedups in relation to
the hot compiler. For throughput performance, only in
one benchmark, javac, did the learning model approx-
imates the performance of the adaptive compiler.

• When considering start-up performance, the learning
model successfully approximates the performance of

7In this study we used C = 10.

the adaptive compiler. For javac, the learning model is
able to outperform the adaptive compiler.

6.1 Experimental Setup

The experimental is a 15-node cluster, each featuring two
Quad-Core AMD Opteron processors (model 2350) clocked
at 2 GHz, with 8 GiB of RAM and 20 GiB of swap space.
The CentOS GNU/Linux version 5.2 operating system was
used. All experiments use a development version of Tes-
tarossa using Java 6 class libraries.

6.2 Model Training

Five models were trained with the data collected from
the SPECjvm98 suite. Each benchmark that did not suc-
cessfully complete the original data collection process was
removed due to insufficient data generated.8 One of the ap-
plications in SPECjvm98, 200 check, is not included in the
experiments since it is not really a benchmark. It is only
intended to check whether the JVM is able to execute the
benchmark suite.

Table 1 summarizes the models created. Each row rep-
resents a separate experiment with a specific testing set
and non-intersecting testing set. The Model column identi-
fies which benchmarks contributed their data to the training
dataset. The models are identified with the initials of the
benchmarks used to create a training dataset: co for 201-
compress, db for 209 db, mp for 222 mpegaudio, mt for
227 mtrt, and rt for 205 raytrace. The columns within

Collected-data column characterize the data generated with
the benchmarks. For each row in the table, the total number
of collected data points is displayed in the Data Instances
column. The data points are distributed over the number of
data classes shown in the Unique-classes column. The num-
ber of distinct feature vectors is presented in the Unique-
feature-vectors column. The Ratio column presents the av-
erage ratio of data instances for each unique class.

The Ranked-data columns depict the result of the ranking
process over the input data. For each unique feature vector,
the 3 best ranked unique compilation plans are selected for
inclusion in the training set, provided their ranking value
is at least 95% of the best one. These ranking parame-
ters greatly reduce the number of data instances selected
for training, which is presented in the Training-instances
column. The amount of data instances selected for train-
ing ranges from 0.06% to 0.07%. In the Training-classes
column, the number of classes selected for training is sig-
nificantly smaller as well, ranging from 2.26% to 2.94% of

8The data collection process creates compilation plans that were not
anticipated for official releases of the compiler, and thus exposes unknown
dependencies between transformations. While uncovering such dependen-
cies is valuable for the compiler engineering team, they prevented the gen-
eration of a larger training set.

Table 1. Summary of the data collected as it is processed until learning a model.
Collected Data Ranked Data

Data Unique Unique Training Training
Instances Classes Feature Vectors Instances Classes

Ratio (% original) (% original) Ratio
Data Set

co db mp mt 710,317 51,489 1,200 1:13.80 2,323 0.07 1,428 2.77 1:1.63
co db mp rt 690,072 51,470 1,178 1:13.41 2,302 0.07 1,380 2.68 1:1.67
co db mt rt 583,775 51,490 1,000 1:11.34 1,884 0.06 1,164 2.26 1:1.62
co mp mt rt 714,721 48,007 1,155 1:14.89 2,254 0.06 1,400 2.92 1:1.61
db mp mt rt 751,567 48,037 1,148 1:15.65 2,224 0.06 1,413 2.94 1:1.57

the amount before the ranking process. Finally, the Ratio
column displays the average ratio of training instances for
each training class in the dataset.

The selection of only a handful of compilation plans
for each unique feature vector and the enforcement of a
samples-to-class ratio reduced the data used to train the
LIBLINEAR SVMs. After extensive tuning, the training
times reduced from several hours (days, in some cases)
down to a few minutes. Each of the models presented in
this study was trained in approximately 2 minutes.

6.3 Experimental Methodology

The five models shown in the rows of Table 1 were gen-
erated to enable leave-one-out cross-validation amongst the
five benchmarks for which the collection of training data
completed. The results of this cross-validation are shown
in the columns for raytrace, mtrt, mpegaudio, db, and com-
press respectively in Figure 3. The remaining benchmarks
can be considered reserved sets for testing as their data was
never used in training.

All benchmarks are executed using the large inputs of
the suite. For the throughput evaluation, the benchmarks
are internally iterated 10 times to amortize JVM startup la-
tency. In the start-up evaluation the benchmarks execute for
only one iteration. Each measurement is repeated 30 times
to account for internal (e.g.: garbage collection and set of
methods compiled) and external (e.g.: thread scheduling by
the operating system and I/O latencies) factors. Figures 3
and 4 show the average and the standard deviation for the
measurements. The overhead of the communication with
the model is usually less than 0.1% of the running time (de-
pending on the number of compilations performed and the
size of the model), averaging 214 µs per request.

6.4 Experimental Results

Figure 3 compares the relative throughput performance
of Testarossa using the machine-learned models with the
unmodified compiler, considering 10 internal benchmark it-
erations. For each set of benchmarks, the leftmost bar is the

Testarossa

Model (co,db,mt,rt)

Testarossa (hot) Model (co,db,mp,mt)

Model (co,mp,mt,rt) Model (db,mp,mt,rt)

Model (co,db,mp,rt)

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

 1.80

compress db jack javac jess mpegaudio mtrt raytrace

SPECjvm98 − Throughput (10 iterations)

R
el

at
iv

e
P

er
fo

rm
an

ce

Figure 3. Relative throughput performance
based on Testarossa using hot strategy for
10 iterations of SPECjvm98 benchmarks.

relative performance of the unmodified Testarossa under its
regular adaptive operation. The second bar is the hot com-
piler that is forced to only use hot compilation plans which
were not modified by the learned models. The remaining
five bars contain the relative performance for each learned
model. In these results we consider the time to complete all
10 iterations of each benchmark measured.

In the results for compress, db, mpegaudio, mtrt, and
raytrace only the bars for models that do not include the
benchmark being tested in the training can be used for
cross-validation. For instance, for db only the column cor-
responding to the model co,mp,mt,rt should be con-
sidered. However, the measurements for the other models,
which include the tested benchmark in the training, provide
evidence that, for these five benchmarks, there is little, if
any, change to performance when the tested benchmark is
included in the training.

The original Testarossa that adaptively selects the op-
timization level, but applies a pre-determined compilation
plan for all methods at a given level, consistently outper-

Testarossa

Model (co,db,mt,rt)

Testarossa (hot) Model (co,db,mp,mt)

Model (co,mp,mt,rt) Model (db,mp,mt,rt)

Model (co,db,mp,rt)

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

 4.00

 4.50

 5.00

 5.50

compress db jack javac jess mpegaudio mtrt raytrace

R
el

at
iv

e
P

er
fo

rm
an

ce

SPECjvm98 − Start−up (1 iteration)

Figure 4. Relative start-up performance
based on Testarossa using hot strategy for
the first iteration of SPECjvm98 benchmarks.

forms all other versions of the compiler across all bench-
marks. A reasonable explanation for the superior perfor-
mance of the original Testarossa, which was hand-tuned
over many years, is that the execution times of several of
these benchmarks are dominated by a set of methods that
must be compiled at the highest optimization level as soon
as possible, while keeping the compilation of less-frequent
methods at lower optimization levels.

The javac performance using the machine-learned mod-
els is comparable to Testarossa under adaptive operation.
This result provides interesting evidence that the machine-
learned models were able to tailor the hot compilation plan
on a per-method basis. The javac benchmark is the most
realistic of the benchmarks in the set because it performs a
common important task: compiling Java programs.

Figure 4 presents the relative start-up performance.
For start-up execution the machine-learning-based compiler
outperforms the hot compiler in most benchmarks (except
for compress). This result is not surprising because Tes-
tarossa is not designed to optimize start-up performance.
For javac, and most of the models for jess, the compiler us-
ing the machine-learned model outperforms Testarossa un-
der adaptive operation.

The main reason for the performance of the compiler
using the machine-learned models at the hot optimiza-
tion level being comparable to Testarossa under adaptive
operation is that the compilation times are significantly
smaller when using the machine-learned models. In the
case of javac, the savings in compilation time when using
the machine-learned models are significant enough for the
benchmark to complete its first iteration in about half the
time used by Testarossa under adaptive operation, and about
20% of the time used by Testarossa using only the hot opti-

mization level.

7 Related Work

Eeckout et al. [7] propose an automated compilation-
plan tuning based on multi-objective evolutionary search
that uses Jikes as a testbed. In their approach, Jikes can
be fine-tuned for different (or mixed) scenarios: a specific
hardware platform, a set of applications, or a set of inputs
for applications of interest. The tuning is carried out as a
two-step process, starting with the exploration of different
compilation plans to identify those that are Pareto-optimal,
and then assigning a subset of them to the JiT during a fine-
tuning step. Compilation plans are ranked in terms of their
code-quality output and compilation rate. Pareto-optimal
plans are those that yield the best-performing code and com-
pilation rate within a set of neighboring plans. The Pareto-
optimal plans form a Pareto frontier, restricting the number
of compilation plans evaluated during the fine-tuning step.
In the fine-tuning step, the Pareto-optimal plans are evalu-
ated considering all effects present in the JiT compiler (e.g.:
GC activity, which was avoided in the exploratory step to
allow convergence of the search algorithm) and the adap-
tive compilation system, so that the final result is consistent
with the expected use in a JVM.

The work most closely related to this paper is an interest-
ing variation on this theme: to learn a particular set of code
transformations that should be applied to each given method
of a program. Cavazos and O’Boyle [2] trained machine-
learning models based on logistic regression to work with
the Jikes RVM (Research Virtual Machine), a multi-level
adaptive JiT Java compiler that does not interpret Java byte-
code when executing an application. They use a set of 26
features to describe methods in the form of counters (e.g.:
length of the method in Java bytecodes), attributes, and dis-
tribution of Java bytecodes. In addition, three models are
trained, one for each optimization level. For the lower op-
timization levels (-O0 and -O1), data is collected for all
possible permutations, respectively 16 and 512 compila-
tion plans. As the transformation space for -O2 would be
impractical to exhaust (there are 220 possible plans), they
collect data for 1000 randomly generated plans. The train-
ing datasets are created by ranking data samples on a per-
method basis, selecting those samples within 1% of the best
performing method-specific plan. They report improve-
ments both on compilation and running time for the fixed
scenarios, i.e., when the compiler is set to compile meth-
ods at a specific optimization level (-O0, -O1, and -O2).
However, they have limited success when comparing with
the adaptive strategy in the Jikes compiler. These results are
consistent with the our preliminary findings in Testarossa.

Traditionally the application of supervised learning
methods to compilation have used a set of program features

specified by compiler developers based on their intuition
and experience. One limitation of this methodology is that
the learning might be biased towards what compiler design-
ers already know about the program’s behaviour. An inter-
esting alternative was proposed recently by Leather et al.: to
create a system that can automatically generate features for
the learning algorithm based on performance measurements
of the code [12].

A compiler must determine not only which transforma-
tions to apply to a program, but also the ordering in which
the selected transformations should be applied. The or-
dering is important because a transformation A may either
create or eliminate an opportunity to apply a transforma-
tion B. Early studies indicate that the search space is ex-
tremely complex and unyielding — thus limiting the ap-
plicable learning to variations of random search, such as
genetic-based techniques [1]. Later studies showed that
pruning can result in higher yielding search spaces [10, 11].
A limitation of this application of learning is the difficult
integration of phase reordering into a commercial compiler.
The research is based on academic compilers that were
specifically developed by a small group to allow reorder-
ing of phases. Engineering this application of learning into
a commercial compiler is challenging. Unlike the academic
compilers where phase ordering have been studied, com-
mercial compilers have large code bases that are developed
over many years by dozens, or even hundreds, of develop-
ers. Therefore, reordering transformations may require sig-
nificant engineering and testing efforts.

8 Conclusion

This paper describes several challenges that need to be
overcome to enable the use of SVMs to learn method-
specific compilation plans in a commercial-grade JiT com-
piler. It describes in detail the data collection process and
the training of the SVM model and summarizes preliminary
results from an extensive and thorough experimental evalu-
ation of the methods described. The results indicate that for
an important type of benchmark, the benefit from selecting
method-specific plans based on a machine-learned model is
comparable with the hand-tuning of the compilation strate-
gies by dozens of expert developers over many years. The
results also indicate that the start-up performance of appli-
cations can benefit from method-specific compilation.

Copyright and Trademarks

SPEC R© and the benchmark name SPECjvm R© are reg-
istered trademarks of the Standard Performance Evaluation
Corporation. IBM and J9 are trademarks or registered trade-
marks of IBM Corporation in the United States, other coun-

tries, or both. The symbols R© or TMon their first occur-
rence indicates U.S. registered or common-law trademarks
owned by IBM at the time of publication. Such trademarks
may also be registered or common law trademarks in other
countries. Other company, product, and service names may
be trademarks or service marks of others.

References

[1] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W.
Reeves, D. Subramanian, L. Torczon, and T. Waterman.
Finding effective compilation sequences. In Language,
Compiler and Tool Support for Embedded Systems (LCTES),
pages 231–239, Washington, DC, 2004.

[2] J. Cavazos and M. F. P. O’Boyle. Method-specific dynamic
compilation using logistic regression. In Object-Oriented
Programming, Systems, Languages and Applications (OOP-
SLA), pages 229–240, Portland, OR, 2006.

[3] D. Detlefs and O. Agesen. Inlining of virtual methods. In
ECOOP ’99: Proceedings of the 13th European Conference
on Object-Oriented Programming, pages 258–278, London,
UK, 1999. Springer-Verlag.

[4] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.
Lin. LIBLINEAR: A library for large linear classification.
Journal of Machine Learning Research, 9:1871–1874, 2008.

[5] N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley, and

V. Sundaresan. Java
TM

Just-In-Time Compiler and Virtual
Machine Improvements for Server and Middleware Applica-
tions. In VM’04: Proceedings of the 3rd conference on Vir-
tual Machine Research And Technology Symposium, pages
12–12, Berkeley, CA, USA, 2004. USENIX Association.

[6] T. Hastie, R. Tibshirani, and J. Friedman. The elements of
statistical learning: data mining, inference, and prediction.
Springer Verlag, 2009.

[7] K. Hoste, A. Georges, and L. Eeckhout. Automated just-in-
time compiler tuning. In Code Generation and Optimization
(CGO). ACM, 2010.

[8] IBM Corporation. http://www.ibm.com/
developerworks/java/jdk/.

[9] S. Keerthi, S. Sundararajan, K. Chang, C. Hsieh, and C. Lin.
A sequential dual method for large scale multi-class linear
SVMs. In Knowledge Discovery and Data Mining (KDD),
pages 408–416. ACM, 2008.

[10] P. A. Kulkarni, S. Hines, J. Hiser, D. B. Whalley, J. David-
son, and D. Jones. Fast searches for effective optimization
phase sequences. In Programming Language Design and
Implementation (PLDI), pages 171–182, Washington, DC,
June 2004.

[11] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W. David-
son. Exhaustive optimization phase order space exploration.
In Code Generation and Optimization (CGO), pages 306–
318, New York, NY, 2006.

[12] H. Leather, E. Bonilla, and M. O’Boyle. Automatic feature
generation for machine learning based optimizing compila-
tion. In Code Generation and Optimization (CGO), pages
81–91, Seattle, WA, USA, 2009.

[13] Standard Performance Evaluation Corporation (SPEC).
http://www.spec.org/jvm98/.

