

Quest Patterns for Story-based Computer Games

Marcus Trenton, Duane Szafron, Josh Friesen

Department of Computing Science, University of Alberta
Edmonton, AB, CANADA T6G 2H1

Curtis Onuczko
BioWare Corp. 200-4445 Calgary Trail

Edmonton, Alberta, CANADA T6H 5R7

marcus.trenton@gmail.com, dszafron@ualberta.ca, joshd.friesen@gmail.com, curtis.onuczko@gmail.com

Abstract

As game designers shift focus from graphical realism to
immersive stories, the number of game-object interactions
grows exponentially. Games use manually written scripts to
control interactions. ScriptEase provides game designers
with generative patterns that generate scripting code to
control common interactions. This paper describes a new
kind of generative pattern, quest patterns, that generate
scripting code to control story plot. We present our quest
pattern architecture and study results that show quest
patterns are easy-to-use and reduce plot scripting errors.

Introduction
 Scripting is a major bottleneck in computer games.
Scripts control object interaction in a similar way that a
movie script controls character actions. Game scripts
control simple interactions, such as making a ghost appear
by a window when the hero enters a room. Scripts select
dialog lines for the player character (PC) and non-player
characters (NPCs), based on past actions and character
attributes. For example, a script is used to ensure that a
conversation with the villain cannot occur until the hero
possesses a gemstone. Scripts also remember data related
to PC actions, such as a list of places visited.
 This paper focuses on scripting that controls the plot in
story-based computer games. Conceptually, the plot is a
decision graph, where each decision point is a game event.
These events can vary in abstractness. Concrete events
include the death of a specific NPC or the PC’s acquisition
of an item PC. Abstract events include the PC becoming
the leader of an organization or becoming famous. It is
natural to aggregate plot events into more cohesive, self-
contained units to ease comprehension. Example
aggregations in other domains include book chapters, play
acts, and television episodes. In games, plot events are
commonly combined into quests or missions. An example
quest is to retrieve an ancient book from a ruined castle
and return it to its rightful owner. In today’s open world
games, PCs are not restricted to a linear story. Instead they
are free to roam about the world and interact with a variety

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of game objects in “almost” any order. Therefore, the
game’s plot graph must be comprehensive and flexible
enough to accommodate any meaningful PC or NPC action
or event in the game. For example, if the PC destroys the
ancient book then that quest fails, but the overall plot of the
game should continue. The challenge lies in making the
progression of events described in the plot graph easy to
understand and edit by the game story author.
 A scripting language is an interface between the game’s
engine, which knows when a lever is pulled, and the author
of a game story who knows why the lever should be pulled
and what should happen next. Since scripts are changed
and tested frequently they are usually interpreted (not
compiled). Some games use a general scripting language.
Vampire: The Masquerade – Bloodlines and Sid Meier's
Civilization IV use Python, while Homeworld 2 and World
of Warcraft use Lua. Other games use custom scripting
languages. Neverwinter Nights (NWN) uses NWScript,
and Elder Scrolls IV: Oblivion uses TES Script. Scripting
languages are like C or Java with much less functionality
and scripts are written manually using a text editor.
 With the increased complexity of game production, skill
specialization has occurred and many game story authors
have no programming (scripting) skills. Either an author
dictates story details to a programmer, or a technical
designer serves as an intermediary. This can result in
miscommunication that produces errors and delays.
 Even after a game’s release, scripts are still created.
Many games, such as NWN and Warcraft 3: Reign of
Chaos, support user created content to extend the lifespan
of games and generate greater user interest. A game user
must write scripts to add meaningful interactive content,
and the complexity of scripting foils many users.
 One way to solve the scripting problem is to reduce the
difficulty of programming so more game authors can
program. Environments like Alice and Scratch are
designed to simplify programming. Iconic programming
systems such as Kodu have also been used to create simple
games. Our solution is to provide an environment in which
game authors manipulate patterns that generate scripting
code. Generative game patterns that describe basic game
interactions are usable by the general population without
knowledge of computer scripting (Carbonaro et al. 2008).
In this paper, we introduce patterns that control plot and
show that these patterns are easier to use than manual

duane
Text Box
This is a preprint of an article that will appear in Proceedings of the Sixth Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE), 6 ms, Palo Alto, USA. October 2010. AAAI Press.

scripting and that their use generates scripts with fewer
plot errors than manually written scripts.
 Quest script errors have higher consequences than other
script errors. A bug in one quest may not only cause that
quest to be unplayable, but it may also affect dependent
super-quests. This can cause entire sections of a game to be
unplayable. For commercial games, a bug in a single quest
may impede the work-flow of several individuals for
several hours or a day. These individuals are often able to
work around the bug, but it results in them being able to
work at a fraction of the capacity that they could before.
The continued cost of these individual bugs adds up over
the project to be several hundreds of hours of wasted time.
The cost-savings in preventing quest bugs can be huge.

ScriptEase
ScriptEase (ScriptEase 2009) generates scripting code from
patterns (Gamma et al. 1994). An author creates instances
of patterns from a catalogue and adapts the instances to a
game story context. The adapted pattern instances are used
to generate scripting code. If the patterns in the catalogue
are insufficient for the current story, an author can
construct new patterns and add them to the pattern
catalogue for use in the current story and re-use in future
stories. Although the pattern catalogue is game
independent, the current implementation of ScriptEase
generates NWScript code for the NWN game. This
implementation is sufficient to show the utility of using
generative patterns in story-based games

Neverwinter Nights
NWN (released by Bioware Corp. in 2002) provides a
testbed for evaluating the concepts introduced by
ScriptEase. NWN is popular story-based game where a
player controls a single player character (PC) that interacts
with a fantasy world through movement, interaction with
game objects, conversation, magic spell casting, and
combat. NWN won 86 awards and its popularity was
enhanced by releasing the Aurora Toolset, which enabled
players to create their own stories (modules). The Aurora
Toolset supports visual tools for conversation authoring,
NPC creation, environment creation and game object
creation. What is lacking in the toolset is a simple way of
designing game-object interactions. An author must
manually write scripts in the NWNScript language using a
text editor and a predefined list of API functions, variables
and constants. There are no debugging tools and to
preserve game immersion for the player, script errors fail
silently rather than presenting an error notification.

ScriptEase Patterns
ScriptEase allows an author to create story interactions in a
top-down manner. The author starts with an abstract intent
by selecting a pattern and creating an instance. The author
then adapts the pattern in a hierarchical manner, starting
from general options and proceeding to specific details.

This is the opposite of constructing a code script by
creating expressions that are placed into statements that are
placed into scripts. With ScriptEase an author always
selects from a small number of explicit options and never
has to create any kind of construct on a blank page.
 Suppose an author wants a Skeleton to be spawned when
the Emerald of Protection is removed from the Statue. This
is an encounter example, where the PC interacts with a
game object. The author first selects an intent, the When
the Placeable loses Specific Item spawn Creature pattern
from the encounter pattern catalogue to create an instance
of it, as represented by the E line in Figure 1.

Figure 1 An encounter pattern in ScriptEase

 Figure 1 shows the author selecting the Emerald of
Protection as the Specific Item option from a list. The
author has already selected the Statue as The Placeable
option and Skeleton as the Creature Blueprint option. If the
author wanted to adapt this encounter further by changing
or deleting the visual effect or adding another action, the
author could open this encounter, as shown in Figure 1. An
encounter can contain definitions (D), conditions (C) and
actions (A). To add an action, the author selects it from a
list and sets its options. A case study (Carbonaro et al.
2008) showed that generative encounter patterns are a
solution to the manual scripting problem for interactions
between game creatures and game objects. It has also been
shown that behavior patterns can specify which tasks are
performed by NPCs and when behaviors can be initiated,
interrupted, resumed and learned (Cutumisu et al. 2008).
Dialogue patterns (Siegal and Szafron 2009) can be used to
control conversation by generating scripts that determine
when a line should be spoken. In this paper, we introduce
quest patterns to control the plot in story-based games.

Quest Patterns
A story-based game has a non-linear plot that forms a large
decision graph that controls the potential decisions a player
can make during the story. The graph is traversed as the
story unfolds. We divide the quest graph into units called
quests. A quest is single mission that the PC can or must
complete and is divided into quest points. An in-game
journal lists active and completed quests and has entries for
each quest point to summarize quest progress and remind

the player what the PC should try to achieve next. For
example, a Defeat the Dragon quest can have three quest
points: Converse, to learn that the dragon is a menace; Kill,
when the dragon is actually killed; and Converse again to
report success. This example is represented by the
Exterminate quest pattern, the first line in Figure 2.

Figure 2 An exterminate pattern using meta quest points with a

pair of possible instances

 Figure 3 shows a ScriptEase textual quest representation,
where Q denotes a quest, ▪ (bullet) denotes a quest point
and the Converse quest point is open to reveal its
components. A quest pattern guides a player through a
quest by enabling quest points at the appropriate time. The
first quest point (Converse in Figure 3) is enabled when the
game begins, so the PC can converse with the quest giver
at any time. An enabled quest point is reached when it
either succeeds or fails. Each quest point has at least one
encounter pattern that determines when a quest point
succeeds (E+ in Figure 3), and zero or more encounter
patterns that determine when a quest point fails (E-). The
Converse quest point in Figure 3 succeeds if the PC
reaches a line of dialog and fails if the quest giver dies
before the conversation occurs. Success and failure can
each have a journal entry. If a quest point succeeds, its
successor quest points are enabled. A quest point maintains
a list of which quest points can enable it and how many of
those quest points must succeed before it is enabled. For
linear quests, when a quest point is reached, the lexically
next quest point is enabled. When the End quest point
succeeds, the quest succeeds. If a quest point fails then it
enables no other quest points. If the End quest point cannot
succeed, then the quest fails automatically.

Figure 3 A ScriptEase Exterminate quest, with the Converse quest

point opened to reveal its success and fail encounters

 A quest point cannot be reached if it is not enabled.
What happens if an encounter occurs before its quest point

is enabled? For example, assume the PC kills the dragon
before conversing with the quest giver. The Kill quest point
has not been enabled when the dragon is killed. The
generated script records that the quest point encounter
occurred, but does not mark the quest point as reached,
since it was not enabled. However, in this case, as soon as
the PC Converses with the quest giver to receive the quest,
the Kill quest point will be enabled. Since the success
encounter has already occurred, the Kill quest point will be
immediately reached, with success. Therefore, the PC can
perform the encounters in the first two quest points of the
Exterminate quest in the opposite order without breaking
the quest. The separation of the concepts enabled and
reached allows quests to progress even if the encounters in
the quest points occur in an alternative order. ScriptEase
automatically generates the complex scripts that determine
at run-time whether any quest point is enabled, reached,
successful, or failed. The author’s task is reduced to
specifying the success and failure encounter for each quest
point and the enable relationships between quest points.
 Quests are abstracted to increase reusability. The
Exterminate pattern instance (line 1 of Figure 2) is very
specific – it starts and ends with a Converse quest point.
However, similar quests often start and end in a variety of
different ways – the author may want the PC to arrive in a
village and witness the menacing dragon leaving, and after
the dragon is defeated a villager may reward the PC with
some jewelry. In this case, the author may want to start the
quest with an Arrive quest point when the PC enters the
village and end the quest with the Converse – Give Item
quest point shown as the second line in Figure 2.
 Although the two quest instances in Figure 2 have only
one quest point in common, they are conceptually similar.
A meta quest point is an abstract quest point that can easily
be adapted to one of a small set of intended choices or to
any other quest point, if necessary. The Start and End quest
points are actually meta quest points whose intended
choices include Converse and Arrive, and Converse and
Converse – Give Item respectively. The third line of Figure
2 shows the Exterminate pattern with meta quest points.
Figure 4 shows an instance of the Exterminate quest in
ScriptEase, where ¤ represents a meta quest point. The
Start meta quest point has been bound to an Arrive quest
point and the End meta quest point has not yet been bound.
There are 17 meta quest points in the pattern library
including Discover that has 7 common choices including:
Converse, Arrive, Approach and Use Placeable.

Figure 4 An Exterminate quest instance with meta quest points in

ScriptEase

 Many quests are non-linear. For example, suppose the
dragon problem could also be resolved by persuading the
dragon to leave the village. Figure 5 shows this more
general quest with two branches: one contains a Kill quest

point and the other contains a Verbal Skill (e.g. intimidate,
bluff, diplomacy, etc.) quest point. The notation indicates
that the second Converse quest point is enabled when at
least “1” of these two quest points succeeds.
 The additional choices complicate the logic for
determining if the quest fails or succeeds. Although the
PC’s lack of skill may cause the Verbal Skill quest point to
fail, the Kill quest point must also fail for the quest itself to
fail. ScriptEase generated scripts support this logic by
enabling the second Converse quest point when either
quest point succeeds and by closing the quest if both fail.

Figure 5 A non-linear quest

 The plot may consist of many dependent quests. A
subquest is a quest pattern that can be used as a single
quest point in another quest. When a subquest
succeeds/fails it succeeds/fails as a quest point in the
superquest that contains it. For example, suppose the
dragon cannot be persuaded to leave using a Verbal Skill
and will only leave voluntarily if it receives a magical
gemstone that the villagers stole from it. The acquisition
and delivery of the gemstone can be represented by a
Retrieve quest pattern. The dragon quest can then be
represented by the Do one of many quest pattern shown in
Figure 6, where subquests are represented by rectangles.

Figure 6 A do one of many quest with subquests

 The Join quest point succeeds as soon as the required
number of enabling quest points succeed. Changing the
number of enablers from 1 to the number of entering arcs
converts a quest from a “do one of many” to a “do all”.
Supporting an arbitrary number of enablers gives even
greater utility, such as “do 2 of 4”. The ScriptEase textual
view of this pattern, with expanded subquests is shown in
Figure 7. The ScriptEase textual tree view does not
explicitly display the branches. However, viewing the
enablers of the Join quest point shows that it is not linear.

Figure 7 Subquests and non-linear quests in ScriptEase

User Study
A previous user study showed that quest patterns can be
used to randomly generate side quests (Onuczko et al.
2008) that were judged as good as manually constructed
side quests (Onuczko 2007). Another study demonstrated
that high school students are capable of using encounter
patterns to insert player-object interactions into NWN
stories (Carbonaro et al. 2008). In this paper, we present
user study results that measure the ease-of-use and
reliability of quest patterns compared to manual scripting
of quests. University students scripted NWN quests using
both ScriptEase and the native text-based NWScript.
 The user study had an incomplete repeated measures
design with four phases. Participants were randomly
divided into two equal-sized groups: one group used quest
patterns first and the other group used NWScript first. In
the first phase a demographics survey identified participant
age, field of study, and prior use of ScriptEase and
NWScript. In the second phase, each group used one tool.
In the third phase each group used the other tool. In the
fourth phase, we recorded participant preferences.
 There were two study objectives: which tool produced
scripts more effectively (in a shorter time with fewer
errors) and which tool was preferred (easier-to-use). For
effectiveness, we measured the number of quests
completed, the number of completed quests that functioned
correctly, and the amount of time needed to complete
quests. Preference was determined by compiling survey
responses about individual quests and about overall
experience. Each preference question used a 5-point scale.
Each quest had a preference question concerning ease-of-
use, speed, and ease-of-debugging. There were two overall
preference questions: which tool was preferred during the
study and which would be preferred for future use.
 The participants were screened for familiarity with the
concepts needed to complete the study. All but one of the
twenty-three participants were computing science or
engineering students at the University of Alberta. The
participants were required to know at least one C-like
programming language, to shorten the time needed to learn
NWScript. Participants had an average of 5.3 years of
programming experience with a range of 1 to 30 years.
Familiarity with computer games was required to reduce
the time needed to test scripts in the game.
 All participants had played at least one story-based
game, and 78% had played seven or more story-based
games. In fact, 52% of the participants had played NWN
before. A smaller percentage, 21%, had previously used
NWScript and 17% had used ScriptEase (without quest
support). The participants were familiar enough to know
what capabilities to expect from the tools but not familiar
enough to know the tested tools thoroughly.
 Participants were instructed to script eight quests with
each tool. Except for the quests, the story was otherwise
complete: all required terrain, objects, and conversations
were present. We assumed that eight quests were more
than a participant could complete in the 175 minutes
allotted for each tool. A tutorial with an example quest was

provided with each tool. The quests were constructed in a
specified order. The same order was used for each tool.
The quests varied in complexity from killing zombies to
implicating a tax collector by planting contraband in his
possessions. After each quest was completed with the
second tool, participants marked which tool they preferred
for that quest. After a time limit was reached for each tool
they completed an overall preference questionnaire.
 The order of quests was chosen to measure specific
characteristics of the tool. The complexity of each
successive quest increased, except for the final quest. The
first quest was a simple linear quest. The second quest was
simple and linear, but the pattern catalogue lacked the
corresponding quest pattern to force the participants to
adapt a different quest pattern. The third quest was simple
but could be naturally completed two different ways. The
fourth through six quests were linear but successively
increased in length. The seventh quest was linear with two
subquests. The final quest was simple and similar to the
first quest to try to distinguish between those who ran out
of time and those who could not understand how to create
the most complex quest.

User Study Results
Figure 8 shows the number of participants who completed
each quest with each tool. Six participants completed the
third quest with quest patterns and seven did so with
NWScript, There is no statistically significant difference
between the average number of quests completed with each
tool (1.74 for ScriptEase and 2.17 for NWNScript).

Figure 8 Number of participants who completed a specific quest

 Quest patterns produced more reliable quests overall
(Figure 9). However, for quest 1, quest patterns were less
reliable than NWScript, perhaps due to a steeper learning
curve. All participants were experienced programmers, but
only 17% had used ScriptEase before. Note, 30 of the 40
quests completed using quest patterns functioned correctly,
compared to 26 of the 50 written in NWScript. The
percentage of correct quests per participant had a mean of
75.25% for quest patterns and 47.89% for NWScript,
which is significantly different. A one-tailed T-test,
assuming unequal variance of the samples, produces a p-
value of 0.0122, well within statistical significance at the

95th percentile. Scripts generated by quest patterns were
1.57 times more reliable than scripts written in NWScript.
For quests 2 and 3 the multipliers were 2.43 and 4.67
respectively. Even with fewer samples the reliability
difference between the tools for quests 2 and 3 is
significant at the 95th percentile; a one-tailed T-test for
quests 2 and 3 produced p-values of 0.0001021 and
0.03482 respectively. Neither tool was statistically more
reliable for quest 1. The most frequent bugs found in
NWScript quests originated from quest events being
completed in an unintended order.

Figure 9 Percentage of completed quests that functioned correctly

 Intuitively, Figure 10 shows that after a sizeable learning
curve (time spent on the tutorial plus time used to
implement the first quest), quest patterns are quicker to
use. However, this assertion cannot be supported
statistically. The mean time for this learning curve was 129
minutes for quest patterns, compared to 90 minutes for
NWScript. Using a one-tailed, unequal variance T-test –
this difference is statistically significant at the 95th
percentile with a p-value of 0.000394. On a quest-by-quest
basis, NWScript was 61% faster for quest 1 with a p-value
of 0.000685, quest patterns were 42% faster for quest 2
with a p-value of 0.00384, and no tool was significantly
faster for quest 3 (the p-value was 0.379). Further quests
were not analyzed since so few participants implemented
those quests. Even though NWScript was quicker to learn,
it did not result in quicker times for later quests.

Figure 10 Average minutes needed to complete an individual

quest

 Z-tests were used for calculating preference, with a
hypothesized population mean of neutral preference and
using the sample’s standard deviation. Two-tailed Z-tests
showed that participants were neutral about tool preference
(Figure 11) for the first (learning) quest (p-value of 0.959),
and overall (p-value of 0.486). However, after the first
quest they significantly preferred quest patterns. The one-
tailed Z-test on the preferences scores for quests 2 through
6 shows quest patterns were preferred at the 95th percentile
with a p-value of 2.042×10-12.

Figure 11 Tool preference overall and by quest

 We identified two important factors in the design of the
study. First, participants commented that they only felt
comfortable with the tools near the end of the allotted time.
The study should have been longer to reduce the impact of
the learning curve and allow more data to be gathered.
Participants preferred quest patterns for the later quests,
once they became familiar with the interface. The second
factor is that participants were “fooled” into thinking that
they had finished a quest with NWScript, even though it
did not meet the specifications. Therefore they proceeded
to the next quest before actually finishing. This artificially
reduced the times for NWScript quests and allowed them
to implement more quests with NWScript. If a verifier
checked each implemented quest then it would have caught
the bugs in the quests, slowing the development of the
buggy NWScript quests but increasing the percentage of
correct quests. Since the reliability of the respective
approaches was part of the test, no such verifier was
provided. The fact that quest patterns automatically
generate correct scripts to prevent many of these bugs
indicates that quest patterns are more robust and in
designing real games, no verifier is available.

Conclusion of User Study
Generative quest patterns were easier to use and more
reliable than manual scripting. Quest patterns were
significantly preferred after the learning phase (completion
of the tutorial and first quest). Significant results favouring
quest patterns were found in quest reliability, both overall
and for quests 2 and 3 specifically. The data showed that
quest patterns were 1.57 times more reliable (when
correctness is binary) than using manual scripting. More
specifically, when an appropriate pattern was not available

for a quest, quest patterns were still 2.43 times more
reliable and 42% faster than using manual scripting,
supporting the assertion that quest patterns are easily
adaptable. Another impressive result is that quest patterns
were 4.67 times more reliable for the quest involving
multiple branches, showing that automated management of
quest progression simplifies the process of creating more
complex quests. In contrast, participants implemented
more (but not by a statistically significant margin) quests
using NWScript, (the T-test yielded a p-value of 0.194);
however, they frequently suffered from bugs.
 For a commercial video game, more reliable scripts
reduce the cost of testing, especially for story-based games
with branching plots. Therefore, the superior reliability and
preference for quest patterns supports our assertion that
they are more effective than manual scripting.

Conclusion
Generative design patterns provide reliability and
efficiency by automatically generating scripts for
frequently used domain concepts. A study was conducted
to determine if generative design patterns could be used to
support quests for story-based games. The study provided
some evidence that generative quest patterns are effective.
 It showed that quest patterns generated more reliable
scripts than manual scripting and that adapting patterns
was a viable alternative to manual script writing. After a
higher learning curve, participants also preferred to use
quest patterns over manual scripting. Overall, quest
patterns were more effective than manual scripting.
 This study supports the use of quest patterns in story-
based games. They will reduce the bottleneck in scripting
computer games since they eliminate the requirement of
programming knowledge for game designers.

References
Carbonaro, M., Cutumisu, M., Duff, H., Gillis, S., Onuczko, C.,
Siegel, J., Schaeffer, J., Schumacher, A., Szafron, D. and Waugh,
K. 2008. Interactive story authoring: A viable form of creative
expression for the classroom. Computers and Education 51 (2),
687-707.
Cutumisu, M., and Szafron, D. 2009. An Architecture for Game
Behavior AI: Behavior Multi-Queues. In Proceedings of Artificial
Intelligence and Interactive Digital Entertainment, 20-27.
Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA.: Addison-Wesley.
Onuczko, C. 2007. Quest Patterns in Computer Role-Playing
Games. MSc Thesis.
Onuczko, C., Szafron, D., and Schaeffer, J. 2008. Stop Getting
Side-Tracked by Side-Quests. In AI Game Programming Wisdom
4, Editor S. Rabin. Charles River Media, 513-528.
ScriptEase. 2009. http://www.cs.ualberta.ca/~script/.
Siegel, J., and Szafron, D. 2009. Dialogue Patterns - A Visual
Language For Dynamic Dialogue. Journal of Visual Languages
and Computing 20 (3), 196-220.

