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ABSTRACT
Motivation: In general, each cell signaling pathway involves many
proteins, each with one or more specific roles. As they are essen-
tial components of cell activity, it is important to understand how these
proteins work – and in particular, to determine which of a species’ pro-
teins participate in each role. Experimentally determining this mapping
of proteins to roles is difficult and time consuming. Fortunately, many
pathways are similar across species, so we may be able to use known
pathway information of one species to understand the corresponding
pathway of another.
Results: We present an automatic approach, Predict Signaling
Pathway (PSP), that uses the signaling pathways in well-studied spe-
cies to predict the roles of proteins in less-studied species. We use a
machine learning approach to create a predictor that achieves a gene-
ralization F-measure of 78.2% when applied to 11 different pathways
across 14 different species. We also show our approach is very effec-
tive in predicting the pathways that have not yet been experimentally
studied completely.
Contact: bioinfo@cs.ualberta.ca
Supplementary information: The list of predicted proteins
for all pathways over all considered species is available at
www.cs.ualberta.ca/∼bioinfo/signaling.

1 INTRODUCTION
Intracellular and intercellular communications play a crucial role in
cell life. We represent these communications by a directed graph
of biochemical reactions. This network of reactions, called a signal
transduction pathway or simply signaling pathway, is activated by
receptors on the surface of the cell and includes secondary messenger
molecules, proteins and compounds (small molecules). Understan-
ding these pathways can help us discover previously unknown aspects
of cellular life and may provide useful information for improving
health. For instance, many known diseases, including diabetes
and several cancers, are caused by cellular abnormalities linked to
signaling pathway malfunctions (Seifter et al., 2005). A better under-
standing of signaling pathways could lead to better treatments for
these afflictions by aiding in drug design and development of other
pathway interventions. Unfortunately, experimental approaches for
investigating malfunctions in these networks are extremely difficult
due to the large number of proteins in each cell and a lack of infor-
mation about which proteins are involved in each pathway and their
specific roles.

Computational approaches based on machine learning have
become very popular for addressing complex biological challenges

(Furey et al., 2000; Ding and Dubchak, 2001; Guyon et al., 2002;
Park and Kanehisa, 2003; Lu et al., 2004). Unfortunately, there is a
dearth of research about applying computational techniques to help
understand signaling pathways. Some published results use compu-
tational techniques to understand metabolic pathways – see Schilling
et al. (1999). There have only been a few recent contributions; e.g.,
Ma and Zeng (2003) find shortest paths between metabolites, Pireddu
et al. (2006) use machine learning to predict the role of proteins in
metabolic pathways and the MetaCyc group (Caspi et al., 2008) pro-
vides two databases of organism-specific metabolic pathways: some
experimentally elucidated and some predicted (BioCyc). However,
none of these projects focus on signaling pathways. Previous work
on signaling has been restricted to predicting individual signaling
peptides and sorting signals (Nielsen et al., 1999) or the effects of
single genes on the overall functioning of signaling networks (Cra-
ven, 2002) or predicting protein-protein interactions (Yaffe et al.,
2001) that can be used to predict signaling pathways. While there
are also many results that deal with a particular pathway or spe-
cies (e.g., Kim et al., 2004), their narrow focus is not expandable to
the other pathways or other parts of pathways. The Panther group
(Thomas et al., 2003) also provides a database of pathways, both
metabolic and signaling, whose associated proteins are annotated by
human experts. This is used to train HMMs that can then be used
to classify novel proteins. Their system is a collection of proteins
gathered by human experts, which uses a Hidden Markov Model
(HMM) to classify functionality of novel protein sequences. While
their computational approach has high coverage over mammalian
protein-coding genes, it is not clear how to measure its accuracy,
which makes it difficult to compare to other approaches.

The Predict Signaling Pathway (PSP) system presented in our
paper uses an approach similar to Pireddu et al. (2006), but in
the more complex domain of predicting signaling pathways. Both
systems use homologous pathways and predict individual nodes in
the graph structure. However, while Pireddu et al. use BLAST and
HMM to predict enzymes in metabolic pathways, our PSP uses a
very different technique, machine-learned classifiers, to predict pro-
teins in the signaling pathways. We did not use HMMs as they did
not perform as well for signalling pathways as they do for metabolic
pathways: HMMs can accommodate the narrow variation in protein
sequence occurring in enzymes but not the wider variation in protein
sequences that serve in signalling pathways. Moreover, we employ
a “retrospective” analysis that suggests that PSP’s predictions are
highly effective in predicting proteins that have not yet been experi-
mentally verified. Fröhlich et al. (2008) provide another prediction
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Fig. 1. Overview of Predict Signaling Pathway (PSP): Given the Mπ
S

pathways of various species S, MMSP builds the union model M̂π . TSPC
uses the proteomes PS of these species (not shown) to train one classifier γρ

for each role ρ of M̂π (corresponding to each node). Finally, PSPR uses these
classifiers along with the proteome of a new species Snew to predict which
protein(s) will qualify for each role in this π signaling pathway in this new
species.

system that predicts pathways using protein domains, which are sub-
sequences of a peptide string that are intended to be functional units
that can act independently from the rest of the protein chain. They
predict whether a protein is involved in a particular pathway or not,
but do not provide a way to predict the specific role of each protein.
While their system can determine whether a protein belongs to a
subset of roles in some signaling pathways, they limit their predicti-
ons to annotated human genes that have domain signatures. Testing
their system on 10 out of the 11 human signaling pathways available
in the KEGG database (Kanehisa et al., 2008), they obtained an F-
measure of approximately 80%. Our PSP system, on the other hand,
can predict pathways using the whole proteome of any species and
can predict the exact role of each protein within arbitrary signaling
pathways, with an overall F-measure of 90.4% over all 11 human
signaling pathways available in KEGG.

2 SYSTEM AND METHODS
Given a species’ proteome (i.e., the set of its proteins) and a specified set of
signaling pathways, PSP predicts which of these proteins play which role in
each of these signaling pathways for that species. As shown in Figure 1, our
PSP system has three sub-systems, Make Model Signaling Pathway (MMSP),
Train Signaling Pathway Classifiers (TSPC) and Predict Signaling Pathway
Roles (PSPR).

2.1 Pathway Representation
In general, a pathway structure is a directed graph that describes the relations
between proteins1 in a signaling pathway. Each node of the graph represents
a role of the pathway and involves a set of proteins, and each arc represents a

1 In general, these graphs can also include compounds – i.e., small molecules.
However, we ignore them for this paper, focusing on only the proteins.

Fig. 2. A small part of MAPK signaling pathway structure in human.

relation (activation, inhibition, binding, etc.) between its source node and its
target node. Figure 2 depicts a small part of the MAPK pathway structure in
human, showing nine relation arcs, of three different types. An activation arc
“α → β” indicates that proteins in the source node α can activate proteins in
the target node β; an inhibition arc “−|” indicates that proteins in the source
node inhibit proteins in the target node; and a bind-to arc “–” means that any
protein in the source node can bind to any protein in the target node. For
example, Figure 2 shows that proteins in the SOS, RasGRP and PKC nodes
can activate proteins in the Ras node, while proteins in the Gap1m and NF1
nodes can inhibit proteins in the Ras node.2 We take our pathways from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2008),
but other sources could be used as long as they have an appropriate graph
structure.

We represent signaling pathways using the following notation. Each
pathway M = 〈N , A〉 is a graph where each node n ∈ N has an associa-
ted “role”, and a set of associated proteins Pn , and the arcs A ⊂ N × N are a
subset of pairs of nodes, each labeled with a type a(〈n′, n′′

〉) ∈ { activation,
inhibition, phosphorylation, dephosphorylation, binding }. Mπ

S denotes the
instance of the π pathway for the species S. For example, the MAPK pathway
for H. sapiens is denoted M M AP K

H.sapiens ; it may be different from homologous
pathways in other species — e.g., M M AP K

H.sapiens 6= M M AP K
M.mulatta . The symbol nρ

S

denotes the node with role ρ associated with species S; e.g., nRas
H.sapiens is the

human node with the Ras role. A specific node nρ
S is identified with a single

species S and it can appear in several pathway graphs of that species and in
the pathways of many species. For example, the nRa f 1

H.sapiens node appears in
M M AP K

H.sapiens , MV EG F
H.sapiens , MerbB

H.sapiens and there are many nodes with role Raf1

in different organisms: nRa f 1
H.sapiens , nRa f 1

R.norvegicus and nRa f 1
M.mulatta . However, a

role can appear only once in a single pathway of a single species. For example,
nR AS

H.Sapiens can appear only once in the MAPK pathway of H.Sapiens.
We let Rπ

S = {ρ | nρ
S ∈ Nρ

S } denote the set of roles that appear in pathway
instance Mπ

S = 〈Nπ
S , Aπ

S 〉. For example, Ras is a member of RM AP K
H.sapiens . PS

denotes the proteome of species S and Pρ
= ∪S Pρ

S denote the union of all
the proteins associated with the role ρ across all available species. Figure 3
presents a summary of these, and other, terms.

2.2 MMSP Constructs the Model Pathway
There are many known cellular signaling pathways, including the eleven
KEGG pathways, each with its own function. However, these pathways are
vary over different species; e.g., the VEGF pathway in P. troglodytes involves
|RV EG F

P. troglodytes | = 30 roles and 32 arcs, while the same pathway in X. laevis
has only |RV EG F

X. laevis | = 27 roles and 31 arcs. In fact, there are roles and arcs
in P. troglodytes that are not in X. laevis, and vice versa. Our goal is to use
the pathways of a set of studied species to predict the pathways of less known
species. For example, we might use the VEGF pathways of both P. troglodytes
and X. laevis to find the proteins participating in various roles in the VEGF
pathway of a third species. This species might have some roles and arcs that
correspond to only P. troglodytes, and other roles and arcs that correspond

2 Here we identify each node with its associated role. Hence, the “Ras node
in human” refers to the node whose role is Ras, which we write nRas

H.sapiens
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S: species; n: node; π : (signalling) pathway; ρ: role

Mπ
S = 〈Nπ

S , Aπ
S 〉 instance of π pathway for the species S;

graph structure involving nodes Nπ
S and arcs

Aπ
S

Mπ all models associated with pathway π , across
species

M̂π the union pathway for the π pathway
Rπ

S set of roles in pathway instance Mπ
S

nρ
S nρ

M̂
node with role ρ associated in species S; in
model pathway M̂

P PS Pρ Pρ
S Pρ

M̂
all proteins ... across species; ... in species S;
... associated with role ρ; ... role ρ in species
S; ... role ρ in model pathway M̂

P̂ρ
S for the set of proteins predicted to serve role

ρ in species S
γρ(p) classifier associated with role ρ

PSP(Mπ , P ) “Predict Signaling Pathway”
MMSP(Mπ ) “Make Model Signaling Pathway”

TSPC(M̂π , P ) “Train Signaling Pathway Classifiers”
PSPR(M̂π , PS) “Predict Signaling Pathway Roles”

Fig. 3. Glossary of Terms used

only to X. laevis. (In fact, the VEGF pathway in H. Sapiens indeed has some
roles and arcs corresponding to only P. troglodytes and some other roles and
arcs corresponding to only X. laevis.)

MMSP (a sub-system of PSP) starts by building a general model pathway
by combining the pathway versions for a set of model species. This requi-
res creating a “graph union” of the graphs for each species pathway. This
approach not only creates a diverse set of roles and arcs in the pathway
structure, but also increases the number of proteins associated with each role.

MMSP constructs the model pathway M̂ by taking the union of all pathway
instances. The model pathway has a node nρ

M̂
for each role ρ occurring in

any of the species models, whose associated proteins Pρ

M̂
are the union of all

of the proteins associated with the same role in any species. M̂ also includes
an arc of type a between two nodes nρ1

M̂
and nρ2

M̂
if nodes with these two roles

are connected by the same type of arc in any of the individual species. 3

Figure 4 shows an example of the union of two trivial pathways, where each
node nρ is labeled by its role ρ (on upper left bump) and shows the associated
set of proteins Pρ . The set of proteins in role b of the model pathway is the
union of the set of proteins of role b in species A and B: Pb

M̂
= Pb

A ∪ Pb
B .

The set of arcs of the union pathway is the union of the sets of arcs from the
two pathways. Note that there is only one arc from 〈nb

M̂
, na

M̂
〉, of type →

corresponding to both 〈nb
A, na

A〉 and 〈nb
B , na

B〉.

2.3 TSPC Learns a Set of Classifiers
After producing this model pathway M̂ , TSPC learns a set of classifiers, one
for each of M̂ ’s roles. Each of these role-specific classifiers γρ(p) predicts
whether each protein p in a species plays the ρ role in the pathway for that
species. We let γρ :PS → {Y, N } denote the classifier associated with role ρ,
where γρ(p) = Y if the protein p plays role ρ in S and γρ(p) = N otherwise.
For example, the γa(·) classifier for the role a (not shown in Figure 4) returns
Y if it predicts that the protein plays role a in the pathway, and N otherwise.

There are many supervised learning methods that can learn a classifier from
a data sample whose instances are each labeled either positive or negative.
Like most standard classifiers, our γρ ’s take as input a fixed-size vector of

3 The same pair of nodes could be connected many times in the union pathway
M̂π if they appeared with different labels in different species.

Fig. 4. Building the model pathway. Two instances of a pathway in two
different species A (left) and B (middle). The model pathway (right) is created
by combining pathway instances in species A and B. The labels a, b, c, and d
(appearing in the warts) indicate the roles of each node; hence upper node in
Species A is na

M̂
, with proteins Pa

M̂
= {p1, p4}. Similarly we see Pb

A = {p2}

and Pd
B = {p6, p7}.

features to describe each instance (protein). We therefore compute a fixed
set of features based on the primary amino-acid sequence of the protein. The
first feature for each protein (with regard to the classifier γρ(·)) is a measure
of the similarity between that protein and the most similar protein in the
model pathway that is associated with role ρ. We use the BLAST algorithm
(Altschul et al., 1997) to compute this similarity measure. In general, BLAST
takes as input a specific protein p and a database of proteins D, and returns a
mapping, BLASTp,D , from each protein p′

∈ D to R, where BLASTp,D(p′)

is a measure of how similar p′ is to p. The similarity result is dependent on the
database, including its size. For our computations, we set D to be the set of
proteins described in the KEGG website. For each protein, BLAST actually
returns a vector of values, including a similarity score, percent identity and
an e-value. We use only the e-value, where smaller values indicate a higher
similarity: In particular, the first feature value for protein p, wrt classifier γρ ,
is eρ(p) = minq∈Pρ ep,q where ep,q is the e-value of protein q wrt protein p:

ep,q = BLASTp,DKEGG (q) (1)

Although the first feature depends on the union model for the role as well
as the protein, the other features depend only on the protein. The next nine
features of protein p correspond to its subcellular locations. TSPC uses the
Proteome Analyst system (Lu et al., 2004) to predict in which of the nine
cellular locations this protein does its main work: nucleus, cytoplasm, per-
oxisome, mitochondrion, plasma membrane, lysosome, golgi, endoplasmic
reticulum and/or extracellular. Note that a protein can be in more than one
location; hence TSPC uses 9 subcellular features (each a single bit) to encode
this information. TSPC also uses the Phobius system (Käll et al., 2007) to
predict two more features for protein p: the number of membrane spanning
regions (a non-negative integer) and whether it is a signal peptide or not (a
bit). These features are relevant characteristics of roles in signaling pathways.
For example, each signaling pathway should have one or more roles whose
proteins each have a positive number of membrane spanning regions since the
signal must pass through some cell membrane. All together, TSPC computes
twelve features for each protein: the real-valued eρ(p), nine binary subcel-
lular values, the number of membrane regions and one binary feature that
indicates if the protein p is a signal peptide or not.

For training examples, TSPC uses the model pathway M̂π to obtain labeled
positive instances — e.g., for the role a in Figure 4, p1 and p4 serve as positive
examples. For negative examples, we use all other proteins from the set of
species that were used to produce the model pathway. In this implementation,
we consider k = 14 species {S1, · · · , Sk} (Table 2), with proteome sizes
varying between 7,126 proteins and 29,445 proteins, with a total of 278,201
proteins, P = ∪

k
i=1 PSi

across all species. The number of proteins |Pρ
S | in any

single node nρ
S varied from 1 to 45 across the 5,608 nodes in the 11 different

pathways (of the 14 species) that we considered.
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To train a γρ(·) classifier for each role ρ, we must identify many training
instances, both positive and negative. The most straightforward way to train
a classifier for role ρ is to use a set of proteins, Pρ , as positive examples
and the complimentary set, P − Pρ , as negative examples. However, this
leads to a very imbalanced training set. Therefore TSPC used a quick cut-
off on the e-value to define our negative training set, including only those
proteins p where eρ(p) < 10 as negative training examples. This reduced
the number of negative examples to approximately 1,000 instances, which
creates more balanced training sets. The remaining negative training instances
are the proteins that are most similar to the positive training instances, but do
not play the appropriate role.

For each of the 5,608 roles in the 11 union pathways, TSPC trained a
Support Vector Machine (SVM) classifier (Bishop, 2006) using these labeled
training instances. This system constructs a hyperplane that approximately
separates the classes, by maximizing the margin between the two data sets.
We used thelibsvm 2.86 implementation of SVM (Chang and Lin, 2001)
with default settings and chose either linear or radial basis function kernels
for each role, selecting the one with the larger “in-fold” training accuracy
obtained by cross validation; see Section 3.2. We also tried polynomial basis
functions with a range of degrees and a sigmoid basis function. However,
these basis functions did not perform as well as the radial basis function
where a non-linear function performed better.

2.4 PSPR uses the Model Pathway to Make Predictions
about Novel Proteins

PSPR is the component of PSP that uses the classifiers built by TSPC, within
the model pathway M̂π , to predict which proteins of a given proteome PS ,
from a new species S, play which roles in this π pathway. For each role ρ

in the model pathway M̂π , PSPR applies ρ’s classifier γρ , to each protein
in PS to produce the set P̂ρ

S = {γρ(p) = Y | p ∈ PS}, which is the set
of S’s proteins predicted to play role ρ. For some roles, this set is empty.
The “predicted pathway roles” Rπ

S = { ρ ∈ M̂π
| P̂ρ

S 6= {} } include all
roles ρ in M̂π for which P̂ρ

S is non-empty. We then let Nπ
S be the associated

nodes in this predicted pathway, with those roles. In addition, Mπ
S inherits

all arcs from M̂π that connect nodes in Mπ
S . That is, if nα

S , nβ
S ∈ Nπ

S and
〈nα

M̂
, nβ

M̂
〉 ∈ Aπ

M̂
then 〈nα

S , nβ
S 〉 is in Aπ

S ; moreover, it will have the same

label: a(〈nα
S , nβ

S 〉) = a(〈nα
M̂

, nβ

M̂
〉).

3 EMPIRICAL RESULTS AND DISCUSSION
Our experiments were based on the KEGG Pathway database, using
the eleven pathways shown in Table 1, on the fourteen species shown
in Table 2. As each pathway varies in size for different species, the
second and third columns of Table 1 give the minimum and maxi-
mum number of roles appearing in each pathway across the different
species. For evaluation purposes, we used two different versions of
KEGG, one from 2006 and one from 2008. Table 1 contains sum-
mary data from both versions, with some new roles being discovered
after 2006 there are only included in the 2008 data and one role (in
MAPK) being removed between 2006 and 2008. The information
about ErbB pathway is not included in the KEGG-06 section because
this pathway was added to KEGG after 2006. In all 11 pathways, the
number of roles in each model pathway matches the maximum num-
ber of roles for that pathway, as in each case there happened to be at
least one species that had all of the roles.

3.1 Evaluation
As shown in Figure 1, PSP takes as input a proteome PS from a novel
species S and a set of known pathwaysMπ

= {Mπ
S1

, . . . , Mπ
Sk

}, cor-
responding to the same π signaling pathway across multiple different
species. Let M̂π be the model pathway produced by MMSP; Mπ

S be

Table 1. For each signaling pathway π used: the minimum and maximum
number of roles |Rπ

Si
| across the 14 species Si , in both the 2006 and 2008

versions of the KEGG database. Note that ErbB did not appear in KEGG
2006.

KEGG-08 KEGG-06
Pathway Min Max Min Max
MAPK 26 124 21 125
Wnt 12 67 11 67
ErbB 12 60 – –
TGF-beta 26 54 18 54
Calcium 18 43 10 41
Phosphatidylinositol 10 31 7 30
mTOR 4 29 4 29
VEGF 6 28 6 28
Jak-STAT 12 26 6 26
Notch 2 22 3 22
Hedgehog 2 18 4 18

the correct4 signaling pathway for this species S; and Rπ
= Rπ

M̂
∪Rπ

S

be the union of the roles that appear in either M̂π or Mπ
S . Then PSP

computes a set of predictions. For each role ρ ∈ R, PSPR predicts
a set of proteins P̂ρ

S ⊂ PS that (appear to) qualify for this role. If
this ρ is not in Rπ

M̂
, then PSP sets P̂ρ

S := {}. Let P̂π
S = {P̂ρ

S }ρ be the
entire collections of these protein-sets, one for each role. Similarly
let Pρ

S ⊂ PS is the true set of proteins associated with this role ρ,
and Pπ

S := {Pρ
S }ρ . We again set Pρ

S := {} if this ρ is not in P̂π
S .

Ideally, if PSP worked perfectly, then Rπ

M̂
would match Rπ

S , and

for each role ρ, the predicted set P̂ρ
S would exactly match the true

set of proteins Pρ
S . To compare Rπ

M̂
with Rπ

S , we therefore compute
their similarities over all of their roles, based on

q̂ =

⋃
ρ∈Rπ

M̂
,p∈P̂ρ

S

〈ρ, p〉 q =

⋃
ρ∈Rπ

S ,p∈Pρ
S

〈ρ, p〉

which are each a set of pairs whose first component is the role and
whose second is one of the proteins of that role. We then define
the similarly between Rπ

M̂
and Rπ

S based on the F-measure of the
associated q̂ and q:

F(q̂, q) =
2 · |q̂ ∩ q|

|q̂| + |q|
=

2 · Precision · Recall
Precision + Recall

which uses

Precision =
|q̂ ∩ q|

|q̂|
Recall =

|q̂ ∩ q|

|q|
(2)

Note this F-measure ranges from 0 to 1, and is only 1 if P̂ρ
S = Pρ

S
for all ρ ∈ Rπ .

We use “leave out one species” cross-validation to estimate the
accuracy of PSP. We start with k = 14 species {S1, . . . , Sk}, with
known proteomes Pi = PSi

and let pathway M j
i be the j th pathway

of the i th species. Here, for each pathway M j , for each species

4 That is, “currently accepted”; see Section 3.3.
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Table 2. From left to right: Species; Number of proteins in the species; Num-
ber of roles in each species over all considered pathways; Precision/Recall/F-
measure of pathway predictions (averaged over all considered pathways).

Species Proteins Roles Precision Recall F-measure
H. sapiens 24200 500 0.877 0.938 0.904
C. familiaris 19807 474 0.847 0.914 0.877
M. musculus 29445 501 0.825 0.923 0.868
P. troglodytes 25185 449 0.862 0.879 0.864
M. mulatta 23964 451 0.831 0.908 0.864
G. sallus 18115 433 0.857 0.870 0.861
M. domestica 19114 441 0.798 0.920 0.852
R. norvegicus 26160 476 0.793 0.920 0.850
O. anatinus 16387 406 0.804 0.722 0.751
X. laevis 10623 322 0.606 0.940 0.732
B. taurus 22327 399 0.592 0.921 0.716
X. tropicalis 8228 242 0.588 0.916 0.712

*D. rerio 27520 383 0.533 0.824 0.642
*S. scrofa 7126 131 0.315 0.902 0.457

Total 278201 5608 0.724 0.893 0.782

Table 3. Precision/Recall/F-measure of pathway predictions (averaged over
all considered species).

Pathway Precision Recall F-measure
TGF-beta 0.816 0.955 0.871
mTor 0.781 0.896 0.821
ErbB 0.761 0.894 0.809
Jak-STAT 0.826 0.796 0.797
Phosphatidylinositol 0.716 0.920 0.785
Wnt 0.677 0.934 0.768
Notch 0.792 0.906 0.768
MAPK 0.695 0.897 0.762
VEGF 0.702 0.867 0.757
Hedgehog 0.648 0.936 0.754
Calcium 0.645 0.819 0.713
Total 0.724 0.893 0.782

i = 1..k, we compute

M̂ j
i = M̂ j (Pi ) = P S P({M j

1 , . . . , M j
i−1, M j

i+1, . . . , M j
k }, Pi )

then compute the overall score – the (precision, recall, F-measure)
triple – for each of the roles in M̂ j

i and M j
i :

s j
i = Score(M j

i , P S P({M j
1 , . . . , M j

i−1, M j
i+1, . . . , M j

k }, Pi ))

Finally, for each species Si with m known signaling pathways
{M1

i , . . . , Mm
i }, we then compute the average triple ES(Si ) =

1
m

∑m
j=1 s j

i .

3.2 Empirical Results
Table 2 shows the results of our predictions, listing the average pre-
cision, recall and F-measure scores for each of the fourteen species
ES(Si ). The “Total” row is based on the average of the 14 values. This
table also includes the number of proteins in PS and the total number
of roles, over the pathways considered. We see that, in 12 of the 14
species, the average recall is over 0.85, meaning that PSP is able to

Table 4. Precision/Recall/F-measure of pathway predictions (averaged over
all considered species and pathways). Each row provides the accuracy of the
prediction after using the feature mentioned along with the features mentioned
in upper rows.

Feature/approach Precision Recall F-measure
e-value 0.696 0.854 0.752
+ sub-cellular localization 0.698 0.858 0.755
+ membrane regions 0.692 0.865 0.756
+ signal peptide 0.679 0.862 0.746
+ kernel selection 0.724 0.893 0.782

Table 5. (left) Number of arcs in each species over all considered pathways;
(right) Precision/Recall/F-measure of pathway predictions calculated for arcs
(averaged over all considered pathways)

Species #Arcs Precision Recall F-measure
C. familiaris 492 1.000 0.995 0.997
M. musculus 443 1.000 0.960 0.980
H. sapiens 536 1.000 0.960 0.980
M. mulatta 536 0.967 0.977 0.972
M. domestica 460 0.965 0.967 0.966
R. norvegicus 500 0.939 0.957 0.948
G. sallus 437 0.958 0.937 0.945
P. troglodytes 458 0.951 0.888 0.913
D. rerio 346 0.840 0.999 0.911
B. taurus 369 0.759 1.000 0.858
X. laevis 233 0.735 1.000 0.847
O. anatinus 384 1.000 0.657 0.785
X. tropicalis 131 0.553 0.995 0.710
S. scrofa 49 0.329 1.000 0.494
Total 5374 0.870 0.948 0.888

find essentially all of the relevant proteins for the roles (average recall
= 0.913); the average precision of 0.724 shows that it occasionally
included a few too many proteins. Moreover, the F-measures of only
the two “*” ed species — i.e., S. scrofa (pig) and D. rerio (zebra fish)
— are below 0.70; in both cases due to low precision (i.e., many false
positives). We discuss this result in Section 3.3.

Table 3 presents our results from another point of view. Here we
categorized the results based on pathways instead of species — i.e.,
this is the average over all the species for each of the pathways. This
shows our prediction is accurate for almost all of the pathways and
the overall high F-measure (seen in Table 2 for species) is not just
due to some specific pathways.

Table 4 shows the effect of each of the features used by our γρ(·)
classifiers. The first row, e-value, shows our predictive accuracy
using only the single feature, e-value, which measures the highest
similarity between the target protein and the proteins in this role. The
values in the table are the average precision, recall and F-measures
scores for all the fourteen species. The second row shows the effects
of adding the 9 sub-cellular localization features; we see this slightly
improves all three of the measures. The third row shows the effect of
also adding the number of membrane spanning regions to the features
— which makes essentially no difference. The values of the fourth
row are obtained after adding signal peptide as the last feature of
our classifier. While we can see that F-measure has dropped by a
small value, this is not statistically significant (1-sided paired t-test,
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p ≈ 0.90). However, when combined with our final change (kernel
selection), this feature turns out to give a higher F-measure than if
it is not used. The final row represents our most accurate classifier.
It shows the advantages of allowing PSPR to decide which kernel to
use in the support vector machine: linear versus radial basis function
(rbf). We see that this made an improvement to the F-measure, from
0.746 to 0.782 which is statistically significant — p < 3E-05. Even
though adding the “signal peptide” feature had not improved the
F-measure (third "addition" of Table 4), we found that the average
F-measure of the classifiers that exclude this feature (but include
“kernel selection”) is only 0.768, which is inferior to the classifiers
that include it, at the 0.782 shown in Table 4. This is true in general:
kernel selection helps increase our accuracy due to the features we
are using.

Note that this selection (linear or rfb) is done completely automa-
tically, without any human adjustment. Here, for each species Si in
Table 2, we remove Si from the training set and run cross validation
on the rest of the data (for the 13 other species). For each such fold,
PSPR excludes species S j from the training set (in addition to Si ) and
for each role ρ ∈ Rπ

M̂
in each pathway π , PSPR trains two classifiers

(SVM-linear and SVM-rbf) on the remaining 14 − 2 = 12 species,
and compares the accuracy of these classifiers on S j . After repeating
the process for all the species in the training set, PSPR calculate the
average prediction accuracy for each of SVM-linear vs SVM-rbf for
this role ρ in this pathway π , then selects the kernel function with
the highest average performance value. The final classifier for that
role ρ uses this kernel function. Across all classifiers, 1792 linear
kernels and 5262 radial-basis functions kernels were selected.

The first row of Table 4 shows that running the SVM learner on the
e-value, alone, gives a fairly high F-measure. This suggests two other,
simpler approaches: First, we could just use this e-value directly to
identify the proteins. Here, for each role ρ with associated proteins
Pρ , for each q ∈ Pρ we compute ep,q (Equation 1) with respect to
each p ∈ PS for the proteome PS of the novel species S, and simply
set P̂ρ

S = {p ∈ PS | ∃q ∈ Pρ, ep,q < 1E-100} to be those proteins in
the novel species with an e-value less than 1E-100 to some protein the
model pathway. (We used 1E-100 as the threshold as was empirically
determined this was the best cut-off value in {1E-200, 1E-100, 1E-
50, 1E-25, 1E-10, 1E-5}.) This produced an average leave-out-one-
species F-measure (over the 11 pathways and 14 species) of only
0.650, which is 10.2% less than using SVM on the e-value alone
(Table 4), and 13.2% worse than our best system. Second, we can
view e-value as the basis for a nearest-neighbor classifier. For each
protein q ∈ Pρ , we find the p ∈ PS with the smallest e-value:
nn(q ; PS) = arg minp∈PS {ep,q}, then let P̂ρ

S = {nn(q ; PS) | q ∈

Pρ
}. The average F-measure here was 0.730, which was significantly

lower than our best result (1-sided paired t-test, p < 3E-3).
We also considered the multi-class classifier approach, of learning

a single classifier for each pathway, that maps each protein to a role.
The classifier returns one of |Rπ

M̂
| + 1 values for each protein (the

extra “1” accounts for “none of the above”). However, this would
force us to predict (at most) one role for each protein, rather than
a set of roles. This is problematic as many proteins (1359 in our
training set) belong to more than one role, which is why we could
not use this approach.

Table 5 shows the average precision, recall and F-measure scores
for predicting the arcs in the various pathways. Here, PSP includes
an Aπ

S arc in a predicted model if it predicts at least one protein for
each end. For example, if it was seeking the Model pathway (from

Figure 4) within the proteome of species C , PC , we would include
the “b → c” arc if at least protein from PC qualified for the “b” role,
and at least one PC protein qualified for the “c” role – P̂a

C and P̂b
C

are non-empty. (Note that we do not require that these qualifying
proteins are correct.) This would be a false positive if the Model
pathway of species C did not include this “b → c” arc.

While the focus of this system is predicting which proteins fill
which roles of the pathways, Table 5 shows our system does accura-
tely identify most of the arcs in the examined species as well as the
proteins in the associated roles.

We see that PSP can effectively predict the roles, and arcs, of
essentially all available signaling pathways in all species, except
possibly the two marked with *’s in Table 2. However, the result for
these two species may actually be better than they appear; see the
next section.

3.3 Alternative Historical Evaluation
The predictive accuracies in Table 2 show the precision is relatively
low for two species (the “*”ed ones) — which are species that have
not been extensively studied. We therefore wondered if PSP’s accu-
racy for these species might actually be higher than these reported
rates. That is, our F-measure scores are based on the (allegedly)
“true” set of proteins associated with each role. However, many
signaling pathways, especially those in understudied species, are not
yet complete; researchers are still updating these pathways, typically
by adding new proteins to roles. This means our evaluation may be
wrong when it declares a predicted protein to be a false positive: i.e.,
when PSP predicts a protein qualifies for a role ρ, but this protein is
not in the current Pρ

S . It is possible that PSP is actually correct as Pρ
S

is incomplete, in that this protein should be a member of Pρ
S . Coun-

ting this protein as a false positive will (incorrectly) reduce PSP’s
precision score for this pathway of this species.

To test the possibility, we ran our PSP system on historical data:
i.e., we trained classifiers based on the 2006 version of KEGG
(KEGG-06), and used these classifiers to make predictions on the
(2006) proteomes of various species. The “KEGG-06/KEGG-06”
columns in Table 6 provide these scores, when using the “2006 ver-
sions of the truth”. (This involves only 7 of the 14 species, as the
2006 KEGG database did not include the data required for the other
seven species.) Note especially the abysmal precision values for C.
familiaris, P. troglodytes and B. taurus (the “*”ed ones). Our argu-
ment suggests this may be because, in 2006, these species had not
been well annotated. If so, then we anticipate our predictions would
better match the “2008 versions of the truth” — i.e., the Pρ

S for each
role of these species based on KEGG-08.

The “KEGG-06 / KEGG-08” columns of Table 6 show the
results of using KEGG-08 as ground truth to evaluate the predic-
tions made by the “KEGG-06 classifier”. We find a statistically
significant improvement in the average precision (compared to
KEGG-06/KEGG-06): from 0.615 to 0.773 — due largely to huge
improvements in precision for those three species, coupled with mini-
mal reductions in recall. This shows that many of the predictions
based on KEGG-06 were correct, even though they involved claims
that were not included in KEGG-06. In total, KEGG-08 included
1,620 proteins that we considered false positives when we evaluated
the predictions based on KEGG-06 data, that turned out to be true
positives. This is why we suspect that many of the false-positives
found using KEGG-08 may actually be correct — i.e., that PSP’s
actual precision may be higher than the 0.782 found when training
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Table 6. (left) Number of proteins in each species, PS , and number of roles over all considered pathways, for each of the 2006 and 2008 versions of KEGG;
Precision/Recall/F-measure of pathway predictions (average over all considered pathways): (middle) trained and tested on KEGG-06; (right) trained on
KEGG-06 and tested on KEGG-08.

KEGG-06 KEGG-08 KEGG-06 / KEGG-06 KEGG-06 / KEGG-08
Species Proteins Roles Proteins Roles Precision Recall F-measure Precision Recall F-measure
S. scrofa [Pig] 1,062 104 7,126 131 0.845 0.878 0.852 0.686 0.667 0.670
H. sapiens [Man] 25,719 440 24,200 500 0.885 0.814 0.842 0.879 0.805 0.835
M. musculus [Mouse] 30,172 436 29,445 501 0.839 0.832 0.827 0.839 0.816 0.820
R. norvegicus [Rat] 26,259 379 26,160 476 0.691 0.893 0.776 0.776 0.881 0.822

*B. taurus [Bull] 22,854 218 22,327 399 0.345 0. 869 0.479 0.637 0.861 0.721
*C. familiaris [Dog] 19,808 155 19,807 474 0.205 0.857 0.318 0.812 0.838 0.821
*P. troglodytes [Chimpanzee] 21,825 139 25,185 449 0.186 0.653 0.262 0.840 0.634 0.715

Total (7 species) 147,699 1,871 154,250 2,930 0.563 0.827 0.615 0.783 0.788 0.773

and testing on KEGG-08, as shown in Table 2. Note also that the
annotations present in 2008 but not 2006 are very likely to be expe-
rimentally determined; if they were purely analytic, we suspect they
would have been present in 2006. Hence, this "train on 2006, test
on 2008" measure is tested on annotations that are probably more
accurate than the alternative of just removing a random subset of the
2008 data.

4 CONCLUSION
This article provides a new technique for learning to predict signaling
pathways in novel species, based on known signaling pathways in
familiar species. This technique is completely automated – i.e., it
does not need human adjustments at any level and is based on various
automatically-computed properties of proteins.

We have shown that our approach produces accurate predictions
over all of the species and pathways we considered — i.e., total
precision, recall and F-measure of 0.724, 0.893 and 0.782 respec-
tively. We have also used historical data to indicate why we think
that the actual accuracy of our prediction might be even higher than
reported here, due to incompleteness of the test sets. The webpage
(http://cs.ualberta.ca/∼bioinfo/signaling) provides the complete set
of these PSP’s predictions; it will be interesting to see which of these
predicted roles turn out to be correct. Moreover, our overall PSP
system is expandable, as other species and other pathways can easily
be added to the system. In addition, new features (perhaps, based on
protein-protein interaction, or protein domains) may be used along
with the described features to potentially increase the accuracy of its
predictions.
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