

An Architecture for Game Behavior AI: Behavior Multi-Queues

Maria Cutumisu, Duane Szafron

Department of Computing Science, University of Alberta
Edmonton, Canada

{meric, duane}@cs.ualberta.ca

Abstract
We describe an AI behavior architecture that supports
responsive collaborative interruptible and resumable
behaviors using behavior queues. This architecture wraps
sets of behaviors into roles, which provide a simple efficient
mechanism for encapsulating behaviors into components
that can change dynamically, based on environmental
criteria. To illustrate the viability of this architecture in a
commercial setting, we implemented this architecture in
BioWare Corp.’s Neverwinter Nights game. To demonstrate
the usability of this architecture by game designers, we
implemented a simple interface in ScriptEase, so that the
architecture can be utilized with no coding skills.

 Introduction

Games need an AI architecture that supports the
straightforward creation and reuse of complex character
behaviors. Since most games rely on custom scripts for
non-player characters (NPCs), only plot-essential NPCs are
scripted, resulting in repetitive behaviors for other NPCs.
Since collaboration is hard to script, it is rare for NPCs to
interact with each other. Behaviors are hand-scripted, non-
resumable, and dependent on the game engine. With each
layer of realism, complexity increases and the tools fail.
 We identify five features that behaviors should exhibit.
A behavior should be responsive (react quickly to the
environment), interruptible (suspendible by other
behaviors or events), resumable (continue from the point
of interruption), collaborative (initiate and respond to joint
behavior requests), and generative (easy to create by non-
programmers). We show how our AI architecture supports
all five features simultaneously. This paper combines an
architectural solution to traditional game AI challenges:
interruptible, resumable, responsive, and collaborative
behaviors with high-level behavior constructs accessible to
game designers with no programming knowledge to
significantly reduce the content bottleneck for behavior
creation.

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Related Work

Other AI architectures fail to support at least one of the
five features. Finite state machines (FSMs; Houlette and
Fu 2003), hierarchical state machines (HSMs; Harel 1987)
and behavior scripts are the most popular game techniques
for telling an NPC how to behave. Two major drawbacks
of FSMs are their inability to store state that can be
returned to later and their failure to capture high-level
patterns that reoccur frequently, such as sequences and
conditionals. Therefore, FSM techniques do not scale well
and their representation makes behaviors difficult to
outline. It is particularly difficult to code collaboration
using FSMs. There are a number of extensions to FSMs
that support more complex behaviors, including Stack-
based FSMs (for interruption and return), Fuzzy State
Machines, Hierarchical FSMs (super-states can be used to
share and reuse transitions), and Probabilistic FSMs.
Neither FSMs nor their extension HSMs are resumable.
Games that use FSMs include the Quake series and
Warcraft III, Pac-Man (the ghost), Assasin’s Creed (in
which the guard behaviors are predictable). HSMs are used
in Destroy All Humans 2. The disadvantage of this
approach is that the hierarchy and structure of the graph do
not reflect priorities very explicitly. Without support for
priorities, the responsive feature is hard to achieve.
 Simbionic (Fu, Houlette and Ludwig 2007) is a visual AI
authoring tool that represents behaviors using FSMs with
four additional features: expression evaluation (conditions
are used to evaluate transitions), hierarchical or stack-
based execution (one state can refer to another FSM and
they can enable behavior priorities), behavior interrupt
handling, and polymorphism. Simbionic enables users to
define conditions and actions (i.e., FSM’s states and
transitions, respectively), as building blocks for behaviors
(i.e., constructed FSMs by the user through linking actions
with conditions). Simbionic builds behavior graphs from
behavior components. The behavior graphs can be indexed
via a descriptor hierarchy to enable polymorphic selection
of behaviors. However, as is the case with most purely
visual tools, complexity of behaviors can render these tools
impractical. Although this tool provides support for four of

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference

20

the five features (responsive, interruptible, resumable, and
generative), it is not clear that this system supports
collaboration, which is essential for providing a basic level
of character believability. Support for collaboration has a
large impact on the mechanisms used to implement the
four features and supporting it usually involves extensive
changes to the core AI architecture and has a significant
impact on the quality and utility of code-generating author
tools.
 Behavior trees (BTs; Isla 2005) and planners are starting
to appear in some games. Behavior trees (or hybrid HSMs)
make individual states modular to support reuse. They
generalize HSMs, since they allow the programmer to add
code in arbitrary nodes at any level in the HSM tree. The
tree reveals the overall priorities more intuitively than
FSMs, and the hierarchy of behaviors is more obvious: the
behavior sequences are mid-level and the behavior selector
is at the top level. The Halo series uses BTs to implement
joint behaviors, but Halo BTs are not resumable. Joint
behaviors are not explained in the Halo series in detail.
Left 4 Dead uses HSM/BTs, but the allies in this game do
not follow the player character (PC) even when the player
shoots enemies, so these behaviors are not responsive.
 An AI Planner finds an action sequence that achieves a
goal. However, planning does not remember past actions.
The first action game to use Hierarchical task network
planning (HTN; Sacerdoti 1975) is Killzone 2
(Champandard, Verweij and Straatman 2009). Real-time
(RT) planning is used in F.E.A.R. (Orkin 2006) and No
One Lives Forever 2, but resumable behaviors are not
supported. Instead, behaviors are re-planned and performed
from the beginning. Planners such as PaTNets (Badler et
al. 1995) are used in related domains, such as robotics and
sensor-control applications. However, these techniques
have not been successfully applied in the domain of
commercial-scale computer games. Soar and ACT-R
support planning and have been used to construct Quake
bots, but have not been adopted for commercial games.
 The Sims 2 (Electronic Arts 2005) have impressive
ambient behaviors, but the game model is not easily
transferable to other genres. Game objects broadcast
interaction information to the NPCs. Each Sim responds
autonomously to these broadcasts, although often player
intervention is necessary to keep them on the right track.
 Neverwinter Nights (NWN) and Morrowind use scripting
to implement behaviors, but do not support true
collaboration. Collaborative behaviors are simulated in
NWN by placing a script on one of the NPCs that controls
the actions of both. Oblivion uses goal-directed AI that
only supports very simple collaborations. However, along
with NWN and Morrowind, Oblivion does not support
resumable behaviors. Instead, it restarts behaviors if they
are interrupted. None of these systems are generative, so
they are impractical for non-programmers.
 A visual scripting tool that addresses the issue of game
designers who are not programmers was used for an NBA
game (Schwab 2008). The tool has an underlying data-
driven AI system based on abstract state machines. The

actors can have various roles that are activated by specific
conditions. These behaviors have priority-based interrupts.
The reusable roles can be assigned to several agents at
once. Behavior activation can start immediately or
behaviors can be enqueued for later execution. However,
since this tool is not publicly available, a more in-depth
comparison with our work could not be performed. It is
also not clear how integral the NBA game theme is to the
architecture. For example, the author mentions that parts of
the system, such as perception (e.g., game state variables
like the distance to the ball) and low level animation
helpers are still “code-based” rather than data-driven.
Therefore, we do not know whether the architecture is
general enough to be used in non-sports domains. The
author mentions that the learning curve required by the
Situation editor is one week for programmers and longer
for non-programmers, so this system may or may not be
generative enough for general use.
 In this paper, we describe how a behavior multi-queue
architecture can be used to support our four behavior
architectural requirements: responsive, interruptible,
resumable, and collaborative, and how the architecture
connects to ScriptEase (www.cs.ualberta.ca/~script) to
support generative behaviors. Our architecture can be used
to augment FSMs, HSMs, scripts, BTs, or HTNs.
 Consider a tavern Patron NPC whose behaviors include
a Converse talk behavior to talk to another NPC about a
topic (e.g., “weather”). The Converse talk behavior has
three consecutive tasks: Move to the NPC, Exclaim, and
Listen. In addition, the Patron has another behavior to
Order a drink from a tavern Server. The Order behavior
has four phases: Converse talk with the Server to place the
order, Wait until the Server returns, Exchange money for
the drink, and Converse talk with the Server to express
thanks. If the Server comes near the Patron and the Patron
has not had a drink for some time, then the Order behavior
should interupt a Converse talk behavior with another
NPC. Figure 1 and Figure 2 show HSM and BT
representations, respectively.

Figure 1 A partial HSM for a tavern Patron NPC

 We use a BT notation (Champandard 2007) where a
horizontal arrow above the sub-behaviors indicates that
they are performed in sequence from left to right. There is
no need for transitions since a sub-behavior starts when the
previous one ends. The numbers under the behavior
selector represent priorities, so that the Order behavior has

21

precedence over the Converse talk behavior. However,
independently of the notation, there are two interpretations
for these priorities. First, as soon as the conditions for the
behavior with the higher priority are satisfied, this behavior
interrupts any behavior with lower priority. Second, the
NPC waits until a previous behavior has ended to pick a
new behavior. It is the first interpretation we want for this
scenario, but sometimes the second is desired.

Figure 2 A partial behavior tree for a tavern Patron NPC

 In general, many interpretations of behavior selection
are possible, including five common ones (Isla 2005):

prioritized-list: the first one that can run is performed, but
higher-priority siblings can always interrupt the winner
on subsequent ticks.

sequential: run each in order, skipping those that are not
currently relevant. When we reach the end of the list, the
parent behavior is finished.

sequential-looping: same as above, but when we reach the
end of the list, we start again.

probabilistic: a random choice is made from among the
relevant children.

one-off: pick in a random or prioritized way, but never
repeat the same choice

 BTs are behavior DAGs in which the non-leaf nodes
make decisions about what children to run and the leaf
behaviors run the composing actions. Decision-making
priorities can be computed by the parent node or by the
children. The second option scales better and it is used for
the core components of the combat cycle in Halo 2.
However, there is a scalability issue, since tweaking
floating point priorities by hand is difficult when there are
many children, so it is usually hard to achieve the exact
behavior desired by the game designer.
 Both HSMs and BTs can support interruption, but
behavior resumption must be added in an ad-hoc way. For
example, if a thirsty Patron is performing a Converse talk
behavior with another NPC about the topic “weather” and
a Server comes close, then both the HSM of Figure 1 and
the BT of Figure 2 can service the interrupt and start the
Order behavior. However, neither provides a mechanism
to resume the Converse talk behavior, let alone resuming it
at the correct task. In the HSM situation, it could be even
more difficult to develop an ad-hoc solution, since the
Converse talk behavior appears as a sub-behavior in the
Order behavior. Therefore, any internal state in the

interrupted Converse talk behavior, such as the partner,
will be erased (the states are not re-enterable).
 Ad-hoc solutions remember the previous context in the
HSM or BT, but the interrupted behavior may itself be
interrupted. For example, what if the designer wanted to
allow the Server to be interrupted by a “higher priority”
behavior while performing the Order behavior? For
example, if the PC is perceived, perhaps the Patron should
approach the PC and initiate a conversation to start a quest.
In general, we need an architectural solution to the problem
of interrupting and resuming behaviors that uses a stack.
 In GTA Chinatown Wars, Rockstar (Laming 2009)
introduced a three-stack model to solve the problem of
resuming interruptible behaviors. For example, if a
character is going to a car and spots an enemy, the going
behavior whose actions are on one stack is interrupted, all
behaviors on this stack are popped off (except the top-level
behavior), the character deals with the enemy using a
second stack and, when this is done, the going behavior is
re-started from the beginning on the first stack (not
resumed from the point of interruption).
 NPC collaboration is hard to express using HSMs or
BTs. If each collaborator has a separate behavior, then
extra code must be used to synchronize the behaviors. If a
single joint behavior is used to control the collaboration,
then it is difficult to integrate the joint behavior with the
single behaviors of the collaborating NPCs. Collaboration
has been done successfully using BTs in Halo 3 using extra
state in a blackboard (Dyckhoff 2007), but the behavior
tree architecture itself provides no support. More rigorous
support for collaborative behaviors has been proposed
using HTNs (Gorniak 2007), where a single network
structure is used to control the collaborative plan, but this
work has not appeared yet in a shipped game and it has
problems dealing with failed plans. If one or more
collaborators fail, the other collaborators should abandon
the collaboration gracefully. For example, if the Patron
who ordered a drink leaves the tavern, the tavern Server
should give up trying to deliver the drink.
 Architectural support for interruptible-resumable
behaviors and collaborations should take advantage of a
potential for feature interaction. When a collaborator is
waiting for its partner during a collaboration, there should
be the opportunity for the waiting collaborator to suspend
its own waiting behavior, perform another behavior, and
resume the original behavior when the collaborator
responds. For example, if a tavern Patron is waiting for a
Server to fetch a drink order, then the Patron should be
able to suspend the Wait task by engaging in a Converse
talk collaborative behavior with another NPC. When the
Server returns, the Patron should interrupt the Converse
talk behavior to exchange money for the drink delivered by
the Server and then, since this behavior is complete,
resume the Converse talk collaborative behavior.
 Façade (Mateas and Stern 2003) has a collaborative
interruptible and resumable behavior model. The NPCs use
collections of reactive behaviors (beats) that can be
interrupted by the PC. Parallel beats are used for

22

collaboration. However, the Façade designers comment on
the amount of manual work required from an author to use
their framework, since the ABL scripting language is
challenging even for experienced coders. Since Façade
only has two NPCs in a small environment, their behavior
techniques will not easily scale to hundreds or thousands of
NPCs. We need a mechanism to provide behaviors of this
quality to many more NPCs with minimal authoring work.
 In summary, we seek architectural support for:

prioritized interruptible-resumable behaviors: a behavior
may interrupt another if its priority is higher and, after
this second behavior is complete, the first behavior will
resume as close to the interuption as possible.

multi-level interruptions and resumptions: a chain of
interruptible-resumable behaviors should be supported.

collaborative behaviors: it should be easy to specify that
two or more collaborators should behave in a
synchronized manner and to specify which sub-
behaviors should be synchronized.

behaviors while waiting on collaborative behaviors: if a
collaborator is waiting, it should be able to engage in
another behavior while waiting.

graceful failures of collaborative behaviors: if one or more
collaborators fail, the others should be able to gracefully
abandon the collaboration.

 We describe our multi-queue architecture that provides
support for these features and an implementation that uses
prioritized interruptible-resumable independent and
collaborative behaviors in a commercial game, BioWare
Corp.’s NWN. We demonstrate how this architecture can
support generative behaviors created by game designers
who are non-programmers.

Behavior Architecture

The behavior architecture is based on a series of queues
that support different kinds of behaviors. We begin by
describing the ontology of the necessary behavior kinds.

An Ontology for Behaviors
All behaviors for an NPC are placed into a role that selects
behaviors, and each behavior consists of a sequence of
tasks or behaviors. We use a tavern that contains three
kinds of NPCs: Patron, Server, and Owner to illustrate our
behavior architecture. We assume the tavern contains one
owner, a few servers, and many patrons. Figure 3 shows a
subset of the behaviors for the Patron and one for the
Server. We use a graphical representation that is
reminiscent of both BTs and HSMs. Some of the behaviors
(rectangles) in Figure 3 are expanded to show their tasks
(ovals). The text in the clear rounded rectangles indicates
some of the most important parameter values of the
behaviors/tasks. For example, in Figure 3, the Approach
behavior finds a random creature in the room.
 When it is used, a behavior is tagged by two properties:
independent or collaborative, as well as proactive, latent,

or reactive. An independent behavior is performed alone.
For example, in Figure 3, the Approach (random creature)
behavior is independent since a Patron can Approach
another creature without agreement by that creature. A
collaborative behavior is performed jointly with another
NPC (not PC). For example, the Converse talk behavior in
Figure 3 is collaborative. The individual who starts a
collaboration is called the initiator and all other
collaborating individuals are called reactors.

Figure 3 Some Patron behaviors and one Server behavior

 Behavior initiation determines if a behavior is proactive,
latent, or reactive. An independent or collaborative
proactive behavior is spontaneously initiated by an NPC,
when it has no active behaviors. We assume that roles
select proactive behaviors probabilistically after filtering
on any conditions they contain, but any of the behavior
selection mechanisms listed in the introduction could be
used. For example, the Patron in Figure 3 will initiate one
of the Return, Approach, or Converse talk proactive
behaviors whenever it must select a new behavior. A latent
behavior is performed when an event cue fires. An event
cue can be constructed from any game event such as a
timer, a creature coming within some range, or a container
being opened. An event cue can optionally contain pre-
conditions. For example, the Patron in Figure 3 will
perform an independent Notice (gaze shift) latent whenever
another creature comes within a short range. The Patron
will perform a collaborative Order latent whenever a
Server comes close to the NPC and the NPC is thirsty. A
reactive behavior is performed when an initiating NPC
makes eye-contact (described later) with a potential
collaborating NPC, so every reactive behavior is
collaborative. For example, the Patron in Figure 3 can
perform a Converse listen behavior on the topic of
“weather” if another NPC tries to engage that NPC using a
collaborative Converse talk behavior on the same topic.

Using Priorities to Guide Behavior Interruptions
Common game scenarios need priorities for designing
highly responsive characters. For example, to be realistic,
the latent Notice (gaze shift) behavior shown in Figure 3

23

should briefly interrupt most other behaviors. However, to
simplify priorities for designers, we assign a set of default
priorities. Each proactive independent behavior has a
default priority of 0, each proactive collaborative behavior
and reactive behavior has default priority 1, and each latent
behavior has default priority 2. A latent should almost
always interrupt a proactive. For example, the brief Notice
interruption can occur while the Patron is performing any
proactive or reactive behavior. Similarly, a thirsty Patron
can opportunistically interrupt any proactive or reactive
behavior to Order a drink when a Server passes by.
Normally, a Notice will not interrupt an Order behavior,
since that behavior is also latent with default priority 2.
However, a designer can manually assign a higher priority.
Note that realistic behaviors not only require interrupts, but
also resumption of previous behaviors.
 For example, a movie clip (www.cs.ualberta.ca/~script/
movies/resumablebehavior.mov) shows Patron Mary,
performing an Approach behavior towards Patron Bob.
The behavior has two tasks, Exclaim and Move. The
Exclaim task completes, but the Move task is interrupted by
the Notice behavior when the PC gets close. Notice is just a
glance, but it is implemented using an Exclaim task to
emphasize it in the movie. After the Notice is complete,
Mary resumes her Approach behavior, by re-starting the
interrupted Move task (the Exclaim task of the Approach
behavior is not performed again). The architectural
mechanism for interrupting-resuming behaviors is
discussed in the Behavior Multi-queues section.

Collaborative Behaviors
We limit collaboration to a pair of NPCs since our current
implementation only supports pairs. However, there is
nothing inherent in the architecture that limits
collaboration to a pair. Each collaborative behavior has a
topic parameter and two NPCs will collaborate if one of
them (the initiator) has a proactive or latent behavior on a
topic string and the other (the reactor) has a reactive
behavior on the same topic. The same NPC can be both an
initiator and a reactor on the same topic. For example, a
Patron can initiate a conversation about the “weather”
using a proactive collaborative Converse talk behavior and
another Patron can react using the reactive Converse listen
behavior on the “weather” topic. In fact, any other NPC
that has a reactive behavior with topic “weather” could
also react, even if that behavior is not a Converse listen
behavior. The connection is made by topic, not by
behavior. This allows a designer to add other behaviors on
a topic at any time without editing the existing behaviors.
 The potential reactor NPCs are filtered to include only
those who satisfy three requirements. First, the NPC must
have a reactive behavior on the same topic. Second, all
conditions included in the initiator's collaborative behavior
must be satisfied. Third, the reactor must make eye-contact
with the initiator. Eye-contact is successful if the potential
reactor is not currently involved in another active
collaborative or latent behavior. Eye-contact is successful
if the potential reactor is involved in an active independent

behavior or if all of the reactor’s collaborative and latent
behaviors are suspended for some reason (described later).
An independent behavior is interrupted and it resumes after
the collaborative behavior is complete.� For example, a
Patron will only attempt to Converse talk with another
NPC about the “weather” if that NPC has a reactive
behavior whose topic is “weather”, the Patron is within a
certain range of this NPC, and the NPC is not already
involved in a collaborative or a latent behavior.
 For example, a movie clip (www.cs.ualberta.ca/
~script/movies/collaborativebehavior.mov) shows Patron
Mary performing an Approach behavior towards Patron
Bob. Meanwhile, Patron Dave tries to make eye-contact to
start a collaboration on topic “weather”. Since Mary’s
Approach behavior is independent, eye-contact is
successful, the Approach behavior is interrupted, and Mary
performs a reactive Converse listen behavior. When the
conversation is done, Mary resumes her Approach
behavior adjusting her trajectory, since Bob has moved.
 When a collaboration begins, both NPCs start executing
pairs of tasks that comprise their respective behaviors. For
example, in Figure 3, Move is the common first task of
both the Converse talk and Converse listen behaviors, so
the NPCs move to each other. After both tasks complete,
the collaboration enters the next phase. The second task of
the Converse talk behavior is Exclaim, and the second task
of the Converse listen behavior is Listen, so the first
collaborator Exclaims (talks and gestures) while the second
collaborator Listens (gestures). The architecture inserts
phase barriers between task pairs, as shown in Figure 3.
For example, if the reactor completes the Listen task before
the initiator completes the Exclaim task, the reactor waits
for the initiator to finish before they proceed to the next
task pair, Listen (initiator) and Exclaim (reactor).�
� Sometimes, it is convenient for the designer to use
collaborative behaviors where the proactive part and
reactive part have a different number of tasks. In this case,
the architecture is responsible for adding an appropriate
number of default (Wait) tasks to the end of the shorter
behavior. For example, the designer could add a proactive
behavior Converse long to an NPC, which is like Converse
talk, but with an extra Exclaim task at the end. In this case,
a reactive Converse listen on the same topic could be used
to collaborate with a Converse long and, while the initiator
is performing the extra Exclaim task, the reactor would
simply play a Wait animation.

Behavior Multi-queues
The behavior multi-queue architecture has three sets of
queues: (proactive) independent, collaborative (proactive
or reactive), and latent (independent, collaborative, or
reactive). There is only a single proactive independent
queue, but there can be an arbitrary number of proactive
collaborative and latent queues. When a behavior is
created, its tasks are placed on one appropriate queue. The
proactive independent queue can hold only a proactive
independent behavior. A proactive collaborative queue can
hold a proactive collaborative behavior or a reactive

24

behavior in response to a proactive collaborative behavior.
A latent queue can hold an independent or collaborative
latent behavior, or a reactive behavior that reacted to a
latent behavior. Each queue knows the priority of its
current behavior and a latent queue knows whether its
behavior is independent or collaborative. Note that when
we use the term collaborative queue, we refer to either a
proactive collaborative queue or a latent queue that
contains a collaborative behavior.
 Each behavior (and its queue) in the multi-queue is
either active or suspended. When a behavior is started, it is
active. The term current behavior denotes the active
behavior with the highest priority. The term interrupt a
behavior means to immediately stop the currently
executing task of that behavior (if there is one), without
removing that task from its queue. The term cancel a
behavior means to interrupt the behavior, clear all its tasks
from its queue and, if it was collaborative, cancel the
collaborating behavior. The term suspend a behavior
means to prevent that behavior’s next task from executing
until the behavior is made active. The term activate a
behavior means to interrupt the current behavior (if any)
and to allow the next task of the activated behavior to start
executing, if its behavior has highest priority, when the
next task start signal is received by the dispatcher. Note
that interrupting a behavior does not suspend it.

Behavior Dispatch
When an NPC is spawned, it starts performing a control
loop that repeatedly sends a timer signal to its behavior
dispatcher. However, this behavior dispatcher is also
signaled by event cues and other game events. For
example, when a task is complete, a task done signal is
sent to the dispatcher. The behavior dispatcher handles
these signals:

1. New behavior signal
2. Task done signal
3. Collaborator done signal
4. Phase done signal
5. Task start signal
6. Kill collaboration signal
7. Timer signal or previous kind of signal ignored

 Case 1. New behavior signal: if the new behavior has
lower priority than the current behavior, the signal is
ignored and case 7 is performed. Otherwise, the current
behavior is interrupted, the new behavior is queued on an
appropriate (independent, collaborative, or latent) queue,
and a task start signal is sent. If there is no empty
appropriate queue, then the lowest priority appropriate
behavior is cancelled and its queue is used for the new
behavior. The new behavior signal is either: latent,
reactive, or proactive. The behavior dispatcher sometimes
generates a new proactive signal during case 5. If the new
proactive is independent, the appropriate queue is
independent. If the new proactive is collaborative, and eye-
contact is not made, the signal is ignored and case 7 is
performed. If eye-contact is made, a collaborative queue is
used and a new reactive signal is sent to the collaborator,

so that it can handle its corresponding reactive behavior. A
new reactive signal is not generated in the behavior
dispatcher of the reacting NPC. Instead, it is sent by the
collaborating NPC when it performs a new collaborative
behavior after eye-contact is made. If the initiating
behavior was proactive, the appropriate queue is
collaborative. If the initiating behavior was latent, a latent
queue is used. A new latent signal is generated when a
latent cue is triggered and the appropriate queue is latent.
 Case 2. Task done signal: if the task is not collaborative,
then the task is removed from its queue, a timeout clock is
reset, and a new task start signal is generated. If the task is
collaborative, then a collaborator done signal is sent to the
collaborator. If the collaborator done flag is set, a phase
done signal is sent; otherwise, a self done flag is set. These
steps are necessary to ensure that both collaborators have
completed a task before they both proceed to the next task.
 Case 3. Collaborator done signal: if the self done flag is
not already set, then set the collaborator done flag and
return, since we must wait for our own task to be done.
Otherwise, if the self done flag has been set, send a phase
done signal to start the next phase. However, before
sending this signal, if the behavior is suspended (because it
is waiting for the collaborator), activate it.
 Case 4. Phase done signal: de-queue the task, reset the
timeout clock, and generate a task start signal.
 Case 5. Task start signal: reset the timeout clock and
start performing the first remaining task from the queue of
the current behavior. If there is no current behavior (no
active queues or all queues empty), create a new proactive
behavior and send a new proactive signal.
 Case 6. Kill collaboration signal: cancel the
collaborative behavior and send a task start signal.
 Case 7. Timer signal or previous kind of signal ignored:
if the current behavior is not collaborative or if the timeout
clock has not reached a wait time, do nothing. Otherwise,
for a long wait time, cancel the behavior, send a kill
collaboration signal to the collaborator, and send a task
start signal or, if the medium wait time has occurred,
suspend the current behavior and send a task start signal.

Behavior Scenario
In addition, to supporting explicit behavior interruption and
resumption, the dispatcher allows self interruption of
collaborative behaviors (Case 7), which enables an NPC to
perform other behaviors while waiting for the collaborator
to complete a lengthy task. A realistic complex scenario
illustrates the power of this multi-queue architecture. The
queues are shown in Figure 4 at a point in this scenario
with annotations showing specific progress points depicted
as consecutive integers in circles. We show only the six
queues used in this scenario.
 Patron Mary performs the independent priority 0
Approach behavior towards Patron Bob. Mary finishes her
Exclaim task and starts her Move task. Server Linda passes
close to Mary, who has not had a drink for a while. Mary
interrupts her Approach behavior to perform a new latent
priority 2 collaborative Order behavior with the Server

25

(Case 1 – new latent). The Approach behavior is
interrupted, which means that its current task (Move) stops
executing, but it is not removed from its queue and it is not
suspended. The scenario has reached point 1 in Figure 4.

Figure 4 The multi-queues during a complex scenario

 Even though the Approach behavior is not suspended, it
has lower priority than the latent behavior, so no task from
this behavior will execute until all higher priority behaviors
are complete (Case 5). In performing an Order, Mary starts
by performing a series of tasks: Move, Exclaim, Listen,
Wait synchronized with Linda’s tasks: Move, Listen,
Exclaim, Fetch and, at this point, Mary finishes the Wait
task very quickly, while Linda performs Fetch. Since
Linda takes a long time to fetch a drink, Mary’s dispatcher
has a medium timeout (Case 7) and suspends the Order
behavior. The dispatcher then re-performs the Move task of
the Approach behavior (Case 5), which becomes the
current behavior, since it is the only active behavior. The
scenario has reached point 2 in Figure 4. After Mary takes
a few steps toward Bob, Patron Dave tries to start a
collaborative proactive Converse talk behavior with Mary.
Since Mary’s only active behavior is independent, eye-
contact is made and Mary starts the Converse listen
reactive behavior (Case 1 – new reactive). Since Dave’s
initiating behavior was proactive, the reactive Converse
listen behavior uses a collaborative queue. Now Linda
arrives with Mary’s drink order, completing the Fetch task.
Since Mary’s corresponding Wait task in the suspended
Order behavior was marked as done, the Order behavior is
activated (Case 3) and a phase done signal is sent.
Activating a suspended behavior interrupts the current
behavior (Converse listen). The scenario is at point 3 in
Figure 4, just before the phase done signal is handled.
 If the rest of the tasks in the priority 2 latent Order
behavior are completed without interruption or timeout
(Exchange/Exchange, Move/Move, Exclaim/Listen,
Listen/Exclaim), then Mary will perform the Listen and

Exclaim tasks in the priority 1 collaborative reactive
Converse listen behavior, while Dave performs the
synchronized tasks Exclaim and Listen in the Converse talk
behavior. If they are completed without interruption, then
the Move task in Mary’s priority 0 independent Approach
behavior will finally be completed. This architecture
supports interruptible and resumable behaviors. When a
behavior resumes, it does not start over like the three stack
behavior tree (Laming 2009). In addition, if a collaborative
behavior waits for a very long time, it is cancelled and the
corresponding behavior of its collaborator is cancelled.
This is important if one of the collaborators is killed or
otherwise unable to complete the collaboration.

Using and Designing Behaviors

To illustrate that our behavior architecture could be used in
a generative manner by a non-programmer for a
commercial game, we implemented a version of our multi-
queue architecture in NWScript for BioWare’s NWN. We
used ScriptEase to create behavior patterns and
implemented these patterns using our new architecture.
Figure 5 shows the abbreviated Patron role behaviors from
Figure 3 as expressed in ScriptEase.

Figure 5 The Patron tavern behaviors in ScriptEase

 The proactive collaborative Converse talk behavior is
open to show its three tasks: Move, Exclaim, and Listen.
The Exclaim task is open to show the atomic actions that
comprise this task. If the Exclaim task is interrupted, it re-
starts from its first action, faces (highlighted).
 In ScriptEase, we implemented proactive, reactive, and
latent behaviors whose purposes are clear to the game
designer. In some sense, ScriptEase ambient and latent
behaviors can be represented as FSM transitions. For
example, in Figure 5 they can be voluntary-proactive (from
Approach to Converse talk) or forced-latent by perception
(from Approach to Order when the server walks near the
patron). However, it is hard to infer this differentiation
(voluntary vs. forced) from an FSM diagram. In contrast,
the ScriptEase generative pattern abstraction is easy to
understand and to use. In fact, Grade 10 high-school

26

students with no programming experience created
interactive game adventures (without behavior patterns) in
four and a half hours following a two-day training period
on the use of the NWN game, the Aurora Toolset, and
ScriptEase (Carbonaro et al. 2008). In a new experiment,
high-school game designers successfully used our new
behavior patterns in ScriptEase (Cutumisu 2009). Our
pattern model shields game designers from manual
scripting and the synchronization issues posed by
collaborative behaviors, allowing them to concentrate on
story construction. Designers can easily group, manage,
and reuse hundreds of behavior patterns.

Conclusion

A movie clip (www.cs.ualberta.ca/~script/movies/
tavern.mov) shows a tavern scene with one owner, two
servers, and eighteen patrons. This scene runs in game at
more than 30 frames per second, despite the high activity
in the scene. We have run this scene for days without any
noticeable stalling of behaviors or NPCs who stop
performing their designated behaviors. This illustrates that
the multi-queue approach is both efficient and robust
enough for commercial computer games. We have not seen
a need for more than two collaborative and two latent
queues in the kind of behaviors we observe or envisage for
story-based games in the near future. When more than two
queues are required, the lowest priority behavior is
cancelled and the game situation seems natural. We only
needed to change the default behavior priority occasionally
and only for latent queues. For example, a guard that uses a
priority 2 latent behavior to Warn an approaching character
may need to be interrupted by a priority 3 latent behavior
to Attack if that character or another character gets very
close or actually touches a guarded object.
 Sometimes an author may want to use tasks that are
uninterruptible, or tasks that cannot be resumed. We can
accommodate the first situation by assigning very high
priorities to latent cues to create behaviors that are non-
interruptible. We do not currently support behaviors that
the designer might want to be non-resumable, but this
feature is straightforward and will be added.
 Since our implementation uses NWN, we currently have
the luxury of relying on the game engine to provide low-
level parallelism such as simultaneous walking and talking.
An author can simply insert the walk and talk actions into a
task in a behavior and the game engine uses its own
internal action mechanism to ensure basic time-sharing
between the actions. The NPC starts walking and, since
this action takes a long time to complete, the talk action
overlaps its execution. Our AI architecture supports this
directly since the talk behavior could be added on a
different queue and could be performed simultaneously
with behaviors stored on existing queues. It takes minutes
to insert existing behaviors into a game and bind the
behavior parameters. It takes about an hour to design and
create a new behavior. We view this architecture as a
natural evolution of behavior trees.

References

Badler, N., Webber, B., Becket, W., Geib, C., Moore, M.,
Pelachaud, C., Reich, B., and Stone, M. 1995. Planning and
parallel transition networks: Animation's new frontiers. In
Proceedings of the Computer Graphics and Applications: Pacific
Graphics, 101-117.

Carbonaro, M., Cutumisu, M., Duff, H., Gillis, S., Onuczko, C.,
Siegel, J., Schaeffer, J., Schumacher, A., Szafron, D. and Waugh,
K. 2008. Interactive story authoring: A viable form of creative
expression for the classroom. Computers and Education 51 (2),
687-707.

Champandard, A. 2007. Behavior trees for next-gen game AI. In
Proceedings of Game Developers Conference, Lyon.

Champandard, A., Verweij, T. and Straatman, R. 2009. The AI
for Killzone 2's multiplayer bots. In Proceedings of Game
Developers Conference, Paris.

Cutumisu, M. 2009. Using behavior patterns to generate scripts
for computer role-playing games. PhD Thesis.

Dyckhoff, M. 2007. Evolving Halo’s behavior tree AI. Invited
talk at the Game Developers Conference, Lyon. http://www.
bungie.net/images/Inside/publications/presentations/publicationsd
es/engineering/gdc07.pdf (accessed 2009).

Fu, D., Houlette, R. and Ludwig, J. 2007. An AI modeling tool
for designers and developers. In Proceedings of IEEE Aerospace
Conference, 1-9.

Gorniak, P. and Davis I. 2007. SquadSmart: Hierarchical
planning and coordinated plan execution for squads of characters.
In Proceedings of Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), 14-19.

Harel, D. 1987. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8(3):231-274.

Houlette, R. and Fu, D. 2003. The ultimate guide to FSMs in
games. AI Game Programming Wisdom 2, Charles River Media.

Isla, D. 2005. Handling complexity in the Halo 2 AI. In
Proceedings of Game Developers Conference, San Francisco.

Laming, B. 2009. From the ground Up: AI architecture and
design patterns. In Proceedings of Game Developers Conference,
San Francisco.

Mateas, M. and Stern, A. 2003. Façade: An experiment in
building a fully-realized interactive drama. In Proceedings of
Game Developers Conference, San Jose.

Orkin, J. 2006. Three states and a plan: The A.I. of F.E.A.R. In
Proceedings of Games Developers Conference, San Jose.

Sacerdoti, E. 1975. The nonlinear nature of plans. In Proceedings
of International Joint Conferences on Artificial Intelligence
(IJCAI), 206-214.

Schwab, B. 2008. Implementation walkthrough of a homegrown
“abstract state machine” style system in a commercial sports
game. In Proceedings of Artificial Intelligence and Interactive
Digital Entertainment Conference (AIIDE), 145-148.

27

