
 

An Architecture for Game Behavior AI: Behavior Multi-Queues 

Maria Cutumisu, Duane Szafron 
 

Department of Computing Science, University of Alberta 
Edmonton, Canada 

{meric, duane}@cs.ualberta.ca 
 
 
 

Abstract 
We describe an AI behavior architecture that supports 
responsive collaborative interruptible and resumable 
behaviors using behavior queues. This architecture wraps 
sets of behaviors into roles, which provide a simple efficient 
mechanism for encapsulating behaviors into components 
that can change dynamically, based on environmental 
criteria. To illustrate the viability of this architecture in a 
commercial setting, we implemented this architecture in 
BioWare Corp.’s Neverwinter Nights game. To demonstrate 
the usability of this architecture by game designers, we 
implemented a simple interface in ScriptEase, so that the 
architecture can be utilized with no coding skills. 

 Introduction   

Games need an AI architecture that supports the 
straightforward creation and reuse of complex character 
behaviors. Since most games rely on custom scripts for 
non-player characters (NPCs), only plot-essential NPCs are 
scripted, resulting in repetitive behaviors for other NPCs. 
Since collaboration is hard to script, it is rare for NPCs to 
interact with each other. Behaviors are hand-scripted, non-
resumable, and dependent on the game engine. With each 
layer of realism, complexity increases and the tools fail. 
 We identify five features that behaviors should exhibit. 
A behavior should be responsive (react quickly to the 
environment), interruptible (suspendible by other 
behaviors or events), resumable (continue from the point 
of interruption), collaborative (initiate and respond to joint 
behavior requests), and generative (easy to create by non-
programmers). We show how our AI architecture supports 
all five features simultaneously. This paper combines an 
architectural solution to traditional game AI challenges: 
interruptible, resumable, responsive, and collaborative 
behaviors with high-level behavior constructs accessible to 
game designers with no programming knowledge to 
significantly reduce the content bottleneck for behavior 
creation. 
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Related Work 

Other AI architectures fail to support at least one of the 
five features. Finite state machines (FSMs; Houlette and 
Fu 2003), hierarchical state machines (HSMs; Harel 1987) 
and behavior scripts are the most popular game techniques 
for telling an NPC how to behave. Two major drawbacks 
of FSMs are their inability to store state that can be 
returned to later and their failure to capture high-level 
patterns that reoccur frequently, such as sequences and 
conditionals. Therefore, FSM techniques do not scale well 
and their representation makes behaviors difficult to 
outline. It is particularly difficult to code collaboration 
using FSMs. There are a number of extensions to FSMs 
that support more complex behaviors, including Stack-
based FSMs (for interruption and return), Fuzzy State 
Machines, Hierarchical FSMs (super-states can be used to 
share and reuse transitions), and Probabilistic FSMs. 
Neither FSMs nor their extension HSMs are resumable. 
Games that use FSMs include the Quake series and 
Warcraft III, Pac-Man (the ghost), Assasin’s Creed (in 
which the guard behaviors are predictable). HSMs are used 
in Destroy All Humans 2. The disadvantage of this 
approach is that the hierarchy and structure of the graph do 
not reflect priorities very explicitly. Without support for 
priorities, the responsive feature is hard to achieve. 
 Simbionic (Fu, Houlette and Ludwig 2007) is a visual AI 
authoring tool that represents behaviors using FSMs with 
four additional features: expression evaluation (conditions 
are used to evaluate transitions), hierarchical or stack-
based execution (one state can refer to another FSM and 
they can enable behavior priorities), behavior interrupt 
handling, and polymorphism. Simbionic enables users to 
define conditions and actions (i.e., FSM’s states and 
transitions, respectively), as building blocks for behaviors 
(i.e., constructed FSMs by the user through linking actions 
with conditions). Simbionic builds behavior graphs from 
behavior components. The behavior graphs can be indexed 
via a descriptor hierarchy to enable polymorphic selection 
of behaviors. However, as is the case with most purely 
visual tools, complexity of behaviors can render these tools 
impractical. Although this tool provides support for four of 
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the five features (responsive, interruptible, resumable, and 
generative), it is not clear that this system supports 
collaboration, which is essential for providing a basic level 
of character believability. Support for collaboration has a 
large impact on the mechanisms used to implement the 
four features and supporting it usually involves extensive 
changes to the core AI architecture and has a significant 
impact on the quality and utility of code-generating author 
tools. 
 Behavior trees (BTs; Isla 2005) and planners are starting 
to appear in some games. Behavior trees (or hybrid HSMs) 
make individual states modular to support reuse. They 
generalize HSMs, since they allow the programmer to add 
code in arbitrary nodes at any level in the HSM tree. The 
tree reveals the overall priorities more intuitively than 
FSMs, and the hierarchy of behaviors is more obvious: the 
behavior sequences are mid-level and the behavior selector 
is at the top level. The Halo series uses BTs to implement 
joint behaviors, but Halo BTs are not resumable. Joint 
behaviors are not explained in the Halo series in detail. 
Left 4 Dead uses HSM/BTs, but the allies in this game do 
not follow the player character (PC) even when the player 
shoots enemies, so these behaviors are not responsive.  
 An AI Planner finds an action sequence that achieves a 
goal. However, planning does not remember past actions. 
The first action game to use Hierarchical task network 
planning (HTN; Sacerdoti 1975) is Killzone 2 
(Champandard, Verweij and Straatman 2009). Real-time 
(RT) planning is used in F.E.A.R. (Orkin 2006) and No 
One Lives Forever 2, but resumable behaviors are not 
supported. Instead, behaviors are re-planned and performed 
from the beginning. Planners such as PaTNets (Badler et 
al. 1995) are used in related domains, such as robotics and 
sensor-control applications. However, these techniques 
have not been successfully applied in the domain of 
commercial-scale computer games. Soar and ACT-R 
support planning and have been used to construct Quake 
bots, but have not been adopted for commercial games. 
 The Sims 2 (Electronic Arts 2005) have impressive 
ambient behaviors, but the game model is not easily 
transferable to other genres. Game objects broadcast 
interaction information to the NPCs. Each Sim responds 
autonomously to these broadcasts, although often player 
intervention is necessary to keep them on the right track. 
 Neverwinter Nights (NWN) and Morrowind use scripting 
to implement behaviors, but do not support true 
collaboration. Collaborative behaviors are simulated in 
NWN by placing a script on one of the NPCs that controls 
the actions of both. Oblivion uses goal-directed AI that 
only supports very simple collaborations. However, along 
with NWN and Morrowind, Oblivion does not support 
resumable behaviors. Instead, it restarts behaviors if they 
are interrupted. None of these systems are generative, so 
they are impractical for non-programmers. 
 A visual scripting tool that addresses the issue of game 
designers who are not programmers was used for an NBA 
game (Schwab 2008). The tool has an underlying data-
driven AI system based on abstract state machines. The 

actors can have various roles that are activated by specific 
conditions. These behaviors have priority-based interrupts. 
The reusable roles can be assigned to several agents at 
once. Behavior activation can start immediately or 
behaviors can be enqueued for later execution. However, 
since this tool is not publicly available, a more in-depth 
comparison with our work could not be performed. It is 
also not clear how integral the NBA game theme is to the 
architecture. For example, the author mentions that parts of 
the system, such as perception (e.g., game state variables 
like the distance to the ball) and low level animation 
helpers are still “code-based” rather than data-driven. 
Therefore, we do not know whether the architecture is 
general enough to be used in non-sports domains. The 
author mentions that the learning curve required by the 
Situation editor is one week for programmers and longer 
for non-programmers, so this system may or may not be 
generative enough for general use. 
 In this paper, we describe how a behavior multi-queue 
architecture can be used to support our four behavior 
architectural requirements: responsive, interruptible, 
resumable, and collaborative, and how the architecture 
connects to ScriptEase (www.cs.ualberta.ca/~script) to 
support generative behaviors. Our architecture can be used 
to augment FSMs, HSMs, scripts, BTs, or HTNs. 
 Consider a tavern Patron NPC whose behaviors include 
a Converse talk behavior to talk to another NPC about a 
topic (e.g., “weather”). The Converse talk behavior has 
three consecutive tasks: Move to the NPC, Exclaim, and 
Listen. In addition, the Patron has another behavior to 
Order a drink from a tavern Server. The Order behavior 
has four phases: Converse talk with the Server to place the 
order, Wait until the Server returns, Exchange money for 
the drink, and Converse talk with the Server to express 
thanks. If the Server comes near the Patron and the Patron 
has not had a drink for some time, then the Order behavior 
should interupt a Converse talk behavior with another 
NPC. Figure 1 and Figure 2 show HSM and BT 
representations, respectively. 

 
Figure 1 A partial HSM for a tavern Patron NPC 

  We use a BT notation (Champandard 2007) where a 
horizontal arrow above the sub-behaviors indicates that 
they are performed in sequence from left to right. There is 
no need for transitions since a sub-behavior starts when the 
previous one ends. The numbers under the behavior
selector represent priorities, so that the Order behavior has 
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precedence over the Converse talk behavior. However, 
independently of the notation, there are two interpretations 
for these priorities. First, as soon as the conditions for the 
behavior with the higher priority are satisfied, this behavior 
interrupts any behavior with lower priority. Second, the 
NPC waits until a previous behavior has ended to pick a 
new behavior. It is the first interpretation we want for this 
scenario, but sometimes the second is desired. 

 
Figure 2 A partial behavior tree for a tavern Patron NPC 

 In general, many interpretations of behavior selection 
are possible, including five common ones (Isla 2005): 

prioritized-list: the first one that can run is performed, but 
higher-priority siblings can always interrupt the winner 
on subsequent ticks. 

sequential: run each in order, skipping those that are not 
currently relevant. When we reach the end of the list, the 
parent behavior is finished. 

sequential-looping: same as above, but when we reach the 
end of the list, we start again. 

probabilistic: a random choice is made from among the 
relevant children. 

one-off: pick in a random or prioritized way, but never 
repeat the same choice 

 BTs are behavior DAGs in which the non-leaf nodes 
make decisions about what children to run and the leaf 
behaviors run the composing actions. Decision-making 
priorities can be computed by the parent node or by the 
children. The second option scales better and it is used for 
the core components of the combat cycle in Halo 2. 
However, there is a scalability issue, since tweaking 
floating point priorities by hand is difficult when there are 
many children, so it is usually hard to achieve the exact 
behavior desired by the game designer.  
 Both HSMs and BTs can support interruption, but 
behavior resumption must be added in an ad-hoc way. For 
example, if a thirsty Patron is performing a Converse talk 
behavior with another NPC about the topic “weather” and 
a Server comes close, then both the HSM of Figure 1 and 
the BT of Figure 2 can service the interrupt and start the 
Order behavior. However, neither provides a mechanism 
to resume the Converse talk behavior, let alone resuming it 
at the correct task. In the HSM situation, it could be even 
more difficult to develop an ad-hoc solution, since the 
Converse talk behavior appears as a sub-behavior in the 
Order behavior. Therefore, any internal state in the 

interrupted Converse talk behavior, such as the partner, 
will be erased (the states are not re-enterable). 
 Ad-hoc solutions remember the previous context in the 
HSM or BT, but the interrupted behavior may itself be 
interrupted. For example, what if the designer wanted to 
allow the Server to be interrupted by a “higher priority” 
behavior while performing the Order behavior? For 
example, if the PC is perceived, perhaps the Patron should 
approach the PC and initiate a conversation to start a quest. 
In general, we need an architectural solution to the problem 
of interrupting and resuming behaviors that uses a stack.  
 In GTA Chinatown Wars, Rockstar (Laming 2009) 
introduced a three-stack model to solve the problem of 
resuming interruptible behaviors. For example, if a 
character is going to a car and spots an enemy, the going 
behavior whose actions are on one stack is interrupted, all 
behaviors on this stack are popped off (except the top-level 
behavior), the character deals with the enemy using a 
second stack and, when this is done, the going behavior is 
re-started from the beginning on the first stack (not 
resumed from the point of interruption). 
 NPC collaboration is hard to express using HSMs or 
BTs. If each collaborator has a separate behavior, then 
extra code must be used to synchronize the behaviors. If a 
single joint behavior is used to control the collaboration, 
then it is difficult to integrate the joint behavior with the 
single behaviors of the collaborating NPCs. Collaboration 
has been done successfully using BTs in Halo 3 using extra 
state in a blackboard (Dyckhoff 2007), but the behavior 
tree architecture itself provides no support. More rigorous 
support for collaborative behaviors has been proposed 
using HTNs (Gorniak 2007), where a single network 
structure is used to control the collaborative plan, but this 
work has not appeared yet in a shipped game and it has 
problems dealing with failed plans. If one or more 
collaborators fail, the other collaborators should abandon 
the collaboration gracefully. For example, if the Patron 
who ordered a drink leaves the tavern, the tavern Server 
should give up trying to deliver the drink.  
 Architectural support for interruptible-resumable 
behaviors and collaborations should take advantage of a 
potential for feature interaction. When a collaborator is 
waiting for its partner during a collaboration, there should 
be the opportunity for the waiting collaborator to suspend 
its own waiting behavior, perform another behavior, and 
resume the original behavior when the collaborator 
responds. For example, if a tavern Patron is waiting for a 
Server to fetch a drink order, then the Patron should be 
able to suspend the Wait task by engaging in a Converse 
talk collaborative behavior with another NPC. When the 
Server returns, the Patron should interrupt the Converse 
talk behavior to exchange money for the drink delivered by 
the Server and then, since this behavior is complete, 
resume the Converse talk collaborative behavior. 
 Façade (Mateas and Stern 2003) has a collaborative 
interruptible and resumable behavior model. The NPCs use 
collections of reactive behaviors (beats) that can be 
interrupted by the PC. Parallel beats are used for 
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collaboration. However, the Façade designers comment on 
the amount of manual work required from an author to use 
their framework, since the ABL scripting language is 
challenging even for experienced coders. Since Façade 
only has two NPCs in a small environment, their behavior 
techniques will not easily scale to hundreds or thousands of 
NPCs. We need a mechanism to provide behaviors of this 
quality to many more NPCs with minimal authoring work. 
 In summary, we seek architectural support for: 

prioritized interruptible-resumable behaviors: a behavior 
may interrupt another if its priority is higher and, after 
this second behavior is complete, the first behavior will 
resume as close to the interuption as possible. 

multi-level interruptions and resumptions: a chain of 
interruptible-resumable behaviors should be supported. 

collaborative behaviors: it should be easy to specify that 
two or more collaborators should behave in a 
synchronized manner and to specify which sub-
behaviors should be synchronized. 

behaviors while waiting on collaborative behaviors: if a 
collaborator is waiting, it should be able to engage in 
another behavior while waiting. 

graceful failures of collaborative behaviors: if one or more 
collaborators fail, the others should be able to gracefully 
abandon the collaboration. 

 We describe our multi-queue architecture that provides 
support for these features and an implementation that uses 
prioritized interruptible-resumable independent and 
collaborative behaviors in a commercial game, BioWare 
Corp.’s NWN. We demonstrate how this architecture can 
support generative behaviors created by game designers 
who are non-programmers. 

Behavior Architecture 

The behavior architecture is based on a series of queues 
that support different kinds of behaviors. We begin by 
describing the ontology of the necessary behavior kinds. 

An Ontology for Behaviors 
All behaviors for an NPC are placed into a role that selects 
behaviors, and each behavior consists of a sequence of 
tasks or behaviors. We use a tavern that contains three 
kinds of NPCs: Patron, Server, and Owner to illustrate our 
behavior architecture. We assume the tavern contains one 
owner, a few servers, and many patrons. Figure 3 shows a 
subset of the behaviors for the Patron and one for the 
Server. We use a graphical representation that is 
reminiscent of both BTs and HSMs. Some of the behaviors 
(rectangles) in Figure 3 are expanded to show their tasks 
(ovals). The text in the clear rounded rectangles indicates 
some of the most important parameter values of the 
behaviors/tasks. For example, in Figure 3, the Approach 
behavior finds a random creature in the room.  
 When it is used, a behavior is tagged by two properties: 
independent or collaborative, as well as proactive, latent, 

or reactive. An independent behavior is performed alone. 
For example, in Figure 3, the Approach (random creature) 
behavior is independent since a Patron can Approach 
another creature without agreement by that creature. A 
collaborative behavior is performed jointly with another 
NPC (not PC). For example, the Converse talk behavior in 
Figure 3 is collaborative. The individual who starts a 
collaboration is called the initiator and all other 
collaborating individuals are called reactors. 
 

Figure 3 Some Patron behaviors and one Server behavior 

 Behavior initiation determines if a behavior is proactive, 
latent, or reactive. An independent or collaborative 
proactive behavior is spontaneously initiated by an NPC, 
when it has no active behaviors. We assume that roles 
select proactive behaviors probabilistically after filtering 
on any conditions they contain, but any of the behavior 
selection mechanisms listed in the introduction could be 
used. For example, the Patron in Figure 3 will initiate one 
of the Return, Approach, or Converse talk proactive 
behaviors whenever it must select a new behavior. A latent 
behavior is performed when an event cue fires. An event 
cue can be constructed from any game event such as a 
timer, a creature coming within some range, or a container 
being opened. An event cue can optionally contain pre-
conditions. For example, the Patron in Figure 3 will 
perform an independent Notice (gaze shift) latent whenever 
another creature comes within a short range. The Patron 
will perform a collaborative Order latent whenever a 
Server comes close to the NPC and the NPC is thirsty. A 
reactive behavior is performed when an initiating NPC 
makes eye-contact (described later) with a potential 
collaborating NPC, so every reactive behavior is 
collaborative. For example, the Patron in Figure 3 can 
perform a Converse listen behavior on the topic of 
“weather” if another NPC tries to engage that NPC using a 
collaborative Converse talk behavior on the same topic. 

Using Priorities to Guide Behavior Interruptions 
Common game scenarios need priorities for designing 
highly responsive characters. For example, to be realistic, 
the latent Notice (gaze shift) behavior shown in Figure 3 
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should briefly interrupt most other behaviors. However, to 
simplify priorities for designers, we assign a set of default 
priorities. Each proactive independent behavior has a 
default priority of 0, each proactive collaborative behavior 
and reactive behavior has default priority 1, and each latent 
behavior has default priority 2. A latent should almost 
always interrupt a proactive. For example, the brief Notice 
interruption can occur while the Patron is performing any 
proactive or reactive behavior. Similarly, a thirsty Patron 
can opportunistically interrupt any proactive or reactive 
behavior to Order a drink when a Server passes by. 
Normally, a Notice will not interrupt an Order behavior, 
since that behavior is also latent with default priority 2. 
However, a designer can manually assign a higher priority. 
Note that realistic behaviors not only require interrupts, but 
also resumption of previous behaviors. 
 For example, a movie clip (www.cs.ualberta.ca/~script/ 
movies/resumablebehavior.mov) shows Patron Mary, 
performing an Approach behavior towards Patron Bob. 
The behavior has two tasks, Exclaim and Move. The 
Exclaim task completes, but the Move task is interrupted by 
the Notice behavior when the PC gets close. Notice is just a 
glance, but it is implemented using an Exclaim task to 
emphasize it in the movie. After the Notice is complete, 
Mary resumes her Approach behavior, by re-starting the 
interrupted Move task (the Exclaim task of the Approach 
behavior is not performed again). The architectural 
mechanism for interrupting-resuming behaviors is 
discussed in the Behavior Multi-queues section. 

Collaborative Behaviors 
We limit collaboration to a pair of NPCs since our current 
implementation only supports pairs. However, there is 
nothing inherent in the architecture that limits 
collaboration to a pair. Each collaborative behavior has a 
topic parameter and two NPCs will collaborate if one of 
them (the initiator) has a proactive or latent behavior on a 
topic string and the other (the reactor) has a reactive 
behavior on the same topic. The same NPC can be both an 
initiator and a reactor on the same topic. For example, a 
Patron can initiate a conversation about the “weather” 
using a proactive collaborative Converse talk behavior and 
another Patron can react using the reactive Converse listen 
behavior on the “weather” topic. In fact, any other NPC 
that has a reactive behavior with topic “weather” could 
also react, even if that behavior is not a Converse listen 
behavior. The connection is made by topic, not by 
behavior. This allows a designer to add other behaviors on 
a topic at any time without editing the existing behaviors. 
 The potential reactor NPCs are filtered to include only 
those who satisfy three requirements. First, the NPC must 
have a reactive behavior on the same topic. Second, all 
conditions included in the initiator's collaborative behavior 
must be satisfied. Third, the reactor must make eye-contact 
with the initiator. Eye-contact is successful if the potential 
reactor is not currently involved in another active 
collaborative or latent behavior. Eye-contact is successful 
if the potential reactor is involved in an active independent 

behavior or if all of the reactor’s collaborative and latent 
behaviors are suspended for some reason (described later). 
An independent behavior is interrupted and it resumes after 
the collaborative behavior is complete.� For example, a 
Patron will only attempt to Converse talk with another 
NPC about the “weather” if that NPC has a reactive 
behavior whose topic is “weather”, the Patron is within a 
certain range of this NPC, and the NPC is not already 
involved in a collaborative or a latent behavior.  
 For example, a movie clip (www.cs.ualberta.ca/ 
~script/movies/collaborativebehavior.mov) shows Patron 
Mary performing an Approach behavior towards Patron 
Bob. Meanwhile, Patron Dave tries to make eye-contact to 
start a collaboration on topic “weather”. Since Mary’s 
Approach behavior is independent, eye-contact is 
successful, the Approach behavior is interrupted, and Mary 
performs a reactive Converse listen behavior. When the 
conversation is done, Mary resumes her Approach 
behavior adjusting her trajectory, since Bob has moved. 
 When a collaboration begins, both NPCs start executing 
pairs of tasks that comprise their respective behaviors. For 
example, in Figure 3, Move is the common first task of 
both the Converse talk and Converse listen behaviors, so 
the NPCs move to each other. After both tasks complete, 
the collaboration enters the next phase. The second task of 
the Converse talk behavior is Exclaim, and the second task 
of the Converse listen behavior is Listen, so the first 
collaborator Exclaims (talks and gestures) while the second 
collaborator Listens (gestures). The architecture inserts 
phase barriers between task pairs, as shown in Figure 3. 
For example, if the reactor completes the Listen task before 
the initiator completes the Exclaim task, the reactor waits 
for the initiator to finish before they proceed to the next 
task pair, Listen (initiator) and Exclaim (reactor).�
� Sometimes, it is convenient for the designer to use 
collaborative behaviors where the proactive part and 
reactive part have a different number of tasks. In this case, 
the architecture is responsible for adding an appropriate 
number of default (Wait) tasks to the end of the shorter 
behavior. For example, the designer could add a proactive 
behavior Converse long to an NPC, which is like Converse 
talk, but with an extra Exclaim task at the end. In this case, 
a reactive Converse listen on the same topic could be used 
to collaborate with a Converse long and, while the initiator 
is performing the extra Exclaim task, the reactor would 
simply play a Wait animation. 

Behavior Multi-queues 
The behavior multi-queue architecture has three sets of 
queues: (proactive) independent, collaborative (proactive 
or reactive), and latent (independent, collaborative, or 
reactive). There is only a single proactive independent 
queue, but there can be an arbitrary number of proactive 
collaborative and latent queues. When a behavior is 
created, its tasks are placed on one appropriate queue. The 
proactive independent queue can hold only a proactive 
independent behavior. A proactive collaborative queue can 
hold a proactive collaborative behavior or a reactive 
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behavior in response to a proactive collaborative behavior. 
A latent queue can hold an independent or collaborative 
latent behavior, or a reactive behavior that reacted to a 
latent behavior. Each queue knows the priority of its 
current behavior and a latent queue knows whether its 
behavior is independent or collaborative. Note that when 
we use the term collaborative queue, we refer to either a 
proactive collaborative queue or a latent queue that 
contains a collaborative behavior.  
 Each behavior (and its queue) in the multi-queue is 
either active or suspended. When a behavior is started, it is 
active. The term current behavior denotes the active 
behavior with the highest priority. The term interrupt a 
behavior means to immediately stop the currently 
executing task of that behavior (if there is one), without 
removing that task from its queue. The term cancel a 
behavior means to interrupt the behavior, clear all its tasks 
from its queue and, if it was collaborative, cancel the 
collaborating behavior. The term suspend a behavior 
means to prevent that behavior’s next task from executing 
until the behavior is made active. The term activate a 
behavior means to interrupt the current behavior (if any) 
and to allow the next task of the activated behavior to start 
executing, if its behavior has highest priority, when the 
next task start signal is received by the dispatcher. Note 
that interrupting a behavior does not suspend it. 

Behavior Dispatch 
When an NPC is spawned, it starts performing a control 
loop that repeatedly sends a timer signal to its behavior 
dispatcher. However, this behavior dispatcher is also 
signaled by event cues and other game events. For 
example, when a task is complete, a task done signal is 
sent to the dispatcher. The behavior dispatcher handles 
these signals: 

1. New behavior signal 
2. Task done signal 
3. Collaborator done signal 
4. Phase done signal 
5. Task start signal  
6. Kill collaboration signal 
7. Timer signal or previous kind of signal ignored 

 Case 1. New behavior signal: if the new behavior has 
lower priority than the current behavior, the signal is 
ignored and case 7 is performed. Otherwise, the current 
behavior is interrupted, the new behavior is queued on an 
appropriate (independent, collaborative, or latent) queue, 
and a task start signal is sent. If there is no empty 
appropriate queue, then the lowest priority appropriate 
behavior is cancelled and its queue is used for the new 
behavior. The new behavior signal is either: latent, 
reactive, or proactive. The behavior dispatcher sometimes 
generates a new proactive signal during case 5. If the new 
proactive is independent, the appropriate queue is 
independent. If the new proactive is collaborative, and eye-
contact is not made, the signal is ignored and case 7 is 
performed. If eye-contact is made, a collaborative queue is 
used and a new reactive signal is sent to the collaborator, 

so that it can handle its corresponding reactive behavior. A 
new reactive signal is not generated in the behavior 
dispatcher of the reacting NPC. Instead, it is sent by the 
collaborating NPC when it performs a new collaborative 
behavior after eye-contact is made. If the initiating 
behavior was proactive, the appropriate queue is 
collaborative. If the initiating behavior was latent, a latent 
queue is used. A new latent signal is generated when a 
latent cue is triggered and the appropriate queue is latent. 
 Case 2. Task done signal: if the task is not collaborative, 
then the task is removed from its queue, a timeout clock is 
reset, and a new task start signal is generated. If the task is 
collaborative, then a collaborator done signal is sent to the 
collaborator. If the collaborator done flag is set, a phase 
done signal is sent; otherwise, a self done flag is set. These 
steps are necessary to ensure that both collaborators have 
completed a task before they both proceed to the next task. 
 Case 3. Collaborator done signal: if the self done flag is 
not already set, then set the collaborator done flag and 
return, since we must wait for our own task to be done. 
Otherwise, if the self done flag has been set, send a phase 
done signal to start the next phase. However, before 
sending this signal, if the behavior is suspended (because it 
is waiting for the collaborator), activate it. 
 Case 4. Phase done signal: de-queue the task, reset the 
timeout clock, and generate a task start signal. 
 Case 5. Task start signal: reset the timeout clock and 
start performing the first remaining task from the queue of 
the current behavior. If there is no current behavior (no 
active queues or all queues empty), create a new proactive 
behavior and send a new proactive signal. 
 Case 6. Kill collaboration signal: cancel the 
collaborative behavior and send a task start signal. 
 Case 7. Timer signal or previous kind of signal ignored: 
if the current behavior is not collaborative or if the timeout 
clock has not reached a wait time, do nothing. Otherwise, 
for a long wait time, cancel the behavior, send a kill 
collaboration signal to the collaborator, and send a task 
start signal or, if the medium wait time has occurred, 
suspend the current behavior and send a task start signal. 

Behavior Scenario 
In addition, to supporting explicit behavior interruption and 
resumption, the dispatcher allows self interruption of 
collaborative behaviors (Case 7), which enables an NPC to 
perform other behaviors while waiting for the collaborator 
to complete a lengthy task. A realistic complex scenario 
illustrates the power of this multi-queue architecture. The 
queues are shown in Figure 4 at a point in this scenario 
with annotations showing specific progress points depicted 
as consecutive integers in circles. We show only the six 
queues used in this scenario. 
 Patron Mary performs the independent priority 0 
Approach behavior towards Patron Bob. Mary finishes her 
Exclaim task and starts her Move task. Server Linda passes 
close to Mary, who has not had a drink for a while. Mary 
interrupts her Approach behavior to perform a new latent 
priority 2 collaborative Order behavior with the Server 
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(Case 1 – new latent). The Approach behavior is 
interrupted, which means that its current task (Move) stops 
executing, but it is not removed from its queue and it is not 
suspended. The scenario has reached point 1 in Figure 4.  

Figure 4 The multi-queues during a complex scenario 

 Even though the Approach behavior is not suspended, it 
has lower priority than the latent behavior, so no task from 
this behavior will execute until all higher priority behaviors 
are complete (Case 5). In performing an Order, Mary starts 
by performing a series of tasks: Move, Exclaim, Listen, 
Wait synchronized with Linda’s tasks: Move, Listen, 
Exclaim, Fetch and, at this point, Mary finishes the Wait 
task very quickly, while Linda performs Fetch. Since 
Linda takes a long time to fetch a drink, Mary’s dispatcher 
has a medium timeout (Case 7) and suspends the Order 
behavior. The dispatcher then re-performs the Move task of 
the Approach behavior (Case 5), which becomes the 
current behavior, since it is the only active behavior. The 
scenario has reached point 2 in Figure 4. After Mary takes 
a few steps toward Bob, Patron Dave tries to start a 
collaborative proactive Converse talk behavior with Mary. 
Since Mary’s only active behavior is independent, eye-
contact is made and Mary starts the Converse listen 
reactive behavior (Case 1 – new reactive). Since Dave’s 
initiating behavior was proactive, the reactive Converse 
listen behavior uses a collaborative queue. Now Linda 
arrives with Mary’s drink order, completing the Fetch task. 
Since Mary’s corresponding Wait task in the suspended 
Order behavior was marked as done, the Order behavior is 
activated (Case 3) and a phase done signal is sent. 
Activating a suspended behavior interrupts the current 
behavior (Converse listen). The scenario is at point 3 in 
Figure 4, just before the phase done signal is handled. 
 If the rest of the tasks in the priority 2 latent Order 
behavior are completed without interruption or timeout 
(Exchange/Exchange, Move/Move, Exclaim/Listen, 
Listen/Exclaim), then Mary will perform the Listen and 

Exclaim tasks in the priority 1 collaborative reactive 
Converse listen behavior, while Dave performs the 
synchronized tasks Exclaim and Listen in the Converse talk 
behavior. If they are completed without interruption, then 
the Move task in Mary’s priority 0 independent Approach 
behavior will finally be completed. This architecture 
supports interruptible and resumable behaviors. When a 
behavior resumes, it does not start over like the three stack 
behavior tree (Laming 2009). In addition, if a collaborative 
behavior waits for a very long time, it is cancelled and the 
corresponding behavior of its collaborator is cancelled. 
This is important if one of the collaborators is killed or 
otherwise unable to complete the collaboration. 

Using and Designing Behaviors 

To illustrate that our behavior architecture could be used in 
a generative manner by a non-programmer for a 
commercial game, we implemented a version of our multi-
queue architecture in NWScript for BioWare’s NWN. We 
used ScriptEase to create behavior patterns and 
implemented these patterns using our new architecture. 
Figure 5 shows the abbreviated Patron role behaviors from 
Figure 3 as expressed in ScriptEase. 

 

Figure 5 The Patron tavern behaviors in ScriptEase 

 The proactive collaborative Converse talk behavior is 
open to show its three tasks: Move, Exclaim, and Listen. 
The Exclaim task is open to show the atomic actions that 
comprise this task. If the Exclaim task is interrupted, it re-
starts from its first action, faces (highlighted).  
 In ScriptEase, we implemented proactive, reactive, and 
latent behaviors whose purposes are clear to the game 
designer. In some sense, ScriptEase ambient and latent 
behaviors can be represented as FSM transitions. For 
example, in Figure 5 they can be voluntary-proactive (from 
Approach to Converse talk) or forced-latent by perception 
(from Approach to Order when the server walks near the 
patron). However, it is hard to infer this differentiation 
(voluntary vs. forced) from an FSM diagram. In contrast, 
the ScriptEase generative pattern abstraction is easy to 
understand and to use. In fact, Grade 10 high-school 
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students with no programming experience created 
interactive game adventures (without behavior patterns) in 
four and a half hours following a two-day training period 
on the use of the NWN game, the Aurora Toolset, and 
ScriptEase (Carbonaro et al. 2008). In a new experiment, 
high-school game designers successfully used our new 
behavior patterns in ScriptEase (Cutumisu 2009). Our 
pattern model shields game designers from manual 
scripting and the synchronization issues posed by 
collaborative behaviors, allowing them to concentrate on 
story construction. Designers can easily group, manage, 
and reuse hundreds of behavior patterns. 

Conclusion 

A movie clip (www.cs.ualberta.ca/~script/movies/ 
tavern.mov) shows a tavern scene with one owner, two 
servers, and eighteen patrons. This scene runs in game at 
more than 30 frames per second, despite the high activity 
in the scene. We have run this scene for days without any 
noticeable stalling of behaviors or NPCs who stop 
performing their designated behaviors. This illustrates that 
the multi-queue approach is both efficient and robust 
enough for commercial computer games. We have not seen 
a need for more than two collaborative and two latent 
queues in the kind of behaviors we observe or envisage for 
story-based games in the near future. When more than two 
queues are required, the lowest priority behavior is 
cancelled and the game situation seems natural. We only 
needed to change the default behavior priority occasionally 
and only for latent queues. For example, a guard that uses a 
priority 2 latent behavior to Warn an approaching character 
may need to be interrupted by a priority 3 latent behavior 
to Attack if that character or another character gets very 
close or actually touches a guarded object. 
 Sometimes an author may want to use tasks that are 
uninterruptible, or tasks that cannot be resumed. We can 
accommodate the first situation by assigning very high 
priorities to latent cues to create behaviors that are non-
interruptible. We do not currently support behaviors that 
the designer might want to be non-resumable, but this 
feature is straightforward and will be added.  
 Since our implementation uses NWN, we currently have 
the luxury of relying on the game engine to provide low-
level parallelism such as simultaneous walking and talking. 
An author can simply insert the walk and talk actions into a 
task in a behavior and the game engine uses its own 
internal action mechanism to ensure basic time-sharing 
between the actions. The NPC starts walking and, since 
this action takes a long time to complete, the talk action 
overlaps its execution. Our AI architecture supports this 
directly since the talk behavior could be added on a 
different queue and could be performed simultaneously 
with behaviors stored on existing queues. It takes minutes 
to insert existing behaviors into a game and bind the 
behavior parameters. It takes about an hour to design and 
create a new behavior. We view this architecture as a 
natural evolution of behavior trees. 
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