
Is MPI Suitable for a Generative Design-Pattern
System?

Paras Mehta, José Nelson Amaral, Duane Szafron
Department of Computing Science, University of Alberta, Edmonton, AB,

Canada, T6G 2E8

Received:

Abstract
Generative parallel design patterns can be used to improve the productivity of

parallel program development. However many of the generative design-pattern
systems are developed for target languages that are not widely used by the high-
performance computing community. This paper describes an initial effort to develop a
system that will hopefully answer the question in the title in the affirmative. This new
system is ostensibly based on, and built upon the experience with, the successful
CO2P3S system. Significant challenges must be overcome to implement the features
of a system that generates frameworks conceived for an object-oriented programming
language (Java) into a parallel-annotated procedural language (MPI/C).

Keywords: Parallel programming, programming environments, design patterns, MPI, Cowichan
Problems, Mesh, Search-Tree.

1. Introduction
This paper describes preliminary investigation and experimentation towards the

development of the MPI Advanced Pattern-Based Parallel Programming System
(MAP3S), a generative pattern system that is an evolution of the Correct Object-
Oriented Pattern-Based Parallel Programming System CO2P3S [12]. CO2P3S uses
pattern templates to represent a family of frameworks that solve a problem. CO2P3S is
a successful demonstration that generative design patterns can be used to generate
solutions to parallel programming problems. The parallel programs generated by
CO2P3S exhibit significant speed improvements over corresponding sequential
versions.

The target programming language of CO2P3S is multi-threaded Java. This choice
of language provides several of the advantages of object-orientation, such as
encapsulation and polymorphism, that facilitate the integration of the framework
generated by CO2P3S with the code written in hook methods by the pattern user.
However Java is not yet broadly used in the High-Performance Computing (HPC)
community and many implementations of Java still produce code that is slower than
parallel-annotated procedural language equivalents.

On the other hand the Message Passing Interface (MPI) standard is broadly used,
has a significant installed base, and is known to many HPC programmers. Thus, an
interesting question is: Can the programming-productivity gains demonstrated by
CO2P3S be duplicated in a system that targets MPI? Such a system would provide for
a fast dissemination of the use of design patterns in the HPC community. This is the
motivation for MAP3S.

Duane Szafron
Text Box
This is a pre-print of a paper that will appear in the journal, Parallel Computing in 2006.

2. Multithreaded Java vs. MPI
Hierarchical design, encapsulation, polymorphism, and thread objects make

multi-threaded Java very suitable for pattern-based programming. Some of these
features have to be emulated in MPI/C to enable the implementation of generative
design patterns. In the original, shared-memory, version of CO2P3S, data
communication between threads was performed by an underlying library [4]. A
distributed-memory version of CO2P3S required only changes to the lower-level
communication code [17]. One of the main contributions of CO2P3S is the separation
of parallelism concerns from computation concerns. Parallelism concerns, such as
synchronization and communication, become the responsibility of the pattern
designer, while computation concerns become the responsibility of the pattern user.

MPI requires function calls to transfer data between processes. In MPI the
distribution of tasks to processors requires the exchange of messages. Moreover, data
transfers require the matching of sends and receives between the processes involved.
Thus the separation of parallelism and computation concerns in MAP3S is more
challenging than in CO2P3S. This paper describes the experience of translating two
patterns, a mesh and a search-tree, from CO2P3S to MAP3S to illustrate some of the
difficulties encountered and the solutions adopted.

Despite the significant differences between multi-threaded Java and MPI/C,
MAP3S should maintain CO2P3S’s ability to generate framework code from user-
chosen patterns and pattern parameters. Also, MAP3S must implement most, or all,
of the patterns available in CO2P3S. And despite the greater challenge of
accomplishing it in MPI when compared with Java, segregating parallelism from
computation remains a priority.

An important characteristic of CO2P3S that MAP3S should maintain is the ability
to tune the generated framework code to specific problems through the use of pattern
parameters. Giving the pattern user the ability to adapt the generated code in order to
best utilize both problem characteristics and the underlying architecture is important
in a performance-driven pattern-based programming system.

In MAP3S the user-defined sections of code are preprocessor macros that are
inserted into the proper place in the framework --- instead of the hook methods of
CO2P3S. Because the code in these macros is inserted into functions in the framework,
there is a potential for conflicting use of local scoped variables and for semantic
overwriting. Thus, the pattern user must exercise greater care when writing the code
for MAP3S macros than for CO2P3S 's hook methods. On the other hand macro code
is automatically inlined into the framework code, and thus does not incur the function
call overhead of a hook method.

3. Patterns
When selecting patterns for the initial investigation of MAP3S, the goal was to

select patterns that were quite distinct. The mesh pattern and the search-tree pattern
were selected as the initial targets for MAP3S, since they exhibit the most differences
of all patterns. A mesh is a data-parallel pattern and a search tree is a task-parallel
pattern. Moreover, very distinct strategies for the implementation of the patterns were
taken. The mesh pattern implements a static load distribution very similar to the one
in CO2P3S. The search-tree pattern implements a work-stealing dynamic-load-

balancing mechanism that is common-place in multi-threaded systems, but was never
used in CO2P3S. While describing the experience with the implementation of these
patterns, this section highlights the differences between CO2P3S and MAP3S.

3.1 Mesh Pattern
Problems involving multi-dimensional arrangements of elements for which the

computation of one element is dependent on the element's neighbors are good
candidates for the Mesh Pattern. In a typical mesh problem the value of an element e
at time t+1 is computed based on the value of e and the neighbors of e at time t. New
values for all the elements of a region of the mesh may be computed for several
iterations before the values at the edges of the region are transmitted to neighboring
regions. This process continues until some condition holds true. For example, a fixed
number of iterations is executed, or a stability condition is reached.

3.1.1 Mesh decomposition and synchronization

Currently MAP3S implements a two-dimensional mesh with the elements
organized into a two-dimensional array. Each array element is a data structure defined
by the pattern user. The pattern partitions this two-dimensional array into blocks. The
arrangement of these blocks is also defined as a smaller two-dimensional array. For
instance, a 2000 × 2000 mesh can be formed by 200 × 100 blocks. Thus the initial
mesh is represented by a 10 × 20 array of blocks. An element that has at least one
neighbor that is not in the same block is a fringe element.

After initialization, these blocks are distributed to the various processors before
the computation proceeds. Synchronization points (e.g. barriers) are placed between
iterations. At these points, processors computing neighboring blocks swap their
respective fringe elements. Once the termination condition is reached, a single
process collects the final blocks and computes the results from the reintegrated mesh
structure.

MAP3S has to comply with MPI message size restriction. It is often not possible
to transfer entire rows and columns between processes in a single message. On the
other hand, transferring single elements is extremely inefficient. Thus, a maximum
packet size, expressed in bytes, is defined for the program. At synchronization points,
packets will contain as many elements as allowed under the specified packet size.

3.1.2 Pattern Parameters

MAP3S maintains the customization parameters provided by CO2P3S for the
mesh pattern, including the number of neighbours (cardinal neighbours vs. all eight
neighbours), horizontal and vertical toroidality (whether and in what directions the
mesh wraps around), and a synchronization parameter (whether each region in the
mesh waits for new neighbouring values before going to the next iteration or not).

MAP3S implements additional parameters that allow the user to better tune the
code for specific architectures. Currently the mesh-pattern user can specify the
following parameters:

Packet size: The maximum size of a packet transmitted between neighboring
processes. The generated framework will break fringe columns and rows in packets
that are not larger than the packet size specified by the pattern user.

Update timing: For conceptual simplicity, synchronizing fringes between
neighbours occurs between iterations; a wholesale swap is made at once between all
neighbouring blocks. The cost of this simplicity, however, is potential contention for
message passing. Another strategy to accomplish this synchronization would be to
only communicate a fringe packet when it is requested. This parameter enables the
pattern user to decide whether synchronization occurs wholesale or on demand.

3.1.3 Pattern Hooks and Element Representation

In the CO2P3S implementation of a mesh, the pattern user writes hook methods.
Exterior to the iteration cycle, are the initialize and the reduce methods that take care
of pre- and post-iteration processing, respectively. During the iteration cycle the
methods prepare and postprocess take care of work that must be done before and
after each iteration. Finally, there is an iteration method for each class of element.
For instance, in a vertically toroidal mesh with only cardinal neighbours, an element
falls into one of three classes: an interior element (neighbours in all four directions), a
left-edge element (no left neighbour), or a right-edge element (no right neighbour).
Each of these classes requires its own iteration hook method.

In MAP3S, elements of the mesh are represented by a C structure defined by the
pattern user, rather than by Java objects in CO2P3S. Because the elements of the mesh
are packed into MPI packets before being sent, special macros to perform this packing
must be provided. Presently, the pattern user must define these macros, but in the
future they will be generated automatically by MAP3S. In some cases, user
specifications of macros may be required. For instance, automatic generation of
macros for code with pointer indirections may be difficult to accomplish in some
cases.

3.1.4 Block Distribution with Fixed Message Sizes

Because, in the MPI system, message passing is explicit, and because there are
limitations on the size of message that can be passed efficiently, transmitting an entire
row or column of a large-size block with large elements can be difficult in MAP3S.
The solution adopted is to allow the pattern user to customize the size of the messages
that are used to communicate neighbouring fringe values.

Another important issue in the translation of the CO2P3S' mesh pattern to a
MAP3S' mesh pattern is the mechanism to distribute elements to the various
processors. In the CO2P3S mesh pattern, there is no explicit division of labour
between processors; each processor is given an element and performs the
computation. If the element's neighbours are not local, then data is fetched from a
block being operated on by another processor.

Such open-ended work distribution in MAP3S could generate excessive
communication and lead to an inefficient implementation. Instead, MAP3S
implements a system of block distribution based on the block arrangements and on
the block dimensions.

The pattern user defines the overall mesh dimensions as well as the dimensions
of the component blocks of the mesh (these dimensions can be parameters whose
values are only known at runtime). The framework uses these dimensions to
determine the two-dimensional arrangement of the blocks over the mesh. Next, the
blocks are distributed round robin to each process in the mesh. Given the
arrangement of the blocks, each process can determine the neighbours of the fringe
elements of its block(s).

Using this block distribution, but defining block dimensions independently of the
overall mesh, MAP3S satisfies the MPI requirements of explicit communication. At
the same time the pattern user has flexibility in terms of distribution method and
block size.

3.2 Search-Tree Pattern
Tree search is a task that often results in long run times and, thus, is a desirable

target for parallelization. Solutions to problems such as optimization search and
adversarial search can be implemented using this pattern. For instance, in an
adversarial search the states of a game can be represented as nodes in the tree.

The search goes through two phases: divide and conquer. The divide phase
involves the generation of the children of a given node. When tree searching is
modeled as task-based parallelism, the divide phase consists of the generation of
many parallel tasks to be distributed and consumed by multiple processes.

The conquer phase executes the computation at a node and updates the value of
the node's parent upon completion. Thus conquer consists of the consumption of
tasks, and the state update that may arise from that consumption.

3.2.1 Stealing Children

For the purposes of parallelization, the search tree is recursively broken down
into Tasks. Each Task represents the root of a sub-tree. A Task is represented by
a closure containing a pointer to a function to be executed and the value of the
parameters required by that function. These closures are modeled using user-defined
structures, with some mandatory structure elements required by the pattern such as a
pointer to the parent and a reference to the generating process.

When a processor consumes a Task, one of two things may happen depending
on the current phase of the search. The divide phase generates children to be
consumed later. Typically the divide phase continues up to a depth threshold. In the
conquer phase, a task consists of solving sequentially the entire sub-tree rooted at the
node associated with the task. Once the value of the root is determined, it is
forwarded to the parent of the node and the task terminates.

At the end of the conquer phase, the parent of the node being processed needs to
be updated. Often, because of work stealing, the child has been processed by a
different processor than the parent. Therefore, a message from the processor that
conquered the child must convey the result to the processor that processes the parent.
This return of information requires an additional structure defined by the pattern user,
the Result, which is used to communicate necessary update information to the
parent.

3.2.2 Search-Tree Pattern Parameters

Currently CO2P3S only has a shared-memory implementation of the search-tree
pattern – no distributed-memory version exists. The default implementation of this
shared-memory search-tree pattern in CO2P3S uses a shared work queue to distribute
tasks among a fix number of threads. A task is associated with a node in the search
tree. If the node is above a pre-defined level, the task creates children tasks and adds
them to the work queue. Otherwise the task sequentially executes the sub-tree rooted
at the node. Any thread takes a task off the shared work queue, executes it and goes
back to the queue for another task until the queue is empty. The pattern user may
override this default implementation by providing a different implementation of the
hook method, divideOrConquer. The parameters for the search-tree pattern in
CO2P3S include traversal-type, early-termination, and verification.

MAP3S implements a different dynamic-load-balancing mechanism, based on
distributed work queues and work stealing. In MAP3S each processor implements a
local double-ended task queue [15]. When new tasks are generated they are added to
this queue. A processor that finds that its task queue is empty sends messages to other
processors to beg for work. This work-stealing dynamic-load-balancing mechanism
gives origin to the following additional parameters to the search-tree pattern is
MAP3S:

Divide depth: Determines how far down the tree the divide phase goes. For an
application that generates completely balanced trees, it is sufficient for the divide
phase to proceed up to the point in which there is one task for each processor. For
applications where there might be great imbalance in the amount of work in each sub-
tree, the divide phase should generate many more tasks than the number of processors
to enable dynamic load balance.

Stealing: The default stealing algorithm follows a beggar's model where the first
time that a processor needs work, it randomly selects a processor to request a task
from. Subsequently the processor will go back to ask for tasks from the last processor
that gave it a task until that processor no longer provides tasks. At that point the
beggar selects randomly again. This parameter allows the pattern user to specify that a
processor should always beg from its neighbours first. Such a strategy may benefit
architectures where there is locality of memory references between neighbouring
processors.

Queue: By default, tasks consumed by the local processor are taken from the
same end of the queue where locally generated tasks are added to, and tasks are stolen
from the other end. This strategy typically favors locality of reference between
successive tasks. This parameter allows the pattern user to change the operation of the
double-ended queue to operate it either as a single last-in-first-out stack or a single
first-in-first-out queue.

3.2.3 User-defined Code

In CO2P3S, the divideOrConquer method determines the end of the divide
phase. There are the self-explanatory divide and conquer methods, as well as an
updateState method (for updating the parent of a node) and a done method, for
determining when a node is complete.

These methods are, in general, implemented by corresponding macros in MAP3S.
An exception is that there is no divide macro and there is no conquer macro.
Instead, the function of these pattern hooks is handled by a single processTask
macro, with the parent updating taking place in a separate macro. Fig. 1 shows an
example implementation of the processTask macro.

#define processTask(wl, task, myid) {
 int i;
 Task* newTask;
 /*printf("Depth %d\n", (task)->depth);
 printBoard((task)->board, N);*/
 if((task)->depth==0 && !started) started = 1;
 if((task)->id==0){
 perror("This is not right: (task) id is 0");
 exit(0);
 }
 /*printf("%d processing task %d\n", myid, (task)->id);*/
 processed++;
 fflush(stdout);
 /*if((task)->depth >= parallel_depth)*/ if(parallel(task)){
 printf("%d started processing\n", myid); fflush(stdout);
 conquer((task));
 printf("%d finished processing\n", myid); fflush(stdout);
 workdone++;
 }
 else {
 /* divide */
 divide((wl), (task), (myid));
 }

 if((task)->depth==0){
 printf("root(%d) has %d children\n", (task)->threshold,
 (task)->children);
 }
 if((task)->success){
 printf("%d found a solution. Terminating\n", myid);
 unconditional_termination(myid, comm);
 }
}

Fig. 1. An example implementation of the processTask macro

3.2.4 The Task Data Structure

In the MAP3S search-tree pattern, each processor in the system maintains its own
double-ended queue of tasks. If there are no tasks in the queue, the processor
attempts to steal work from another processor. During early execution, while tasks
are being generated from the root, these tasks are stolen by the other processors.
Because idle processors seek out tasks, and busy processors generate more tasks, the
work is quickly distributed among the processors. Moreover, if a processor finishes
earlier, re-balancing of work happens automatically and without central control, a key
feature in this distributed-queue work-stealing model.

A subtle difference between the CO2P3S and the MAP3S implementation of the
search-tree pattern is the nature of information passed from one task to another. In
MPI the size of a message must be explicitly defined and must be known by the

receiving processor1. In order to make the pattern implementation more modular, in
MAP3S, the message that contains a task is stored in a Task data structure. Thus the
maximum size of each Task must be known at compile time. In comparison to
CO2P3S, this requirement in MAP3S further constrains the type of parameters that can
be passed to a task.

3.2.5 Beggar's Interruptions – distributed queues vs. threads

A limitation in the use of the MAP3S implementation of the search-tree pattern is
the absence of a mechanism to share application-wide data among the processors. For
instance, this limitation may reduce the efficiency of an alpha-beta search because it
will prevent potentially important pruning of the search tree. In this case the divide
phase reduces to a minimax search, with the extra overhead such a search incurs.

The implementation of the work-stealing mechanism in MAP3S requires that a
processor that is performing a sequential computation be interrupted to send a task in
response to a beggar's request. The solution was to implement the pattern using two
kernel threads in each processor: one thread processes tasks and performs application
specific sequential computations, while the other thread blocks on a message receive
and simply processes incoming messages (work requests, sent work, termination,
etc.).

MAP3S implements these dual threads using Pthreads. Thus it has little control
over the allocation of resources for these threads. Ideally, MAP3S should assign
higher priority to the communication thread to ensure that request for work from other
processors are dealt with speedily. However, as far as we know, the assignment of
priorities to threads in Pthreads is advisory and the ultimate priority mechanism used
is left to the underlying operating system.

While this first implementation of dynamic load balancing using distributed work
queues in MAP3S was done for the search-tree pattern, a similar mechanism can be
used for several other patterns. For instance, image-processing problems that have
varying computational complexity for various parts of the image can benefit from
over-decomposing the image into many tasks, and dynamically load balancing as
necessary.

4. Results

4.1 Test Problems
Problems from the suite of Cowichan problems were implemented in MAP3S to

test the efficacy of its patterns [18]. Two problems were implemented for the mesh
pattern: Mandelbrot Set Generation and Conway's Game of Life. Both of these
problems involve iterations over elements of two-dimensional data structures. The

1 There is a complex solution to this problem that incurs a performance penalty that we have
not implemented. When a receiver does not know the size of the incoming message it can probe
the message channel. The probe will eventually tell the receiver that the message has arrived.
At this point the receiver can check various statistics about the message, including its size.
Given the size of the message, the receiver can allocate a buffer of the proper size and make a
call to an MPI receive function.

Mandelbrot Set Generation is embarrassingly parallel while the Conway's Game of
Life requires synchronization, and thus tests the synchronization support built into the
pattern.

The Game of Kece was used to test the Search-Tree Pattern. The Game of Kece
is a two-player, zero-sum game that models crossword generation. Given an N × M
board, and a single placed word, players must select words from a list and place them
on the board.

Placed words must share at least one letter with a previously placed word. The
score for a move is the number of previously placed words that a given word crosses.
This game uses adversarial search, such as alpha-beta search. Parallel
implementations of adversarial searches may perform more work than their sequential
counterparts because it may be difficult to implement tree pruning.

4.2 Usability
The MAP3S mesh pattern provides the same code generation functionality that is

available in CO2P3S. This flexibility allows a pattern user to tackle a similar range of
problems as the problems already implemented in CO2P3S [4].

4.2.1 Pattern-User Code

After using the MAP3S patterns to solve the Game of Kece and Conway's Game
of Life problems, the amount of pattern-user-written code was assessed. For the
Game of Life, only 115 of 1016 lines of header file code (just over 11%) needed to be
user-defined; the rest could be pattern-generated. Similarly, for the Game of Kece,
user-written code makes up 67 of 606 lines of header code (again, just over 11%),
indicating that the pattern-user contribution to the overall program, and hence the
complications associated with creating parallel implementations of these algorithms,
are significantly reduced. This ratio will not be reflected in programs requiring far
more work in the pattern hook.

4.2.2 Dynamic Load Balancing

The MAP3S implementation of tree search is likely to generate parallel programs
with higher performance for problems that generate unbalanced trees. However, the
requirement that maximum message sizes be known when the inter-processor
communication mechanism is setup may create additional hurdles to implement some
tree-search problems in MAP3S when compared with CO2P3S.

Fig. 2. shows a small search tree generated for the game of Kece, illustrating the

dynamic load balancing that occurs during the expansion of a minimax search within
MAP3S. Each node has a unique identifier and two processor identifiers for,
respectively, the processor that generates the node and the processor that consumes
the node. For example, the sub-tree rooted at node 2(0,1) is generated by processor 0
and stolen by processor 1.

Fig. 2. Dynamic load balancing in the game of Kece

Most of the work, i.e. the sequential search, is done at the leaf level. Initially

processor 0 processes the root node and generates five child nodes, three of which are
stolen by other processors. Besides the good distribution of tasks at the leaf-level,
this figure also indicates that the beggar's model of work stealing is preserving
locality. Notice that processor 3 goes back to processor 1 to get more work when it is
done with its first leaf computation. Likewise processor 1 goes back to processor 0 for
more work when it is done with the first sub-tree that it had stolen.

4.3 Speedup
For comparisons against a sequential version of the code, the MAP3S code was

executed on an IBM p690, 12-processor machine running AIX 5.1. Sequential code
was compiled using the native AIX C compiler, while MPI code was compiled using
a thread-safe native MPI compiler. Both sequential and parallel versions were
compiled using '-O3' optimization level. Speedup is determined by running three
executions of the code under the given conditions, averaging the run times, and
dividing by the baseline runtime. For comparison against a single processor
execution, pattern-generated code run on a single processor is the baseline. For
comparison against a sequential execution, sequential C code is used as a baseline.

4.3.1 Mesh Pattern

Speedup for the Mesh Pattern is determined from runs of the Game of Life for
subsequently larger matrices. The Game is run for 4000 iterations on square matrices
of dimension 200x200, 400x400, and 600x600.

Fig. 3. shows speedup when the runtime of a multiprocessor execution of the
Game of Life is compared to the sequential execution time. For large enough
matrices, the speedup is close to 4 on six processors so the pattern does manage to
distribute the workload fairly well.

2(0, 1)

11(1, 1) 5(1, 3) 7(1, 3) 9(1, 1) 10(2, 2) 13(2, 2) 17(1, 1) 26(0, 0) 37(0, 0) 43(0, 0) 49(0, 0)

3(0, 2) 4(0, 1) 5(0, 0) 6(0, 0)

1(0, 0)

Fig. 3. Speedup against a sequential version of the Game of Life

4.3.2 Search Tree Pattern

For the search-tree pattern, the experiment consists of running Games of Kece
minimax searches to increasing depths. The results are obtained from a game with 31
words, played on a 30x30 Kece board, where a player can place either of the top two
remaining words on the board. For parallel executions, a depth 2 parallel expansion is
performed before completing the rest of the search with sequential executions
distributed among the processors. A depth 2 expansion for the game conditions used
in testing creates around 40 nodes for distribution.

Fig. 4 shows how a minimax search generated by the MAP3S pattern performs
when multiprocessor run times are compared against a sequential. Speedup of up to
2.5 times on four processors is observed for 4 processors. The pattern performs well
for minimax searches. This performance improvement likely also extends to
optimization searches, but we do not expect to see similar improvements for alpha-
beta searches. As currently implemented, the MAP3S search-tree pattern does not
allow for pruning to occur in the task-generating divide phase. For example, consider
a parallel alpha-beta search whose divide phase is two levels deep. Running this
search and a sequential alpha-beta search to the same depth would reveal that at the
depth-2 the parallel search has more sub-trees to search than the sequential search,
simply because no pruning is possible for those first two levels. Overall, the absence
of pruning means that the parallel execution potentially could search far more alpha-
beta tree nodes than the sequential search and, as such, will not produce significant
performance improvements.

Fig. 4. Speedup against a sequential version of the Game of Kece

4.4 Comparison to CO2P3S
Table 1 compares run times for implementations of the Game of Life on CO2P3S

and MAP3S on a shared-memory four-processor SGI Origin 2100 machine. The
Game is run for 4000 generations on a 600x600 board. Table 1 presents the runtime,
in seconds, for each version of the Game of Life. Speedup is computed in relation to
the corresponding sequential version of the program. The Ratio column shows the
speedup of MAP3S over an equivalent execution of CO2P3S.

Table 1
Comparison between CO2P3S and MAP3S run times for the Game of Life (a mesh pattern on a
shared-memory machine)

CO2P3S MAP3S Processors
Runtime Speedup Runtime Speedup

Ratio

Sequential 644.569 1.000 336.155 1.000 1.917
1 1020.040 0.632 538.871 0.624 1.893
2 543.896 1.185 246.223 1.365 2.209
3 356.472 1.808 170.940 1.963 2.082
4 268.150 2.404 135.768 2.476 1.975

A comparison of the speedup of CO2P3S and MAP3S in relation to the respective
Java and C sequential versions of the code reveals that both systems produce very
similar speedups. However, the sequential C version is almost twice as fast as the
Java sequential version. Thus the MAP3S version is consistently around twice as fast
as the CO2P3S version. Another way of analyzing the data is to point out that the
execution time with two processors in MAP3S is shorter than with four processors in
CO2P3S. The hope for MAP3S is that HPC programmer's familiarity with MPI and its
better performance will facilitate its acceptance in the HPC community.

5. Related Work

This work builds on the experience and knowledge acquired with the

development of CO2P3S [1], [11] [16]. An extensive review of related work is
presented in MacDonald's thesis [11]. Two other Java-based skeleton frameworks can
be found in [8] and [9].

Cole is developing the eSkel library that is also based on C and MPI [5] [7].
MAP3S delivers on some of the principles enumerated by Cole, such as minimizing
disruption in existing HPC programming infrastructure, allowing the integration of
ad-hoc parallelism, and focusing on performance.

Dynamic load balancing by work stealing has been implemented in several multi-
threaded systems, including Cilk [6] and EARTH [15]. The double-ended distributed-
queue system used in the search-tree pattern appears to have been first described by
Maquelin [14]. The beggar's model for work stealing starting with randomly selected
nodes was used in EARTH [10].

6. Conclusion
This paper described an initial effort toward building a generative design-pattern

system that generates C code that uses MPI for communication and synchronization.
While caution demands that the answer to the question in the title be withheld
pending further investigation, the initial results are encouraging.

Future work on MAP3S includes investigating further parameterization of
existing patterns, implementing a larger suite of applications, and implementing other
patterns available in CO2P3S and other pattern-based systems. For example, we have
implemented, two other CO2P3S patterns and sample applications for them. We
implemented a Wavefront pattern [2] and used it for a Skyline Matrix Solver and a
Genetic Sequence Alignment application. We also implemented the Pipeline Pattern
[13] and used it to implement the Map Overlay problem [3]. In addition, we
implemented a Distributed Queue Pattern that is not supported in CO2P3S. The focus
of this research is beyond the simple recreation of a CO2P3S system for MPI/C. The
goal is to determine a set of performance parameters that can be provided to enable
the tuning of parallelism concerns for alternate underlying architectures. The
determination of these parameters and the development of tools to assist with
performance tuning will require a fairly complete pattern generating system.

Acknowledgement
This work would not have been possible without the extensive work of Steve

MacDonald, John Anvik, Kai Tan, Jonathan Schaefer, and others in the development
of CO2P3S. Special thanks to John Anvik for answering our questions, to Kai Tan for
the assistance with distributed CO2P3S, and to Paul Lu for fruitful discussions. This
research is supported by a Faculty Award from IBM Canada Ltd., by the Canadian
Foundation for Innovation, and by grants from the Natural Science and Engineering
Research Council of Canada (NSERC).

References
[1] J. Anvik, Asserting the utility of CO2P3S using the Cowichan problems, MSc

thesis, Department of Computing Science, University of Alberta, 2002.
[2] J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling, K. Tan.

Generating Parallel Programs from the Wavefront Design Pattern, in: 7th
International Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS'2002) at IPDPS, 2002,1-8 CD-ROM.

[3] J. Anvik, J. Schaeffer, D. Szafron, K. Tan, Asserting the utility of CO2P3S using
the Cowichan Problem Set, Journal of Parallel and Distributed Computing
(JPDC), 65(12) (2005), 1542-1557.

[4] J. Anvik, J. Schaeffer, D. Szafron, K. Tan, Why not use a pattern-based parallel
programming system?, in: Proceedings of EuroPar International Conference on
Parallel and Distributed Computing, 2003, 48-57.

[5] A. Benoit, M. Cole, Two fundamental concepts in skeletal parallel programming,
in: Practical Aspects of High-level Parallel Programming, 2005.

[6] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, Y.
Zhou, Cilk: An efficient multithreaded runtime system, Journal of Parallel and
Distributed Computing (JPDC), 37 (1996) 55-69.

[7] M. Cole, Bringing skeletons out of the closet: a pragmatic manifesto for skeletal
parallel programming, Parallel Computing, 30(3) (2004), 389-406.

[8] M. Danelutto, P. Teti, Lithium: A structured Parallel Programming Enviroment
in Java, Proceedings of Computational Science - ICCS 2002, Springer Verlag,
LNCS No. 2330, pp. 844-853, April 2002.

[9] J. Fernando, J. Sobral, A. Proenca, JaSkel: A Java Skeleton-Based Framework
for Structured Cluster and Grid Computing, to appear in 6th IEEE International
Symposium on Cluster Computing and the Grid (CCGrid’2006), Singapore, May
2006.

[10] H. H. J. Hum, O. Maquelin, K. B. Theobald, X. Tian, G. R. Gao, L. J. Hendren,
A study of the EARTH-MANNA multithreaded system, International Journal of
Parallel Programming, 24(4) (1996) 319-347.

[11] S. MacDonald, From patterns to frameworks to parallel programs. PhD thesis,
Department of Computing Science, University of Alberta, 2002.

[12] S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron, K. Tan, From
patterns to frameworks to parallel programs, Parallel Computing, 28(12)
(2002)1663-1683.

[13] S. MacDonald, D. Szafron, J. Schaeffer, Rethinking the Pipeline as Object–
Oriented States with Transformations, in: 9th International Workshop on High-

Level Parallel Programming Models and Supportive Environments (HIPS'2004)
at IPDPS, 2004, 12-21.

[14] O. Maquelin, The ADAM architecture and its simulation, PhD thesis, Computer
Engineering and Networks Laboratory, Swiss Federal Institute of Technology,
1994.

[15] J. N. Amaral P. Kakulavarapu, O. C. Maquelin, G. R. Gao, Dynamic load
balancers for a multithreaded multiprocessor system, Parallel Processing Letters,
11(1) (2001) 169-184.

[16] K. Tan, Pattern-based parallel programming in a distributed memory
environment, MSc thesis, Department of Computing Science, University of
Alberta, 2003.

[17] K. Tan, D. Szafron, J. Schaeffer, J. Anvik, S. MacDonald, Using generative
design patterns to generate parallel code for a distributed memory environment,
in: Symposium on Principles and Practice of Parallel Programming (PPoPP),
2003, 203-215.

[18] G. Wilson, Assessing the usability of parallel programming systems: The
Cowichan problems, in: Karsten Dekker and Rene Rehmann (Eds.),
Programming Environments for Massively Parallel Distributed Systems,
Birkhauser Verlag, Basel, Switzerland, 1994, 183-193.

