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Abstract 
Generative parallel design patterns can be used to improve the productivity of 

parallel program development. However many of the generative design-pattern 
systems are developed for target languages that are not widely used by the high-
performance computing community. This paper describes an initial effort to develop a 
system that will hopefully answer the question in the title in the affirmative. This new 
system is ostensibly based on, and built upon the experience with, the successful 
CO2P3S system. Significant challenges must be overcome to implement the features 
of a system that generates frameworks conceived for an object-oriented programming 
language (Java) into a parallel-annotated procedural language (MPI/C). 
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1. Introduction 
This paper describes preliminary investigation and experimentation towards the 

development of the MPI Advanced Pattern-Based Parallel Programming System 
(MAP3S), a generative pattern system that is an evolution of the Correct Object-
Oriented Pattern-Based Parallel Programming System CO2P3S [12]. CO2P3S uses 
pattern templates to represent a family of frameworks that solve a problem. CO2P3S is 
a successful demonstration that generative design patterns can be used to generate 
solutions to parallel programming problems. The parallel programs generated by 
CO2P3S exhibit significant speed improvements over corresponding sequential 
versions. 

The target programming language of CO2P3S is multi-threaded Java.  This choice 
of language provides several of the advantages of object-orientation, such as 
encapsulation and polymorphism, that facilitate the integration of the framework 
generated by CO2P3S with the code written in hook methods by the pattern user. 
However Java is not yet broadly used in the High-Performance Computing (HPC) 
community and many implementations of Java still produce code that is slower than 
parallel-annotated procedural language equivalents. 

On the other hand the Message Passing Interface (MPI) standard is broadly used, 
has a significant installed base, and is known to many HPC programmers. Thus, an 
interesting question is: Can the programming-productivity gains demonstrated by 
CO2P3S be duplicated in a system that targets MPI?  Such a system would provide for 
a fast dissemination of the use of design patterns in the HPC community. This is the 
motivation for MAP3S. 
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2. Multithreaded Java vs. MPI 
Hierarchical design, encapsulation, polymorphism, and thread objects make 

multi-threaded Java very suitable for pattern-based programming. Some of these 
features have to be emulated in MPI/C to enable the implementation of generative 
design patterns. In the original, shared-memory, version of CO2P3S, data 
communication between threads was performed by an underlying library [4]. A 
distributed-memory version of CO2P3S required only changes to the lower-level 
communication code [17]. One of the main contributions of CO2P3S is the separation 
of parallelism concerns from computation concerns. Parallelism concerns, such as 
synchronization and communication, become the responsibility of the pattern 
designer, while computation concerns become the responsibility of the pattern user. 

MPI requires function calls to transfer data between processes. In MPI the 
distribution of tasks to processors requires the exchange of messages. Moreover, data 
transfers require the matching of sends and receives between the processes involved.  
Thus the separation of parallelism and computation concerns in MAP3S is more 
challenging than in CO2P3S. This paper describes the experience of translating two 
patterns, a mesh and a search-tree, from CO2P3S to MAP3S to illustrate some of the 
difficulties encountered and the solutions adopted. 

Despite the significant differences between multi-threaded Java and MPI/C, 
MAP3S should maintain CO2P3S’s ability to generate framework code from user-
chosen patterns and pattern parameters.  Also, MAP3S must implement most, or all, 
of the patterns available in CO2P3S.  And despite the greater challenge of 
accomplishing it in MPI when compared with Java, segregating parallelism from 
computation remains a priority. 

An important characteristic of CO2P3S that MAP3S should maintain is the ability 
to tune the generated framework code to specific problems through the use of pattern 
parameters.  Giving the pattern user the ability to adapt the generated code in order to 
best utilize both problem characteristics and the underlying architecture is important 
in a performance-driven pattern-based programming system.   

In MAP3S the user-defined sections of code are preprocessor macros that are 
inserted into the proper place in the framework --- instead of the hook methods of 
CO2P3S. Because the code in these macros is inserted into functions in the framework, 
there is a potential for conflicting use of local scoped variables and for semantic 
overwriting.  Thus, the pattern user must exercise greater care when writing the code 
for MAP3S macros than for CO2P3S 's hook methods.  On the other hand macro code 
is automatically inlined into the framework code, and thus does not incur the function 
call overhead of a hook method.  

3. Patterns 
When selecting patterns for the initial investigation of MAP3S, the goal was to 

select patterns that were quite distinct. The mesh pattern and the search-tree pattern 
were selected as the initial targets for MAP3S, since they exhibit the most differences 
of all patterns.  A mesh is a data-parallel pattern and a search tree is a task-parallel 
pattern. Moreover, very distinct strategies for the implementation of the patterns were 
taken. The mesh pattern implements a static load distribution very similar to the one 
in CO2P3S. The search-tree pattern implements a work-stealing dynamic-load-



balancing mechanism that is common-place in multi-threaded systems, but was never 
used in CO2P3S. While describing the experience with the implementation of these 
patterns, this section highlights the differences between CO2P3S and MAP3S. 

3.1 Mesh Pattern 
Problems involving multi-dimensional arrangements of elements for which the 

computation of one element is dependent on the element's neighbors are good 
candidates for the Mesh Pattern.  In a typical mesh problem the value of an element e 
at time t+1 is computed based on the value of e and the neighbors of e at time t. New 
values for all the elements of a region of the mesh may be computed for several 
iterations before the values at the edges of the region are transmitted to neighboring 
regions.  This process continues until some condition holds true. For example, a fixed 
number of iterations is executed, or a stability condition is reached. 

3.1.1 Mesh decomposition and synchronization 

Currently MAP3S implements a two-dimensional mesh with the elements 
organized into a two-dimensional array. Each array element is a data structure defined 
by the pattern user.  The pattern partitions this two-dimensional array into blocks. The 
arrangement of these blocks is also defined as a smaller two-dimensional array.  For 
instance, a 2000 × 2000 mesh can be formed by 200 × 100 blocks. Thus the initial 
mesh is represented by a 10 × 20 array of blocks. An element that has at least one 
neighbor that is not in the same block is a fringe element. 

After initialization, these blocks are distributed to the various processors before 
the computation proceeds.  Synchronization points (e.g. barriers) are placed between 
iterations.  At these points, processors computing neighboring blocks swap their 
respective fringe elements.  Once the termination condition is reached, a single 
process collects the final blocks and computes the results from the reintegrated mesh 
structure. 

MAP3S has to comply with MPI message size restriction. It is often not possible 
to transfer entire rows and columns between processes in a single message.  On the 
other hand, transferring single elements is extremely inefficient.  Thus, a maximum 
packet size, expressed in bytes, is defined for the program.  At synchronization points, 
packets will contain as many elements as allowed under the specified packet size. 

3.1.2 Pattern Parameters 

MAP3S maintains the customization parameters provided by CO2P3S for the 
mesh pattern, including the number of neighbours (cardinal neighbours vs. all eight 
neighbours), horizontal and vertical toroidality (whether and in what directions the 
mesh wraps around), and a synchronization parameter (whether each region in the 
mesh waits for new neighbouring values before going to the next iteration or not). 

MAP3S implements additional parameters that allow the user to better tune the 
code for specific architectures. Currently the mesh-pattern user can specify the 
following parameters: 



Packet size: The maximum size of a packet transmitted between neighboring 
processes. The generated framework will break fringe columns and rows in packets 
that are not larger than the packet size specified by the pattern user. 

Update timing: For conceptual simplicity, synchronizing fringes between 
neighbours occurs between iterations; a wholesale swap is made at once between all 
neighbouring blocks.  The cost of this simplicity, however, is potential contention for 
message passing.  Another strategy to accomplish this synchronization would be to 
only communicate a fringe packet when it is requested.  This parameter enables the 
pattern user to decide whether synchronization occurs wholesale or on demand. 

3.1.3 Pattern Hooks and Element Representation 

In the CO2P3S implementation of a mesh, the pattern user writes hook methods.  
Exterior to the iteration cycle, are the initialize and the reduce methods that take care 
of pre- and post-iteration processing, respectively.  During the iteration cycle the 
methods prepare and postprocess take care of work that must be done before and 
after each iteration.  Finally, there is an iteration method for each class of element.  
For instance, in a vertically toroidal mesh with only cardinal neighbours, an element 
falls into one of three classes: an interior element (neighbours in all four directions), a 
left-edge element (no left neighbour), or a right-edge element (no right neighbour).  
Each of these classes requires its own iteration hook method. 

In MAP3S, elements of the mesh are represented by a C structure defined by the 
pattern user, rather than by Java objects in CO2P3S.  Because the elements of the mesh 
are packed into MPI packets before being sent, special macros to perform this packing 
must be provided.  Presently, the pattern user must define these macros, but in the 
future they will be generated automatically by MAP3S. In some cases, user 
specifications of macros may be required. For instance, automatic generation of 
macros for code with pointer indirections may be difficult to accomplish in some 
cases. 

3.1.4 Block Distribution with Fixed Message Sizes 

Because, in the MPI system, message passing is explicit, and because there are 
limitations on the size of message that can be passed efficiently, transmitting an entire 
row or column of a large-size block with large elements can be difficult in MAP3S.  
The solution adopted is to allow the pattern user to customize the size of the messages 
that are used to communicate neighbouring fringe values. 

Another important issue in the translation of the CO2P3S' mesh pattern to a 
MAP3S' mesh pattern is the mechanism to distribute elements to the various 
processors.  In the CO2P3S mesh pattern, there is no explicit division of labour 
between processors; each processor is given an element and performs the 
computation.  If the element's neighbours are not local, then data is fetched from a 
block being operated on by another processor. 

Such open-ended work distribution in MAP3S could generate excessive 
communication and lead to an inefficient implementation.  Instead, MAP3S 
implements a system of block distribution based on the block arrangements and on 
the block dimensions. 



The pattern user defines the overall mesh dimensions as well as the dimensions 
of the component blocks of the mesh (these dimensions can be parameters whose 
values are only known at runtime). The framework uses these dimensions to 
determine the two-dimensional arrangement of the blocks over the mesh.  Next, the 
blocks are distributed round robin to each process in the mesh.  Given the 
arrangement of the blocks, each process can determine the neighbours of the fringe 
elements of its block(s). 

Using this block distribution, but defining block dimensions independently of the 
overall mesh, MAP3S satisfies the MPI requirements of explicit communication. At 
the same time the pattern user has flexibility in terms of distribution method and 
block size. 

3.2 Search-Tree Pattern 
Tree search is a task that often results in long run times and, thus, is a desirable 

target for parallelization.  Solutions to problems such as optimization search and 
adversarial search can be implemented using this pattern.  For instance, in an 
adversarial search the states of a game can be represented as nodes in the tree. 

The search goes through two phases: divide and conquer.  The divide phase 
involves the generation of the children of a given node.  When tree searching is 
modeled as task-based parallelism, the divide phase consists of the generation of 
many parallel tasks to be distributed and consumed by multiple processes. 

The conquer phase executes the computation at a node and updates the value of 
the node's parent upon completion.  Thus conquer consists of the consumption of 
tasks, and the state update that may arise from that consumption. 

3.2.1 Stealing Children 

For the purposes of parallelization, the search tree is recursively broken down 
into Tasks.  Each Task represents the root of a sub-tree.  A Task is represented by 
a closure containing a pointer to a function to be executed and the value of the 
parameters required by that function.  These closures are modeled using user-defined 
structures, with some mandatory structure elements required by the pattern such as a 
pointer to the parent and a reference to the generating process. 

When a processor consumes a Task, one of two things may happen depending 
on the current phase of the search.  The divide phase generates children to be 
consumed later. Typically the divide phase continues up to a depth threshold. In the 
conquer phase, a task consists of solving sequentially the entire sub-tree rooted at the 
node associated with the task. Once the value of the root is determined, it is 
forwarded to the parent of the node and the task terminates. 

At the end of the conquer phase, the parent of the node being processed needs to 
be updated.  Often, because of work stealing, the child has been processed by a 
different processor than the parent. Therefore, a message from the processor that 
conquered the child must convey the result to the processor that processes the parent.  
This return of information requires an additional structure defined by the pattern user, 
the Result, which is used to communicate necessary update information to the 
parent. 



3.2.2 Search-Tree Pattern Parameters 

Currently CO2P3S only has a shared-memory implementation of the search-tree 
pattern – no distributed-memory version exists.  The default implementation of this 
shared-memory search-tree pattern in CO2P3S uses a shared work queue to distribute 
tasks among a fix number of threads. A task is associated with a node in the search 
tree. If the node is above a pre-defined level, the task creates children tasks and adds 
them to the work queue. Otherwise the task sequentially executes the sub-tree rooted 
at the node.  Any thread takes a task off the shared work queue, executes it and goes 
back to the queue for another task until the queue is empty.  The pattern user may 
override this default implementation by providing a different implementation of the 
hook method, divideOrConquer.  The parameters for the search-tree pattern in 
CO2P3S include traversal-type, early-termination, and verification. 

MAP3S implements a different dynamic-load-balancing mechanism, based on 
distributed work queues and work stealing. In MAP3S each processor implements a 
local double-ended task queue [15]. When new tasks are generated they are added to 
this queue. A processor that finds that its task queue is empty sends messages to other 
processors to beg for work.  This work-stealing dynamic-load-balancing mechanism 
gives origin to the following additional parameters to the search-tree pattern is 
MAP3S: 

Divide depth: Determines how far down the tree the divide phase goes. For an 
application that generates completely balanced trees, it is sufficient for the divide 
phase to proceed up to the point in which there is one task for each processor. For 
applications where there might be great imbalance in the amount of work in each sub-
tree, the divide phase should generate many more tasks than the number of processors 
to enable dynamic load balance. 

Stealing: The default stealing algorithm follows a beggar's model where the first 
time that a processor needs work, it randomly selects a processor to request a task 
from. Subsequently the processor will go back to ask for tasks from the last processor 
that gave it a task until that processor no longer provides tasks. At that point the 
beggar selects randomly again. This parameter allows the pattern user to specify that a 
processor should always beg from its neighbours first. Such a strategy may benefit 
architectures where there is locality of memory references between neighbouring 
processors. 

Queue: By default, tasks consumed by the local processor are taken from the 
same end of the queue where locally generated tasks are added to, and tasks are stolen 
from the other end. This strategy typically favors locality of reference between 
successive tasks. This parameter allows the pattern user to change the operation of the 
double-ended queue to operate it either as a single last-in-first-out stack or a single 
first-in-first-out queue. 

3.2.3 User-defined Code 

In CO2P3S, the divideOrConquer method determines the end of the divide 
phase.  There are the self-explanatory divide and conquer methods, as well as an 
updateState method (for updating the parent of a node) and a done method, for 
determining when a node is complete. 



These methods are, in general, implemented by corresponding macros in MAP3S.  
An exception is that there is no divide macro and there is no conquer macro.  
Instead, the function of these pattern hooks is handled by a single processTask 
macro, with the parent updating taking place in a separate macro. Fig. 1 shows an 
example implementation of the processTask macro. 
 
#define processTask(wl, task, myid) { 
 int i; 
 Task* newTask; 
 /*printf("Depth %d\n", (task)->depth); 
 printBoard((task)->board, N);*/ 
 if((task)->depth==0 && !started) started = 1; 
 if((task)->id==0){ 
  perror("This is not right: (task) id is 0"); 
  exit(0); 
 } 
 /*printf("%d processing task %d\n", myid, (task)->id);*/ 
 processed++;  
 fflush(stdout); 
  /*if((task)->depth >= parallel_depth)*/ if(parallel(task)){ 
   printf("%d started processing\n", myid); fflush(stdout); 
   conquer((task)); 
   printf("%d finished processing\n", myid); fflush(stdout); 
   workdone++; 
  } 
  else { 
   /* divide */ 
   divide((wl), (task), (myid)); 
  } 
 
  if((task)->depth==0){ 
   printf("root(%d) has %d children\n", (task)->threshold,  
    (task)->children); 
  } 
  if((task)->success){ 
   printf("%d found a solution.  Terminating\n", myid); 
   unconditional_termination(myid, comm); 
  } 
} 

Fig. 1. An example implementation of the processTask macro 

3.2.4 The Task Data Structure 

In the MAP3S search-tree pattern, each processor in the system maintains its own 
double-ended queue of tasks.  If there are no tasks in the queue, the processor 
attempts to steal work from another processor.  During early execution, while tasks 
are being generated from the root, these tasks are stolen by the other processors.  
Because idle processors seek out tasks, and busy processors generate more tasks, the 
work is quickly distributed among the processors. Moreover, if a processor finishes 
earlier, re-balancing of work happens automatically and without central control, a key 
feature in this distributed-queue work-stealing model. 

A subtle difference between the CO2P3S and the MAP3S implementation of the 
search-tree pattern is the nature of information passed from one task to another.  In 
MPI the size of a message must be explicitly defined and must be known by the 



receiving processor1. In order to make the pattern implementation more modular, in 
MAP3S, the message that contains a task is stored in a Task data structure.  Thus the 
maximum size of each Task must be known at compile time. In comparison to 
CO2P3S, this requirement in MAP3S further constrains the type of parameters that can 
be passed to a task. 

3.2.5 Beggar's Interruptions – distributed queues vs. threads 

A limitation in the use of the MAP3S implementation of the search-tree pattern is 
the absence of a mechanism to share application-wide data among the processors.  For 
instance, this limitation may reduce the efficiency of an alpha-beta search because it 
will prevent potentially important pruning of the search tree. In this case the divide 
phase reduces to a minimax search, with the extra overhead such a search incurs. 

The implementation of the work-stealing mechanism in MAP3S requires that a 
processor that is performing a sequential computation be interrupted to send a task in 
response to a beggar's request.  The solution was to implement the pattern using two 
kernel threads in each processor: one thread processes tasks and performs application 
specific sequential computations, while the other thread blocks on a message receive 
and simply processes incoming messages (work requests, sent work, termination, 
etc.).  

MAP3S implements these dual threads using Pthreads. Thus it has little control 
over the allocation of resources for these threads. Ideally, MAP3S should assign 
higher priority to the communication thread to ensure that request for work from other 
processors are dealt with speedily. However, as far as we know, the assignment of 
priorities to threads in Pthreads is advisory and the ultimate priority mechanism used 
is left to the underlying operating system. 

While this first implementation of dynamic load balancing using distributed work 
queues in MAP3S was done for the search-tree pattern, a similar mechanism can be 
used for several other patterns.  For instance, image-processing problems that have 
varying computational complexity for various parts of the image can benefit from 
over-decomposing the image into many tasks, and dynamically load balancing as 
necessary. 

4. Results 

4.1 Test Problems 
Problems from the suite of Cowichan problems were implemented in MAP3S to 

test the efficacy of its patterns [18].  Two problems were implemented for the mesh 
pattern: Mandelbrot Set Generation and Conway's Game of Life.  Both of these 
problems involve iterations over elements of two-dimensional data structures. The 

                                                             
1 There is a complex solution to this problem that incurs a performance penalty that we have 
not implemented. When a receiver does not know the size of the incoming message it can probe 
the message channel. The probe will eventually tell the receiver that the message has arrived. 
At this point the receiver can check various statistics about the message, including its size. 
Given the size of the message, the receiver can allocate a buffer of the proper size and make a 
call to an MPI receive function. 



Mandelbrot Set Generation is embarrassingly parallel while the Conway's Game of 
Life requires synchronization, and thus tests the synchronization support built into the 
pattern. 

The Game of Kece was used to test the Search-Tree Pattern.  The Game of Kece 
is a two-player, zero-sum game that models crossword generation.  Given an N × M 
board, and a single placed word, players must select words from a list and place them 
on the board. 

Placed words must share at least one letter with a previously placed word.  The 
score for a move is the number of previously placed words that a given word crosses. 
This game uses adversarial search, such as alpha-beta search. Parallel 
implementations of adversarial searches may perform more work than their sequential 
counterparts because it may be difficult to implement tree pruning. 

4.2 Usability 
The MAP3S mesh pattern provides the same code generation functionality that is 

available in CO2P3S.  This flexibility allows a pattern user to tackle a similar range of 
problems as the problems already implemented in CO2P3S [4]. 

4.2.1 Pattern-User Code 

After using the MAP3S patterns to solve the Game of Kece and Conway's Game 
of Life problems, the amount of pattern-user-written code was assessed.  For the 
Game of Life, only 115 of 1016 lines of header file code (just over 11%) needed to be 
user-defined; the rest could be pattern-generated.  Similarly, for the Game of Kece, 
user-written code makes up 67 of 606 lines of header code (again, just over 11%), 
indicating that the pattern-user contribution to the overall program, and hence the 
complications associated with creating parallel implementations of these algorithms, 
are significantly reduced.  This ratio will not be reflected in programs requiring far 
more work in the pattern hook. 

4.2.2 Dynamic Load Balancing 

The MAP3S implementation of tree search is likely to generate parallel programs 
with higher performance for problems that generate unbalanced trees. However, the 
requirement that maximum message sizes be known when the inter-processor 
communication mechanism is setup may create additional hurdles to implement some 
tree-search problems in MAP3S when compared with CO2P3S. 

 
Fig. 2. shows a small search tree generated for the game of Kece, illustrating the 

dynamic load balancing that occurs during the expansion of a minimax search within 
MAP3S.  Each node has a unique identifier and two processor identifiers for, 
respectively, the processor that generates the node and the processor that consumes 
the node. For example, the sub-tree rooted at node 2(0,1) is generated by processor 0 
and stolen by processor 1. 



 

Fig. 2. Dynamic load balancing in the game of Kece 

 
Most of the work, i.e. the sequential search, is done at the leaf level. Initially 

processor 0 processes the root node and generates five child nodes, three of which are 
stolen by other processors.  Besides the good distribution of tasks at the leaf-level, 
this figure also indicates that the beggar's model of work stealing is preserving 
locality.  Notice that processor 3 goes back to processor 1 to get more work when it is 
done with its first leaf computation. Likewise processor 1 goes back to processor 0 for 
more work when it is done with the first sub-tree that it had stolen. 

4.3 Speedup 
For comparisons against a sequential version of the code, the MAP3S code was 

executed on an IBM p690, 12-processor machine running AIX 5.1.  Sequential code 
was compiled using the native AIX C compiler, while MPI code was compiled using 
a thread-safe native MPI compiler. Both sequential and parallel versions were 
compiled using '-O3' optimization level.  Speedup is determined by running three 
executions of the code under the given conditions, averaging the run times, and 
dividing by the baseline runtime.  For comparison against a single processor 
execution, pattern-generated code run on a single processor is the baseline.  For 
comparison against a sequential execution, sequential C code is used as a baseline. 

4.3.1 Mesh Pattern 

Speedup for the Mesh Pattern is determined from runs of the Game of Life for 
subsequently larger matrices.  The Game is run for 4000 iterations on square matrices 
of dimension 200x200, 400x400, and 600x600. 

Fig. 3. shows speedup when the runtime of a multiprocessor execution of the 
Game of Life is compared to the sequential execution time.  For large enough 
matrices, the speedup is close to 4 on six processors so the pattern does manage to 
distribute the workload fairly well. 
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Fig. 3. Speedup against a sequential version of the Game of Life 

4.3.2 Search Tree Pattern 

For the search-tree pattern, the experiment consists of running Games of Kece 
minimax searches to increasing depths.  The results are obtained from a game with 31 
words, played on a 30x30 Kece board, where a player can place either of the top two 
remaining words on the board.  For parallel executions, a depth 2 parallel expansion is 
performed before completing the rest of the search with sequential executions 
distributed among the processors.  A depth 2 expansion for the game conditions used 
in testing creates around 40 nodes for distribution. 

Fig. 4 shows how a minimax search generated by the MAP3S pattern performs 
when multiprocessor run times are compared against a sequential.  Speedup of up to 
2.5 times on four processors is observed for 4 processors. The pattern performs well 
for minimax searches. This performance improvement likely also extends to 
optimization searches, but we do not expect to see similar improvements for alpha-
beta searches.  As currently implemented, the MAP3S search-tree pattern does not 
allow for pruning to occur in the task-generating divide phase.  For example, consider 
a parallel alpha-beta search whose divide phase is two levels deep.  Running this 
search and a sequential alpha-beta search to the same depth would reveal that at the 
depth-2 the parallel search has more sub-trees to search than the sequential search, 
simply because no pruning is possible for those first two levels.  Overall, the absence 
of pruning means that the parallel execution potentially could search far more alpha-
beta tree nodes than the sequential search and, as such, will not produce significant 
performance improvements. 

 



 
Fig. 4. Speedup against a sequential version of the Game of Kece 

 

4.4 Comparison to CO2P3S 
Table 1 compares run times for implementations of the Game of Life on CO2P3S 

and MAP3S on a shared-memory four-processor SGI Origin 2100 machine.  The 
Game is run for 4000 generations on a 600x600 board. Table 1 presents the runtime, 
in seconds, for each version of the Game of Life. Speedup is computed in relation to 
the corresponding sequential version of the program. The Ratio column shows the 
speedup of MAP3S over an equivalent execution of CO2P3S. 

Table 1 
Comparison between CO2P3S and MAP3S run times for the Game of Life (a mesh pattern on a 
shared-memory machine) 

CO2P3S MAP3S Processors 
Runtime Speedup Runtime Speedup 

Ratio 

Sequential 644.569 1.000 336.155 1.000 1.917 
1 1020.040 0.632 538.871 0.624 1.893 
2 543.896 1.185 246.223 1.365 2.209 
3 356.472 1.808 170.940 1.963 2.082 
4 268.150 2.404 135.768 2.476 1.975 

 



A comparison of the speedup of CO2P3S and MAP3S in relation to the respective 
Java and C sequential versions of the code reveals that both systems produce very 
similar speedups. However, the sequential C version is almost twice as fast as the 
Java sequential version. Thus the MAP3S version is consistently around twice as fast 
as the CO2P3S version.  Another way of analyzing the data is to point out that the 
execution time with two processors in MAP3S is shorter than with four processors in 
CO2P3S. The hope for MAP3S is that HPC programmer's familiarity with MPI and its 
better performance will facilitate its acceptance in the HPC community. 

5. Related Work 
 
This work builds on the experience and knowledge acquired with the 

development of CO2P3S [1], [11] [16]. An extensive review of related work is 
presented in MacDonald's thesis [11]. Two other Java-based skeleton frameworks can 
be found in [8] and [9]. 

Cole is developing the eSkel library that is also based on C and MPI [5] [7]. 
MAP3S delivers on some of the principles enumerated by Cole, such as minimizing 
disruption in existing HPC programming infrastructure, allowing the integration of 
ad-hoc parallelism, and focusing on performance. 

Dynamic load balancing by work stealing has been implemented in several multi-
threaded systems, including Cilk [6] and EARTH [15]. The double-ended distributed-
queue system used in the search-tree pattern appears to have been first described by 
Maquelin [14]. The beggar's model for work stealing starting with randomly selected 
nodes was used in EARTH [10]. 

6. Conclusion 
This paper described an initial effort toward building a generative design-pattern 

system that generates C code that uses MPI for communication and synchronization. 
While caution demands that the answer to the question in the title be withheld 
pending further investigation, the initial results are encouraging. 

Future work on MAP3S includes investigating further parameterization of 
existing patterns, implementing a larger suite of applications, and implementing other 
patterns available in CO2P3S and other pattern-based systems. For example, we have 
implemented, two other CO2P3S patterns and sample applications for them. We 
implemented a Wavefront pattern [2] and used it for a Skyline Matrix Solver and a 
Genetic Sequence Alignment application.  We also implemented the Pipeline Pattern 
[13] and used it to implement the Map Overlay problem [3]. In addition, we 
implemented a Distributed Queue Pattern that is not supported in CO2P3S. The focus 
of this research is beyond the simple recreation of a CO2P3S system for MPI/C. The 
goal is to determine a set of performance parameters that can be provided to enable 
the tuning of parallelism concerns for alternate underlying architectures. The 
determination of these parameters and the development of tools to assist with 
performance tuning will require a fairly complete pattern generating system. 
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