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ABSTRACT

PA-GOSUB (Proteome Analyst: Gene Ontology
Molecular Function and Subcellular Localization) is
a publicly available, web-based, searchable and
downloadable database that contains the sequences,
predicted GOmolecular functions and predicted sub-
cellular localizations of more than 107 000 proteins
from 10 model organisms (and growing), covering
the major kingdoms and phyla for which annotated
proteomes exist (http://www.cs.ualberta.ca/~bioinfo/
PA/GOSUB). The PA-GOSUB database effectively
expands the coverage of subcellular localization
and GO function annotations by a significant factor
(already over five for subcellular localization,
compared with Swiss-Prot v42.7), and more model
organisms are being added to PA-GOSUB
as their sequenced proteomes become available.
PA-GOSUB can be used in three main ways. First, a
researcher can browse the pre-computed PA-GOSUB
annotations on a per-organism and per-protein basis
using annotation-based and text-based filters.
Second, a user can perform BLAST searches against
the PA-GOSUB database and use the annotations
from the homologs as simple predictors for the new
sequences. Third, the whole of PA-GOSUB can be
downloaded in either FASTA or comma-separated
values (CSV) formats.

INTRODUCTION

Biologists need tools and annotated databases to deal with the
volume of genomic and proteomic data. There are more than
1200 complete or partially sequenced genomes in public data-
bases (http://www.ebi.ac.uk/genomes/) and this number is

growing rapidly. Given the size and complexity of these data-
sets, many researchers are compelled to use automated anno-
tation systems to filter, identify or classify individual genes/
proteins in their genomic data. A number of systems have been
developed over the past few years that permit automated
genome-wide or proteome-wide annotation. These include
GeneQuiz (1), GeneAtlas (2), EnsEMBL (3), PEDANT (4),
Genotator (5), MAGPIE (6) and GAIA (7).

As previously reported, the Proteome Analyst (PA)
system (8–10) (http://www.cs.ualberta.ca/~bioinfo/PA/) uses
machine learning (ML) techniques to predict various charac-
teristics of a protein, including molecular function and sub-
cellular localization. In particular, PA has high accuracy and
coverage for both Gene Ontology molecular function (GO
MF) (e.g. accuracy of 96.9% on a training set with 102 225
proteins) and subcellular localization (9) across a wide range
of organisms and annotation classes (e.g. cell organelles). In
fact, PA’s subcellular localization predictions are more accu-
rate and have broader coverage than many other well-known
systems, including PSORT-B, LOCKey, SubLoc and TargetP
(9). Such annotations are important in understanding the role
of proteins in cellular processes. Moreover, identifying the
destination or localization of a protein is key both to under-
standing its function and to facilitating its purification.

After PA was made publicly available, our group received
several requests to process the entire proteome of a number of
model organisms, such as the human proteome. Since a single
organism can require tens of CPU hours of processing, we
have now pre-computed the GO MF and subcellular localiza-
tion (GOSUB) annotations of 10 model organisms (so far) and
made the results available. The benefits of PA-GOSUB
include:

(i) PA-GOSUB significantly extends the coverage of
GOSUB annotations compared with existing databases.
For the 10 model organisms currently in PA-GOSUB,
there are GO MF annotations for 108 784 proteins and
subcellular localization annotations for 107 684 proteins
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in a database with over 50 GB of information. In contrast,
for the same model organisms, the Gene Ontology
Annotation Project (GOA, as on March 15, 2004;
http://www.ebi.ac.uk/GOA) has 27 285 GO MF annota-
tions and Swiss-Prot v42.7 contains 21 050 subcellular
locations. Therefore, PA-GOSUB extends GOMF cover-
age by a factor of 4.0 and subcellular localization
coverage by a factor of 5.1. Of course, the improvement
in coverage varies widely from organism to organism.
Still, PA-GOSUB provides high accuracy and broad cov-
erage for both GO MF and subcellular localization.

(ii) PA-GOSUB is searchable by homology. A user can
BLAST query sequences against a database containing
the sequences of all of the model organisms.

(iii) PA-GOSUB is browsable by annotation. A user can
search the model organism database for all proteins that
have any particular combination of GO annotation, sub-
cellular localization and words in the FASTA tag line.

(iv) All of the annotations in PA-GOSUB are downloadable in
both FASTA and comma-separated values (CSV) format.

(v) The Explain facility, previously described in the context
of PA, is also available for the PA-GOSUB results.
Consequently, the bioinformatics and machine learning
evidence for each of PA-GOSUB’s annotations are
graphically, intuitively and interactively explained.

In contrast with PA, which is a separate tool, PA-GOSUB is
a large database of GO and subcellular localization annota-
tions with web-based search and browsing capabilities that add
query functionality to the pre-computed model organisms.

USING PA-GOSUB

The model organisms

The 10 model organisms currently in PA-GOSUB are sum-
marized in Table 1, and other model organisms will be added
over time. The number of annotations is shown on a per-
organism, per-annotation and per-database basis. For example,
of the 4353 protein of the well-annotated Escherichia coli
proteome, GOA has GO MF annotations for 3524 proteins
while PA-GOSUB has annotations for 3772 proteins, for an
increased coverage factor of 1.07, which is the lowest increase
for a model organism. In contrast, Swiss-Prot v42.7 has only

85 subcellular localization annotations for Plasmodium
falciparum, while PA-GOSUB has 4275 annotations, for a
factor of 50.3 times more coverage. More typically, on a
per-organism basis, PA-GOSUB increases GO MF and
subcellular localization coverage by a factor of 2–10. As
discussed above, over all 10 model organisms, PA-GOSUB
increases GO MF and subcellular localization coverage by
factors of 4 and 5.1, respectively.

All of the proteomes are from the European Bioinformatics
Institute (EBI), except for Mus musculus and Homo sapiens,
which are from the National Center for Biotechnology Infor-
mation (NCBI). Although there are 140 653 proteins in the
model organisms, not all proteins have PA-GOSUB annota-
tions. The main reason for a missing annotation is the lack of
relevant homologs in existing bioinformatics databases (e.g.
Swiss-Prot), which is important to PA-GOSUB’s prediction
technique (discussed below). A more detailed breakdown,
including proteome-wide statistics, of PA-GOSUB’s coverage
on a per-organism, per-GO class and per-subcellular localiza-
tion basis is available at the PA-GOSUB website.

The GOSUB annotations

PA-GOSUB provides annotations for 12 high-level classes
(out of the over 7000 possible GO classes) for molecular
function: hydrolase activity (0016787), signal transducer
activity (0004871), metal-ion binding (0046872), lyase activ-
ity (0016829), binding (0005488), structural molecule activity,
transporter activity (0005215), transferase activity (0016740),
catalytic activity (0003824), nucleic acid binding (0003676),
oxidoreductase activity (0016491) and nucleotide binding
(0000166). The GO classes have been selected to cover the
major branches of the GO hierarchy and to provide sufficient
training examples for the ML algorithms used to create
PA-GOSUB.

The training set for PA-GOSUB’s classifiers for GO MF is
based on a combination of data from Swiss-Prot and GOA. To
get the largest possible training set, PA-GOSUB takes each of
the 141 681 protein sequences in Swiss-Prot v42.7 and maps it
to a set of GO classes using the GOA table, if such a mapping
exists. The end result is that PA-GOSUB’s training set is based
on a total of 102 225 proteins mapped from Swiss-Prot to
GOA, instead of only the 9621 sequences that have GO anno-
tations in Swiss-Prot v42.7 itself.

For subcellular localization, there are five different ontol-
ogies, depending on the type of organism and possible orga-
nelles (9). Specifically, there are different classifiers for
predicting the subcellular localization of proteins from ani-
mals, green plants, fungi, Gram-negative bacteria (GN bact)
and Gram-positive bacteria (GP bact). For example, the
possible localizations for animal cells are golgi, nucleus,
extracellular, mitochondrion, cytoplasm, plasma membrane,
lysosome, peroxisome and endoplasmic reticulum.

Browsing PA-GOSUB

PA-GOSUB has a browsable, pre-computed ‘PACard’ (pre-
computed by PA) for each protein, of each model organism—a
summary of the predicted properties of each protein specified
in the input. A typical PACard is shown in Figure 1. The
PACard concept is based on the E.coli cards from the

Table 1. Model organisms and annotation coverage in PA-GOSUB

Model
organisms

Number of
Proteins

GO MF Subcellular
localization

GOA PA-G SP 42.7 PA-G

Methanobacterium
thermoautotrophicum

1868 497 1250 157 1100

Bacillus Subtilis 4105 1534 3187 862 2999
Escherichia coli 4353 3524 3772 2167 3627
Plasmodium falciparum 5257 78 4309 85 4275
Saccharomyces cerevisiae 6195 3017 5049 2024 4978
Drosophila melanogaster 16 371 1535 12 924 1246 12 869
Caenorhabditis elegans 21 821 1459 14 379 933 14 297
Arabidopsis thaliana 26 173 1891 18 338 1528 18 130
Mus musculus 26 556 5520 22 512 4912 22 431
Home sapiens 27 954 8230 23 064 7136 22 978
Total 140 653 27 285 108 784 21 050 107 684
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CyberCell Database (CCDB) (http://redpoll.pharmacy.
ualberta.ca/CCDB).

In Figure 1, the ‘Definition Line’ field of the PACard is
taken from the tag (comment) line of the FASTA file that was
processed through PA. Note that the name of the protein is not
encoded in the ‘Definition Line’, but this protein is T4S4_HU-
MAN. As per BLAST convention, we have encoded the NCBI
‘gi’ accession number, so that a hyperlink to the NCBI entry
can be generated for the BLAST-able database (discussed
below). The ‘Sequence’ field provides the first few dozen
amino acid residues of the protein, with a hyperlink to the
full FASTA information.

The ‘Animal Subcellular Prediction’ field is the first value-
added annotation of PA-GOSUB. Since T4S4_HUMAN is
from the H.sapiens reference sequence dataset, PA’s animal
subcellular classifier was used to predict that this protein is
localized to the plasma membrane, with a Naı̈ve-Bayes (NB)
probability of 78.348%. Note that, for T4S4_HUMAN, the
probability is not 100% (which is common with ML
techniques and many of PA’s annotations); the Swiss-Prot
entry for T4S4_HUMAN does not actually specify plasma
membrane, but a manual inspection of the bioinformatics
evidence strongly suggests that it is indeed localized to the
plasma membrane. Furthermore, a hyperlink to ‘Explain’
provides the evidence for that prediction (data not shown).

The ‘General Function Prediction’ field is another value-
added annotation that provides the classification of the GOMF
from the 12 classes that we currently support. In our example,

PA predicts that the query protein is a member of two GO
classes: ‘signal transducer activity (0004871)’ and ‘transporter
activity (0005215)’. Since it is possible for proteins to have
more than one molecular function, as per the GO ontology,
PA-GOSUB makes molecular function predictions on a per-
class basis. Thus, for each of the 12 GO classes, the prediction
is either ‘yes’ or ‘no’ and annotated as, e.g. ‘Not hydrolase
activity (0016787)’ when the protein does not belong in that
class. For each of the 12 predictions, an ‘Explain’ hyperlink
provides the evidence for the prediction.

Therefore, there are a total of 13 explainable predictions
(i.e. exactly 1 for subcellular localization and 12 for GO MF).

The last field, ‘Blast’, of the PACard shows the top three
Swiss-Prot homologs of the query. The top homolog here is the
actual query protein itself, T4S4_HUMAN. As discussed
below and elsewhere (8), PA-GOSUB relies on homologs
of the query protein to provide machine-learning features of
the classification computation. A hyperlink in the ‘Blast’ field
provides access to the standard BLAST information.

Searching PA-GOSUB

All the proteins of all the model organisms have been included
in a BLAST-able database. PA-GOSUB supports a BLAST
search (Figure 2) against this database as a simple way to
locate the closest homolog to the user’s query protein and
as a simple (i.e. nearest neighbor) predictor of the GOSUB
properties of the query protein. The user can optionally

Figure 1. Sample PACard: protein T4S4_HUMAN from H.sapiens.
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BLAST against all model organisms (shown in Figure 2) or
specific model organisms (data not shown).

It is also possible to search the PACards for proteins that
match a text string and other criteria. Figure 3 shows part of a
PA Card Set (i.e. summary of all PACards that match the
search) with the string ‘kinase’ in the FASTA tag. In the
example, only the proteins for Saccharomyces cerevisiae
are searched. In fact, the search is limited to proteins
(Figure 4) that have been annotated as having ‘Nucleus’ for
subcellular localization and ‘Nucleic Acid Binding’ for GO
MF, in addition to having ‘kinase’ in the FASTA tag. The
summaries of the first two PACards (i.e. #364 and #515) are
shown, along with their tag information and annotations.
Hyperlinks from the PACard Set point to the PACards for
the individual proteins, as discussed earlier.

Downloading PA-GOSUB

Although PA-GOSUB provides a variety of browsing and
search features, researchers may wish to use PA’s annotations
with other tools. Therefore, PA-GOSUB annotated proteins
can be downloaded in FASTA format, where the annotations
are encoded in the tag line, or in CSV format so they can be
imported into a spreadsheet.

PREDICTION TECHNIQUES IN PA-GOSUB

As discussed in previous publications (8,10), PA-GOSUB and
PA make extensive use of machine-learned classifiers to

predict annotations. As shown in Figure 5, classification-
based prediction is a two-step process: training/learning and
prediction. In the training/learning step, a classifier is built
using an ML algorithm by analyzing a set of training
sequences, each tagged by a known class label. In the predic-
tion step, the generated classifier is used to predict the class
label of an unknown query sequence.

In PA, each training item consists of a primary protein
sequence and the ontological class it has been assigned by
an expert. In general, an ML classifier algorithm requires
features to be associated with each training item. Note that
PA is given only the primary sequence of the protein; the
features are automatically computed by the system. Once
built, a classifier takes a protein sequence with unknown class
and uses the values of these features (see below) to predict its
class. Specifically, PAuses apre-processing step thatmaps each
sequence to a set of features, as shown in Figure 6.

First, the sequence is compared to the Swiss-Prot database
using BLAST. Second, the Swiss-Prot entries of (up to) three
top homologs (whose E-values are <0.001) are parsed to
extract a feature set from the Swiss-Prot KEYWORDS field
and any Interpro numbers (11) contained in the DBSOURCE
field. The union of the features for the selected homologs
forms the feature set. If no homologs match the E-value cutoff
or if all features are removed by feature selection then the
sequence has no features, so no prediction is made. The feature
set is then used as input for both the training and classification
phases of PA. In essence, PA learns a mapping from feature
sets to classes (or ‘annotations’).

Figure 2. BLAST searches against the model organisms.
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EXAMPLE OF EXPLAINABILITY

While it is necessary for a protein prediction tool to be
accurate, it is also important that it can clearly explain its
predictions to the user. A clear and intuitive explanation
helps biologists to develop confidence in the annotations in
the database.

Explaining a Prediction/Classification

PA-GOSUB provides an explanation mechanism to help users
understand why a classifier makes a particular classification

(10). In this discussion, we will use the T4S4_HUMAN
protein as an example.

If the user clicks the Explain hyperlink for the ‘signal trans-
ducer activity (0004871)’ annotation of the PACard (Figure 1),
then an Explain page is displayed. Although there are many
elements to an Explain page, an important part is the bar graph
(Figure 7).

First, note that the two stacked bars in the graph represent
the evidence for both an ‘yes’ (bottom bar) and a ‘no’ (top bar)
prediction for the class. Each of its five colored sub-bars

Figure 3. Searching and filtering: part of a PACard Set matching the criteria.

Figure 4. Searching and filtering: selecting criteria.
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Figure 6. The feature extraction algorithm for a protein sequence in PA.
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correspond to the presence or absence of a selected, significant
token. The absence or presence of a token is known as a
feature. In this example, the tokens ‘glycoprotein’, ‘transmem-
brane’ and ‘integral membrane protein’ are present for
T4S4_HUMAN, but ‘cytoplasmic’ and ‘hydrolase’ are absent.
Again, note that the absence of a token can also be evidence for
or against a particular classification.

Second, note that the scale on the x-axis is logarithmic,
where each composed bar on a single line represents the loga-
rithm (base 2) of the combined probability that the protein is
either in the class or not. For example, the ‘no’/top bar is �76
units long and the ‘yes’/bottom bar is�80 units long. Thus, the
prediction is that T4S4_HUMAN is in the class ‘signal trans-
ducer activity (0004871)’. The difference of 4 units means that
the ratio of the probabilities is�2(80�76)� 16, which is correct
based on other quantitative information on the Explain page
(data not shown). The logarithm is used so that the contribu-
tions to the probabilities represented by each feature can be
added. Additive quantities can be visualized using stacked bar
graphs.

The (red) ‘glycoprotein’ sub-bar occurs in both bars, but it is
significantly longer (especially considering the logarithmic
scale) for the ‘yes’/bottom bar. The same observation is
true for the (yellow) ‘integral membrane protein’ sub-bar.
Both ‘glycoprotein’ and ‘integral membrane protein’ are
examples of features, extracted from the top three BLAST
homologs (Figures 1 and 6), that support the prediction of
‘signal transducer activity (0004871)’. Further details on
the mathematics behind and interpretation of the Explain
page can be found elsewhere (8,10).

SUMMARY

Annotating proteins using bioinformatics and computational
techniques can be an important aid in filtering the vast amounts
of raw genomic and proteomic data. Annotations for the gen-
eral function or subcellular localization of specific proteins can
help in hypothesis generation and in selecting a specific pro-
tein isolation protocol. PA-GOSUB extends the coverage of
existing databases, by a factor of over 5.1 (and growing) with
respect to subcellular localization, by annotating all of the
proteins for 10 model organisms. New model organisms are
regularly added to PA-GOSUB. A total of over 107 000
proteins have been annotated, for both GO molecular function

and subcellular localization, and there are plans to add more
proteins and model organisms, as they become available.

In addition, PA-GOSUB is browsable, searchable, and
downloadable. A simple, web-based interface provides access
to the PACards of all the proteins, including all of the annota-
tions, explanations for the annotations and information about
the homologs to each protein. A special BLAST database has
been constructed so that new, unknown query proteins can be
compared with the proteins of all the model organisms. The
tags and annotations can also be searched. Lastly, it is possible
to download (and thus use any other analysis tool on) the
PA-GOSUB database in either FASTA or CSV formats.
PA-GOSUB is publicly available at http://www.cs.ualberta.
ca/~bioinfo/PA/GOSUB.
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