
J. Parallel Distrib. Comput. 65 (2005) 1542–1557
www.elsevier.com/locate/jpdc

Asserting the utility of CO2P3S using the Cowichan Problem Set

John Anvika,∗, Jonathan Schaefferb, Duane Szafronb, Kai Tanb

aDepartment of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
bDepartment of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E8

Received 6 February 2004; received in revised form 21 March 2005; accepted 31 May 2005
Available online 9 August 2005

Abstract

Parallel programming environments provide a way for programmers to reap the benefits of parallelism, while reducing the effort required
to create parallel applications. The CO2P3S parallel programming system is one such tool that uses a pattern-based approach to express
concurrency. Using the Cowichan Problems, we demonstrate that CO2P3S contains a rich set of parallel patterns for implementing a wide
variety of applications running on shared-memory or distributed-memory hardware. An example of these parallel patterns, the Search-Tree
pattern, is described and it is shown how the pattern was used to solve the Fifteen Puzzle problem. Code metrics and performance results
are presented for the Cowichan applications to show the usability of the CO2P3S system and its ability to reduce programming effort,
while producing programs with reasonable performance.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Parallel programming; Programming environments; Design patterns; Cowichan Problems; CO2P3S; Fifteen Puzzle; Search-Tree pattern

1. Introduction

In many fields of research there exist problems which
simply take too long to solve using a single processor. Only
by dividing the problem into separately computable compo-
nents and using multiple processors can these problems be
solved in a reasonable time frame.

However, doing so is not without cost. Adding paral-
lelism also adds new concerns to the application, such as
synchronization and communication between the processors.
This leads to either an increased complexity of the algo-
rithm, or the use of a completely different algorithm. It also
makes the debugging of these programs more difficult as
non-determinism is now introduced. The writing of parallel
programs is known to be a complex and error-prone task,
even for experts in the field.

The state of the art in parallel programming tools is rep-
resented by OpenMP for shared-memory programs and MPI

∗ Corresponding author.
E-mail addresses: janvik@cs.ubc.ca (J. Anvik),

jonathan@cs.ualberta.ca (J. Schaeffer), duane@cs.ualberta.ca
(D. Szafron), cavalier@cs.ualberta.ca (K. Tan).

0743-7315/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2005.05.029

for distributed-memory programming. These are low-level
models in that the user must explicitly represent the par-
allelism in the code. The programmer is required to adapt
or restructure their application to accommodate the concur-
rency. In the case of MPI, this can translate into hundreds
or more additional lines of potentially error-prone code.

There is hope however. There exist strategies in sequen-
tial programming which may be used across many problems.
These strategies are called design patterns [15] and they en-
capsulate the knowledge of solutions for a class of problems.
To solve a problem using a design pattern, an appropriate
pattern is chosen and adapted to the particular problem. By
referring to a problem by the particular strategy that may be
used to solve it, certain design decisions are implicitly com-
municated and a deeper understanding of the solution to the
problem is conveyed.

Just as there are sequential design patterns, there exist par-
allel design patterns which capture the synchronization and
communication structure for a particular parallel solution.
The notion of these commonly occurring parallel structures
has been well known for decades in such forms as skeletons
[3,11,16], or templates [5,20,23]. Examples of common

Preprint - final version at:

 www.sciencedirect .com

http://www.elsevier.com/locate/jpdc
mailto:janvik@cs.ubc.ca
mailto:jonathan@cs.ualberta.ca
mailto:duane@cs.ualberta.ca
mailto:cavalier@cs.ualberta.ca


J. Anvik et al. / J. Parallel Distrib. Comput. 65 (2005) 1542–1557 1543

parallel design patterns are the fork/join model, pipelines,
meshes, and work piles.

Unfortunately since design patterns are design constructs,
they give a description of the solution but not the solution
itself. After choosing a design pattern, the programmer must
still adapt and implement the pattern for the specific appli-
cation. If design patterns are at one end of the design spec-
trum, then frameworks are at the other end. Whereas a design
pattern is an abstract description of a solution, a framework
is a concrete implementation of a portion of a solution. A
framework provides the application-independent structural
code for a particular solution, typically through a collection
of abstract classes for a specific problem domain. One do-
main in which frameworks are used extensively is graphical
user interfaces. To use a framework, hook methods are im-
plemented to contain application-specific code, such as the
function of a button. These hook methods are then called in
the application through the framework. Unlike design pat-
terns that must be re-implemented each time that they are
used, frameworks provide a maximum of code reuse. How-
ever this re-usability comes at the cost of less generality.

The effort required to adapt a design pattern for a par-
ticular application may range from being trivial to being
substantial. Consequently, many tools have been created to
minimize programmer effort in this regard. Tools such as
Budinsky’s web-based tool [10], Together ControlCenter
[12], PSiGene [24], and ModelMaker [27] are all examples
of efforts made in this direction. Although there have been
many academic attempts to build pattern-based high-level
parallel programming tools like those for sequential design
patterns, few have gained acceptance by even a small user
community. The idea of having a tool that can take a selected
parallel structure and automatically generate correct struc-
tural code is quite appealing. Typically, the user would only
fill in application-dependent sequential routines to complete
the application. Unfortunately, these tools have not made
their way into practice for a number of reasons:

(1) Performance: Generic patterns produce generic code
that is inefficient and suffers from loss of performance.

(2) Utility: The set of patterns supported by a given tool is
quite limited, and if the application does not match the
provided patterns, then the tool is effectively useless.
Furthermore, a tool may only be suitable for a single
type of parallel architecture.

(3) Extensibility: High-level tools often contain a fixed set
of patterns and the tool cannot be extended to include
more.

The CO2P3S 1 parallel programming system uses a design
patterns approach to ease the effort required to write parallel
programs. The system addresses the limitations of previous

1 Correct Object-Oriented Pattern-based Parallel Programming System,
pronounced ‘cops’.

high-level parallel programming tools in the following ways:

(1) Performance: CO2P3S uses adaptive generative
parallel design patterns. An adaptive generative design
pattern is an augmented design pattern which is pa-
rameterized so that it can be readily adapted for many
applications. It is used to generate a parallel framework
tailored for each specific application. In this manner
the performance degradation of generic frameworks is
eliminated.

(2) Utility: CO2P3S provides a rich set of parallel design
patterns, including support for both shared and dis-
tributed memory environments.

(3) Extensibility: MetaCO2P3S is a tool used for rapidly
creating and editing CO2P3S patterns. CO2P3S cur-
rently supports 15 parallel and sequential design pat-
terns, with more patterns under development.

This paper focuses on the utility aspect of CO2P3S. The
performance aspect of using CO2P3S has already been pre-
sented [9]. Our intent is to show that the use of a high-level
pattern-based parallel programming tool is not only possi-
ble, but more importantly, it is practical. The CO2P3S sys-
tem can be used to quickly generate code for a diverse set of
applications with widely different parallel structures. This
can be done with minimal effort, where effort is measured
by the number of additional lines of code written by the pro-
grammer using CO2P3S. The Cowichan Problems [29] are
used to demonstrate this utility by showing the breadth of
applications which can be written using the tool. Further-
more, it is shown that a shared-memory application can be
recompiled to run in a distributed memory environment with
no changes to the user-supplied code.

Test suites for assessing system performance, such as
SPEC and SPLASH, abound in the computing world. In
contrast, the number of test suites which address the utility
or usability of a system are few. For parallel programming
systems, we know of only one non-trivial set: the Cowichan
Problems [29]. The Cowichan Problems are a suite of seven
problems specifically designed to test the breadth and ease-
of-use of a parallel programming tool, as opposed to testing
the performance of the programs that can be developed us-
ing the tool [30]. The goal of these problems is to provide a
standard set of ‘non-trivial’ medium-size problems by which
different parallel programming systems may be compared.

We begin by providing an overview of the CO2P3S sys-
tem and then show how the system can be used to imple-
ment a parallel solution to a common problem. The Search-
Tree pattern is then described in detail as an example of a
generative design pattern. We then demonstrate the utility
of CO2P3S by showing how the patterns in CO2P3S were
used to write solutions for the Cowichan Problem Set.

2. The CO2P3S parallel programming system

The CO2P3S parallel programming system is a tool for
implementing parallel programs in Java using the Parallel

Preprint - final version at:

 www.sciencedirect .com



1544 J. Anvik et al. / J. Parallel Distrib. Comput. 65 (2005) 1542–1557

Design Patterns (PDP) methodology [18]. This methodology
uses a layered programming model to produce structurally
correct parallel programs. Unlike similar tools, CO2P3S al-
lows the programmer access to the generated code to sup-
port tuning. The first layer is the Patterns Layer by which
CO2P3S generates parallel programs through the use of pat-
tern templates. A pattern template is an intermediary form
between a pattern and a framework, and represents a fam-
ily of design solutions. Members of the solution family are
selected based upon the values of the options for the par-
ticular pattern template. This is where CO2P3S differs from
other pattern-based parallel programming tools. Instead of
generating an application framework which has been gen-
eralized to the point of being inefficient, CO2P3S produces
a framework which accounts for application-specific details
through the selection of pattern options.

The remaining two layers of the CO2P3S system are the
Intermediate Code Layer and the Native Code Layer. These
layers grant the programmer the opportunity to tune the per-
formance of their application at two levels of abstraction.
The Intermediate Code Layer provides a high-level, explic-
itly parallel object-oriented programming model, allowing
the programmer to work with abstractions of things such as
barrier synchronization and parallel loops. The Native Code
Layer exposes the implementation of these abstractions. An
example of the use of this layer is doing low level perfor-
mance tuning.

The pattern options in CO2P3S are divided into four types:
lexical, design, performance, and verification options. Lexi-
cal options are various class and method names in the pat-
tern framework which are provided by the programmer. De-
sign options are pattern options which affect the overall
parallel structure of the generated framework. Performance
options introduce optimizations that may improve perfor-
mance by changing the internal framework code (however
these changes are not visible to the programmer). Verifica-
tion options allow for the inclusion of pieces of code in the
framework to ensure the proper use of the pattern and find
errors in the programmer’s code.

A framework generated by CO2P3S provides the com-
munication and synchronization for the parallel applica-
tion, and the user provides the application-specific sequen-
tial code. These code portions are added through the use of
sequential hook methods in the framework code. At this pat-
tern layer, the tool abstracts away the parallelism from the
application-specific portions and prevents the programmer
from changing the code which implements the parallelism,
thereby maintaining the correctness of the parallel code. Re-
call however that through CO2P3S’s layered model the user
has access to lower abstraction layers when necessary in or-
der to tune the automatically generated code.

Extensibility of a programming system improves its util-
ity. CO2P3S improves its utility by allowing new pattern
templates to be added to the system using the MetaCO2P3S
tool [8]. Pattern templates added through MetaCO2P3S are
indistinguishable in form and function from those already

contained in CO2P3S. This allows CO2P3S to adapt to the
needs of the user; if CO2P3S lacks the necessary pattern for
a problem then MetaCO2P3S supports its rapid addition to
CO2P3S.

The descriptions of pattern templates generated by
MetaCO2P3S are stored in system-independent XML
format. This ensures that the patterns generated by
MetaCO2P3S can be used not only by the CO2P3S system
itself, but also by any template-based programming tool
which uses XML. The creation of a system-independent
pattern repository creates a synergy that can enhance the
utility of all systems that use this format since more patterns
can be developed and distributed.

3. Using CO2P3S to implement IDA* search

To illustrate the CO2P3S system, we provide an example
of how to generate a parallel program from a sequential
program. Specifically, the IDA* search used in the Fifteen
Puzzle [22] is implemented using the Search-Tree pattern.

3.1. The Fifteen Puzzle

Of the sliding tile puzzles, the Fifteen Puzzle is the one
most frequently studied by artificial intelligence researchers.
The puzzle consists of a 4 × 4 board with an arrangement
of 15 numbered tiles and one blank space as shown in Fig.
1(a). The object of the game is to slide tiles into the blank
space (Fig. 1(b)) in order to place all the tiles into numerical
order (Fig. 1(c)), and to do so in the least number of moves.

To solve this problem, iterative deepening A* (IDA*)
search is used [22]. The nodes of the search tree repre-
sent states (e.g. a game board configuration) and the arcs
represent movement between states (e.g. a player’s move).
The cost of a node f (n) is based on the heuristic value of
a node given by f (n) = g(n) + h(n) where g(n) is the
cost of the path to a specific node from the root node and
h(n) is an estimate of how much farther it is to the goal.
For this problem we count the number of moves needed to
reach the state shown in Fig. 1(c). As long as h(n) is ad-
missible (i.e. never overestimates the distance to the goal),
then IDA* is guaranteed to find a minimum cost path to the
solution.

Fig. 1. The Fifteen Puzzle: (a) an unsolved Fifteen Puzzle; (b) moving a
tile in the Fifteen Puzzle; (c) a solved Fifteen Puzzle.

Preprint - final version at:

 www.sciencedirect .com



J. Anvik et al. / J. Parallel Distrib. Comput. 65 (2005) 1542–1557 1545

Fig. 2. An example of IDA*. The values shown in the nodes are the computed costs of the nodes (i.e. f (n)). (a) The initial search threshold is h(n)

where n is the root of the tree, 5 in this case. No solution is found for this threshold. (b) The threshold is incremented to 6 and the tree is searched
again using the new threshold. A solution is found.

IDA* works by performing a depth-first search on itera-
tively larger trees. The search is controlled by a threshold
value t , which is initially set to the h(n) for the root node.
The tree is then searched until either the goal is found or
f (n) > t for all branches of the tree. If the goal is not found
in the current search then t is increased and the search is
performed again with the new value of t . Fig. 2 shows an
example of using IDA* to find a solution.

For the Fifteen Puzzle, g(n) is the depth of a node in the
tree and the sum of Manhattan distances is h(n). The Man-
hattan distance for a puzzle tile is the sum of the horizontal
and vertical distances from the location of a tile to its posi-
tion in the solution.

3.2. Solving the problem using CO2P3S

To use the CO2P3S tool to generate parallel code for an
application, the programmer first chooses an appropriate pat-
tern. How a programmer determines the correct pattern for
an application is a difficult problem and the subject of other
research [19]. We assume that the user will select an appro-
priate pattern for their application. However, one of the ben-
efits of using the CO2P3S tool is that if the user chooses the
wrong pattern, they can choose another pattern and quickly
generate a new version with little effort. As the Fifteen Puz-
zle uses IDA* search to find solutions, the Search-Tree pat-
tern is chosen.

Once the programmer chooses the pattern, they then se-
lect the pattern options that best suit their application. The
various options of the Search-Tree pattern are described
in detail in Section 4.1. In this section we will just de-
scribe what options are selected for a solution to the Fifteen
Puzzle.

The first option to be provided is the lexical option for the
class that represents a node of the search tree. We choose
the name PuzzleNode. Next, the traversal technique to be
used in searching the tree is chosen. As we would like to
perform an IDA* search in parallel on multiple branches of
the tree, we set the traversal option to breadth-first.
Note that from the CO2P3S perspective this is a breadth-first
search, but that the subtrees which are searched sequentially
each perform depth-first searches.

Next, the early termination option is set to true. As soon
as a solution is found the search should terminate.

The final option to be selected is the verification option.
As explained in Section 4.1 the verification option verifies
that the user’s implementation of the done() hook method
behaves correctly. Initially we set this option to true. Once
we are assured that our done() method behaves appropri-
ately, this option is set to false so that the verification
code is removed from the generated framework for better
run-time performance. Fig. 3 shows the parameterization of
the Search-Tree pattern for the Fifteen Puzzle application.

Once all the options have been specified, we then gen-
erate the framework. Note that CO2P3S always generates a
correct and fully functional framework. The hook methods
of the generated framework are generated with default im-
plementations so that the framework can be run “out of the
box”, though it will typically not do anything useful at this
point.

Once the framework has been generated, the programmer
proceeds to fill in the hook methods with the application-
specific code. The Search-Tree pattern generates five
hook methods: divideOrConquer(), divide(),
conquer(), updateState(TreeNode child), and
done(). These hook methods are described in Section 4.2.

Preprint - final version at:

 www.sciencedirect .com



1546 J. Anvik et al. / J. Parallel Distrib. Comput. 65 (2005) 1542–1557

Fig. 3. The parameterization of the Fifteen Puzzle in CO2P3S. The left-hand pane shows the four patterns (Wavefront, Mesh, SearchTree, and Pipeline)
currently loaded into the tool. The middle pane shows that the SearchTree pattern has been selected for the “15Puzzle” application and that the lexical
option has been set to “PuzzleNode”. The right-hand panel shows the selection of a breadth-first traversal, that early termination of the search is possible,
and that no verification code is to be generated.

For this application the default implementation of
divideOrConquer() is used. The divide() method
creates new nodes for each possible move from a given
position. The conquer() method is a wrapper method
for the recursive traversal method from the sequential ap-
plication. As the early termination parameter is set, two
additional framework methods are provided to the pro-
grammer: canContinue() and terminateAll().
A call to canContinue() is added to the sequential
method so that the processing of the node will stop if an-
other node indicates that the goal was found by calling the
terminateAll() method.

A node is considered “done” when it has received updates
from all of its children. For this application, a counter is
kept of the number of messages received and the done()
method returns true when the counter equals the number
of children. Finally, the updateState() method collects
the nodes in the upper portion of the tree which are on the
path toward the goal state.

In this application, nearly all of the 125 lines from the
sequential application were reused. This is primarily due
to the wrapping of the sequential traversal method in the
conquer() hook method. As only a minor change was
needed in the driver program, that too was almost entirely
reused. Only 47 new lines of code were necessary to convert
the sequential program into a parallel program, the majority
of which were from implementing the hook methods.

4. The Search-Tree pattern

Four of the Cowichan Problems needed patterns that were
not in CO2P3S when we began to implement them using

CO2P3S. In any other pattern-based programming tool we
would have had to stop at this point. However, as CO2P3S is
an extensible programming system we were able to add the
necessary patterns. Two new patterns were added to CO2P3S
to solve the Cowichan Problems: the Wavefront Pattern and
the Search-Tree pattern. The Wavefront pattern has already
been described [1]. In this section a detailed description of
the Search-Tree pattern is provided. Using the MetaCO2P3S
tool, the CO2P3S system was extended to support this new
pattern. Once the pattern had been designed, adding it to
CO2P3S took approximately 9 h. The rapid addition of a
new pattern to CO2P3S demonstrates how the extensibility
of the system contributes to its utility.

4.1. Pattern options

The single lexical option for the Search-Tree pattern is the
name of the class that will contain the hook methods which
must be implemented by the pattern user.

This pattern has a single design option, the traversal tech-
nique. The tree can be searched in either a breadth-first or a
depth-first manner. If the tree is searched breadth-first then
all nodes to a certain depth are expanded in parallel, and the
remaining children are then concurrently searched sequen-
tially. This was the traversal technique used for searching
the IDA* tree for the Fifteen Puzzle. If the tree is searched
depth-first then all nodes on the left hand side of the tree are
expanded to a certain depth and the left child at the speci-
fied depth is searched sequentially. Once a left child com-
pletes its computation, the sibling nodes are concurrently
processed. This order supports alpha–beta search [22] since

Preprint - final version at:

 www.sciencedirect .com



J. Anvik et al. / J. Parallel Distrib. Comput. 65 (2005) 1542–1557 1547

Fig. 4. Tree traversals in the Search-Tree pattern. Nodes with the same value are processed in parallel: (a) breadth-first traversal; (b) depth-first traversal.

the value of the node for the left child can be used to elim-
inate the search on some of the sibling nodes. Fig. 4 shows
the order in which nodes are processed for both breadth-
and depth-first parallel searches. Another possible traversal
is best-first. However we add options and option values to
CO2P3S patterns on a need-only basis and we do not yet
have an application that requires a best-first traversal. We
take this approach to prevent the generation of an overly
general framework or the unnecessary explosion of option
combinations.

The Search-Tree pattern has one performance option,
early termination. This option allows for the termination
of the search to occur before all nodes have been searched,
such as when an application wants to terminate after finding
one solution as opposed to all solutions.

The Search-Tree pattern introduced a new option type
to the CO2P3S system called a verification option. In the
Search-Tree pattern, the verification option verifies that the
user’s done() method behaves correctly. The done()
method is a hook method in which the user indicates when
a node has completed its computation. If the user states that
a node is still waiting for the completion of its children,
but the framework can detect that all the children have fin-
ished, then this indicates a fault in the user’s code and an
exception is thrown. This does not prevent the user from
specifying the done() method to allow a sub-tree traver-
sal to halt before all of the node’s children have been pro-
cessed. It simply prevents the application from waiting for
more child nodes to be processed when they have all been
processed.

4.2. Pattern hook methods

The CO2P3S parallel-pattern framework generated for the
Search-Tree pattern contains five hook methods. These are
the methods into which the programmer inserts the sequen-
tial code. Depending on the option settings, two additional
framework methods may be generated which the user can
make use of in their code, as explained and demonstrated
in Section 3.2. Only a description of these methods is given
here; how the hook methods are used in the Search-Tree
framework is deferred until Section 4.3. The generated hook

methods are:
divideOrConquer() This method indicates whether to

generate a node’s children (i.e. call divide()), who will
then be processed in parallel or to proceed with the se-
quential computation of the node (i.e. call conquer()).

divide() This method generates a node’s children.
conquer() This method performs the sequential compu-

tation of a node.
updateState(TreeNode child) This method al-

lows a node to update its state based on information
which may be extracted from the child. When a child has
completed its computation, it sends this message to its
parent with itself as an argument.

done() This hook method specifies when a node is con-
sidered to be finished, such as when all children have up-
dated their parent or when a child node finds a solution.

4.3. Implementation of the Search-Tree pattern

ThedefaultimplementationofthedivideOrConquer()
hook method returns true if the depth of the node is less
than a specified value to indicate that the node should be
“divided.” Otherwise, false is returned to indicate that the
node should be processed sequentially. A default threshold
for when to “divide or conquer” is used by the framework
in the absence of the programmer providing a threshold via
the framework constructor. The programmer may also over-
ride the default divideOrConquer() implementation if
the decision to “divide or conquer” is based on something
other than the depth of the node in the tree.

The Search-Tree pattern uses a work queue model for
managing the nodes of the tree. When a node is divided,
its children are placed on the queue and a fixed number of
threads are fed work from that queue. Computation of a node
is accomplished via the process() method shown in Fig.
5. In the case of a depth-first traversal, a second queue (a
pending queue) is used to hold the siblings of a left child
until it has been processed. For a depth-first search, when
the children are returned from divide(), the first node in
the returned list is the left child and is placed immediately
into the work queue. The remaining children are marked
to indicate that they are dependent on that left child node

Preprint - final version at:

 www.sciencedirect .com



1548 J. Anvik et al. / J. Parallel Distrib. Comput. 65 (2005) 1542–1557

Fig. 5. Pseudo-code of the process() method.

and are placed onto the pending queue. When a node has
completed processing, the pending queue is searched for all
nodes which depend on the completed node, and if any are
found they are placed onto the work queue. Once a node
has completed processing, all the children of the node are
marked as invalid in case there was an early termination
condition and there were still nodes in the work queue to be
processed. Processing of an invalid node returns immediately
as shown in Fig. 5.

Note that while there are many tools which could produce
code like that shown in Fig. 5, CO2P3S uses generative de-
sign patterns so that only the portions of the code relevant
to the selected traversal method and other option settings
would be generated. Once a traversal method has been se-
lected, the other portions would not be generated, including
the test for traversal type. This is a simple example of how
generative design patterns can improve the performance of
framework code via custom code generation.

The verification of the done() method is accomplished
in the following manner. When divide() returns the chil-
dren of a node, the children are all placed in a separate list,
used for keeping track of which children have finished. As
each child finishes and updates their parent, the respective
child node is removed from the list. Every time that done()
returns false, the list is checked to see that it is non-empty.
If the list is ever empty (i.e. verifyDone() returns true)
when done() returns false, then an error has occurred

Fig. 6. Pseudo-code of the update() method.

since there are no more children that require processing and
the current node must be finished. Fig. 6 shows how updates
are propagated up the tree and node completion is verified.

The user of the Search-Tree pattern is never aware of the
above details. They are all internal to the generated frame-
work, and the only view that the pattern user has is that
of the application-specific hook methods. From the pattern
user’s perspective they select a set of option values, have
CO2P3S generate the customized parallel framework code,
and implement the necessary hook methods, as was shown
in Section 3.2.

5. Using CO2P3S to implement the Cowichan Problems

The Cowichan Problems are designed to test different
aspects of a parallel programming system. The problems
are from a wide selection of application domains and
parallel programming idioms, covering a range from nu-
merical to symbolic applications, from data-parallelism
to control-parallelism, from coarse- to fine-grained paral-
lelism, and from local to global to irregular communication.
The problems also address important issues in parallel ap-
plications such as load-balancing, distributed termination,
non-determinism, and search overhead.

Table 1
Patterns used to solve the Cowichan Problems

Algorithm Application Pattern

IDA* search Fifteen Puzzle Search-Tree
Alpha–Beta search Kece Search-Tree
LU-Decomposition Skyline Matrix Solver Wavefront
Dynamic Programming Matrix Product Chain Wavefront
Polygon Intersection Map Overlay Pipeline
Image Thinning Graphics Mesh
Gauss-Seidel/Jacobi Reaction/Diffusion Mesh

Preprint - final version at:

 www.sciencedirect .com



J. Anvik et al. / J. Parallel Distrib. Comput. 65 (2005) 1542–1557 1549

Table 2
Code metrics (in lines of code) for the shared-memory implementations of solutions to the Cowichan Problems

Application Seq. Par. Generated Reused New

Fifteen Puzzle 125 308 139 122 47
Kece 375 539 135 362 42
Skyline Matrix Solver 196 390 224 144 22
Matrix Product Chain 68 296 223 60 13
Map Overlay 85 455 235 60 160
Image Thinning 221 529 350 170 9
Reaction/Diffusion 263 434 205 177 52

Table 3
Speedups from 2 to 16 processors for the shared-memory implementations of solutions to the Cowichan Problems

Application Problem size 2 4 8 16

Fifteen Puzzle 100 puzzles 1.74 3.56 6.70 10.60
Kece N = 20, T = 10, W = 3 1.93 3.42 4.83 5.80
Skyline Matrix Solver 2000 × 2000, 50% full 1.93 3.89 7.84 14.86
Matrix Product Chain 2000 matrices 1.81 3.64 7.80 13.37
Map Overlay 3000 Hor./Vert. stripes 1.56 3.11 4.67 —
Image Thinning 3000 × 3000 pixels 1.88 3.53 6.39 10.43
Reaction/Diffusion 1680 × 1680 1.75 3.13 4.92 6.50

Table 4
Code metrics (in lines of code) for the distributed-memory implementations of solutions to the Cowichan Problems

Application Seq. Par. Generated Reused New

Skyline Matrix Solver 196 1929 1760 144 25
Matrix Product Chain 68 1534 1458 60 16
Image Thinning 221 2150 1968 170 12
Reaction/Diffusion 263 1536 1304 177 55

For our work, one modification was made to the original
problem set. The Cowichan Problems contain a single-agent
search problem, the Active Chart Parsing Problem, that
involves generating all possible derivations of a sentence
based on an ambiguous grammar. Unfortunately, finding
grammars and sentences sufficiently large to produce pro-
grams which run for more than a few seconds on current
processors is difficult. When the problem was explored
in 1995 using Orca [4], the sequential C version ran in
5.4 s for a sentence of 29 words [25]. This problem was
appropriate when the Cowichan Problem Set was created,
but modern processors have made it too easy. Therefore,
a different single-agent search problem (IDA*), which
was more representative of this class of problems, was
selected.

All of the Cowichan Problems have been implemented
using CO2P3S. Table 1 provides a summary of which
CO2P3S pattern was used to solve each of the Cowichan
Problems. Presented here is an overview of each of the
patterns used to solve the problems and their options. For
each problem a description of the problem and the pattern
options selected for the solutions is provided. Tables 2 and
4, respectively, provide code metrics for shared- and dis-
tributed-memory solutions that were created using CO2P3S.

Table 5
Speedups for the distributed-memory implementation of the Reac-
tion/Diffusion problem

Matrix size Pattern layer Native code layer

400 × 400 0.3 0.5
800 × 800 1.1 1.7
1200 × 1200 2.0 2.9

Tables 3 and 5, respectively, show performance results for
the solutions.

5.1. The Search-Tree pattern

As was demonstrated in Section 3, the Search-Tree pat-
tern is a pattern used to parallelize tree search algorithms,
such as those used in optimization and heuristic search, on
shared-memory multiprocessors. The nodes of the tree rep-
resent states (e.g. a game board configuration) and the arcs
represent movement between states (e.g. a player’s move).
The Search-Tree pattern uses the divide-and-conquer tech-
nique for searching a tree in which the children of tree
nodes are generated up to a certain depth in the tree (divide)
and the remaining nodes are processed sequentially by the

Preprint - final version at:

 www.sciencedirect .com



1550 J. Anvik et al. / J. Parallel Distrib. Comput. 65 (2005) 1542–1557

Fig. 7. An example of a 20 x 20 Kece board where N = 20, W = 12,
and T = 3. The initial word on the board was LANGUAGE and four
words have already been placed on the board. Four possible placements
of CONCURRENT are shown; three that score one point and one that
scores two points.

processor (conquer). A detailed description of this pattern
was presented in Section 4.

5.1.1. The game of Kece
The game of Kece [6,29] is a zero-sum game 2 similar to

the game of Scrabble; two players alternately select words
from a W -sized list and place the word onto a N ×N board
in a crossword-style fashion (see Fig. 7). The initial board
state contains a single word for the players to begin with and
words on the list are only shown to the players through a T -
sized window (typically two or three). The game is finished
when all words from the list are exhausted, or when no more
words can be placed on the board. Each move consists of
a player placing a word on the board such that it overlaps
with a previously played word, and the player’s score for a
move is the number of words that are overlapped.

Our solution for Kece uses alpha–beta search [22] to
search the game tree of possible orders of word placements.
Since alpha–beta search is a depth-first search, the traver-
sal parameter is set to depth-first. As we are looking for the
maximal score, the entire tree must be searched (except for
branches pruned due to the alpha–beta search), so the early-
termination parameter is set to false. As with the Fifteen
Puzzle solution, the done() verification parameter was turned
on during the testing of the program, but was turned off for
the final version.

5.1.2. The Fifteen Puzzle
The Fifteen Puzzle and how CO2P3S was used to im-

plement a parallel solution has already been described in
Section 3.

2 A zero-sum game is a game, such as Chess, in which for each move
a player ‘gains’ by the same amount that the opponent ‘loses’.

5.2. The Wavefront pattern

The Wavefront pattern [1,2,26] is applicable to applica-
tions where the data dependencies between work items can
be expressed as a directed acyclic graph (DAG). The wave-
front denotes the partition between nodes of the graph that
have been computed and nodes that can now be computed
because their dependency requirement has been satisfied.
While a wavefront may occur in arbitrary DAGs, the Wave-
front pattern restricts the set of dependency graphs to those
which occur in a matrix, as this appears to be the common
case. Parallelism in the Wavefront pattern results from el-
ements on the wavefront being data independent of each
other, otherwise the elements could not be executed in par-
allel. CO2P3S contains versions of the Wavefront pattern for
both shared-memory [2] and distributed-memory architec-
tures [26].

The Wavefront pattern contains a single lexical option:
the name of the class which represents a single element in
the matrix. This class contains the hook methods that the
CO2P3S user implements for their application.

The Wavefront pattern has three design options. The de-
sign options for the pattern are:

(1) The shape of the matrix containing the elements: The
pattern supports three matrix shapes:
Full where all elements of a rectangular matrix are

computed (see Fig. 8(a)),
Triangular where only the elements in the top trian-

gular portion are computed (see Fig. 8(b)), and
Banded where the values that are computed are cen-

tered around the diagonal (see Fig. 8(c)).
(2) The dependency set for an item: Dependencies are spec-

ified based on their direction relative to a matrix ele-
ment. For example, an element may depend on elements
that are north (N) and west (W) of it. Not all sets of di-
rections form legal dependency sets. An example of an
illegal set is one containing opposing directions as this
creates a cyclic dependency and would result in dead-
lock. The Wavefront Pattern GUI enforces these restric-
tions. All supported dependency sets contain directions
which fall within a 90◦ arc.

(3) Whether an item needs access to more than its immedi-
ate neighbours for its computation: Some applications

Fig. 8. Matrix shapes in the Wavefront pattern: (a) A full matrix shape;
(b) a triangular matrix shape; (c) a banded matrix shape.

Preprint - final version at:

 www.sciencedirect .com



J. Anvik et al. / J. Parallel Distrib. Comput. 65 (2005) 1542–1557 1551

Fig. 9. Example of a 10 × 10 skyline matrix.

require values which are not adjacent. For example,
matrix multiplication requires access to all elements to
the left and above a particular element.

The Wavefront pattern has the following performance
options:

(1) The notification method used to inform an item of the
satisfaction of a dependency relation: Items can use
either the Pull notification method where the comple-
tion status of an item’s prerequisites are polled, or the
Push notification method where prerequisite items sig-
nal their dependents that they have completed their com-
putation.

(2) The type of the item: If the type of the element is a
primitive, such as an int, then static hook methods are
generated using the specific type. If the type specified
is Object, instance hook methods are generated for the
class defined by the user via the lexical option.

5.2.1. A skyline matrix solver
A skyline matrix is an N × N matrix in which each row

has an indentation up to some distance from the diagonal
and each column has a similar indentation. More formally,
there exists constants ri and ci such that for 1�ri � i and
1�cj �j each row i has non-zero values from ri to i, and
each column j has non-zero values from cj to j [29]. While
any matrix may be viewed as a skyline matrix, only skyline
matrices with a substantial zero-element content are of in-
terest, (i.e. matrices with values clustered around the diag-
onal). The name for this type of a sparse matrix is derived
from its similarity in shape to a city skyline. Fig. 9 shows
an example of a skyline matrix.

Given a skyline matrix A and a solution vector b, we want
to solve Ax = b using LU-decomposition. What makes this
problem interesting is that many of the matrix elements are

Fig. 10. Formulas for Doolittle’s method of LU-decomposition.

zero, resulting in many of the inner products being zero.
The key to efficiently solving a skyline matrix is to exploit
this property. Doolittle’s method of LU-decomposition is
therefore used to compute the inner products [7]. The value
of a matrix element aij is found by either Formula 1 of
Fig. 10 if it occurs in the upper triangular portion of the
matrix or by Formula 2 if it occurs in the lower triangular
portion.

The CO2P3S option settings for this application are as
follows: the dependency set is {N, W}, the matrix shape is
Banded, and the neighbours-only flag is set to false. The
performance options are set to double element type and
Push notification.

5.2.2. Solving matrix product chains
Given a program that must multiply a series of Mi matri-

ces for 0� i�N and each matrix has ri rows and ci columns,
in what order must the matrix multiplications be done so
that the minimum number of scaler multiplications 3 is per-
formed? For example, if the matrices A, B, C, D have di-
mensions 30 × 17, 17 × 12, 12 × 23, and 23 × 16, the
number of scalar multiplications can range from 25,440 for
((AB)C)D to 15,840 for A(B(CD)).

Finding the optimal sequence is accomplished by filling
the upper triangular portion of a dynamic programming ma-
trix C with the minimum cost of finding the matrix product
for matrices Mi and Mj [29]. The minimum cost is found by
determining the least cost for finding the products Mi . . . Mk

and Mk+1 . . . Mj and using these to find the cost of the prod-
uct for Mi→k and Mk+1→j . Once the upper portion is filled,
the minimum cost will be the value in the top right-hand
corner.

For the Matrix Product Chain the dependency set is
{S, W}, the matrix type is Triangular, and neighbours-only
is false. The performance parameters are set to Push notifi-
cation and int element type.

5.3. The Mesh pattern

The Mesh pattern [18] is used for computing elements of
a regular, rectangular two-dimensional data set where each
element is dependent on its surrounding values and changes
over time. In other words, it is used for applications where
the elements are evenly spread over a two-dimensional sur-
face and computation of an element is dependent on values

3 The formula ricici+1 gives the number of scalar multiplications
performed to find the product of two matrices.

Preprint - final version at:

 www.sciencedirect .com



1552 J. Anvik et al. / J. Parallel Distrib. Comput. 65 (2005) 1542–1557

Fig. 11. Example of a Turing Ring system. The arrows indicate the flow
of data between regions.

Fig. 12. Differential equations used in the Turing Ring model.

from either the cardinal points (north, south, east, and west)
or all eight directions, and each element must be recomputed
many times. This class of application includes programs for
weather prediction and particle simulation.

The parallelization of an application which uses a mesh
is accomplished by spatially decomposing the mesh into
partitions and performing one iteration in parallel on all
the partitions. Boundary values are then exchanged between
partitions and another iteration is done. This continues until
a local stopping condition is satisfied for all elements.

As with the Wavefront pattern, CO2P3S contains both
shared-memory [18] and distributed memory implementa-
tions of the Mesh pattern [26].

The Mesh pattern has two lexical options: the class name
for the mesh object and the class name for the elements of
the mesh. The two design options for this pattern are the
topology of the mesh and the number of neighbouring ele-
ments accessed to compute an individual element. The pro-
grammer may choose either a fully toroidal, a non-toroidal,
a vertically toroidal, or a horizontally toroidal topology for
the mesh. A given element may use results either from the
cardinal points or from all eight directions. The performance
option controls the amount of synchronization between iter-
ations across the mesh. If an ordered mesh is selected, then
an element waits for all other elements in the mesh to finish
their respective computations before computing its next it-
eration. In a chaotic mesh, the elements compute their value
as soon as possible.

5.3.1. The reaction/diffusion problem
The original problem formulated by Alan Turing mod-

eled the interaction between two chemicals in a ring of
cells through the use of two differential equations [28]. 4

The problem was later generalized to include other reaction-
migration problems, such as those found in ecology, epi-
demiology, and petroleum engineering [21]. A model of such
a system is shown in Fig. 11. Fig. 12 shows the pair of cou-
pled differential equations which model the populations Xi

and Yi for each cell in the ring.

4 The Cowichan Problems calls this “The Turing Ring Problem”.

Fig. 13. An example of image thinning. The squares represent pixels: (a)
an image before thinning; (b) the image after thinning.

For a predator/prey system, �X,Y represents the birth
rate of the two species, �X,Y is a constant death rate,
�X,Y signifies deaths due to overpopulation of predators
or the consumption of prey, and �X,Y is the migration rate
between neighbouring cells [21]. By varying these coef-
ficients, the model can be used to represent the mixing
of water and oil in porous rock, the reaction/diffusion of
two chemicals, or the progression of a disease through a
population.

The reaction–diffusion solution that was produced used a
fully toroidal mesh with elements acquiring data from their
neighbours to the north, south, east, and west for computa-
tion. As the problem specifies that Jacobi iteration is to be
used, the performance parameter was set to ordered.

5.3.2. Image thinning
Image thinning is an important stage in the processing

of images such as electron density maps of proteins and
handwriting or character recognition. The Image Thinning
problem takes an image which contains straight-line seg-
ments of varying widths, and thins the image so that lines
have unit width [13,29]. Fig. 13 shows an example of this
process.

The input to the image thinning process is a two-
dimensional image. Thinning of an image is accomplished
by repeatedly passing over the image and removing pixels
from the image unless they satisfy one of the following
criteria:

(1) The pixel is at the tip of line segment.
(2) Deleting the pixel would disconnect an image compo-

nent.

The removal of pixels is accomplished by applying a set of
masks to a pixel and its surrounding neighbours. If a mask
fits then the pixel may be removed.

As the thinning operation of an image does not wrap
around to the other side of the image, a non-toroidal mesh
was used. Applying the pixel masks requires information
about all pixels surrounding a given pixel, so the 8-point

Preprint - final version at:

 www.sciencedirect .com



J. Anvik et al. / J. Parallel Distrib. Comput. 65 (2005) 1542–1557 1553

mesh option was selected. Finally, a proper thinning requires
an ordered computation, so the performance parameter was
set to ordered.

5.4. The Pipeline pattern

Pipelines provide a simple way of improving the perfor-
mance of a task by separating a task into stages, each of
which can be done in parallel. Abstractly, a pipeline can be
regarded as a sequence of stages wherein the stages have
a specific ordering between them so that the results of one
stage forms the input for one or more of the following stages.
Each stage of the pipeline can be viewed as having an object
in a certain state, and the transition between pipeline stages
is simply a change of state for the object [18].

Traditionally, pipelines are parallelized by assigning one
or more threads to each stage of the pipeline. However, this
can lead to load imbalances as some stages may require
more computation and these particular stages may vary dur-
ing a run of the application. The Pipeline pattern [18] in
CO2P3S is a pattern for shared-memory multiprocessors that
resolves this problem by taking a work-pile approach to the
computation of pipeline stages. Each stage of the pipeline
can be viewed as having a buffer of items to be processed
in that stage. Since, as stated previously, the processing of
an item in the pipeline may be viewed as a transformation
from one state to another, in a work-pile approach threads
search the buffers for work, transform items to their next
state, and place them into the next buffer if further process-
ing is required. In this manner the load is balanced across
the pipeline.

The Pipeline pattern is unlike other CO2P3S patterns as
it is a structural pattern. In other words, the pattern does not
contain any design, performance, or verification parameters,
but only lexical parameters. Whereas the other patterns pro-
duce a framework which is tuned for a particular application,
this pattern generates the structural framework of a pipeline
for the user. The user then specifies the pipeline stages by
subclassing generated framework classes.

The three lexical parameters for the pattern are:

(1) The name of the class representing the pipe,
(2) The name of the class representing an unordered work

type, and
(3) The name of the class representing an ordered work

type.

The work types, or stages, in a pipeline may either be ordered
or unordered. An ordered stage enforces a first-in-first-out
(FIFO) ordering of items. An unordered stage removes this
restriction and allows items to be processed out of order. The
use of unordered buffers is an optimization of the pipeline,
and a user should only place an ordering on the work items
when it is necessary for correctness.

5.4.1. Generating Map Overlays
Given two maps A and B which both cover the same

geographical area and are both decomposed into a set of

Fig. 14. An example of the Map Overlay problem: (a) map of tree type;
(b) map of soil type; (c) map of tree and soil type.

non-overlapping polygons, what are the polygons produced
by overlaying these maps? This is a problem that regularly
occurs in spatial information systems [14,17,29]. Imagine
that map A represents types of trees and map B represents
types of soil. By combining these two maps, a new map is
created which indicates the type of soil in which particular
trees grow. Fig. 14 shows an example of overlaying two
maps.

The pipeline for the Map Overlay problem consists of
four stages, where each stage represents a quarter of Map
A. Groups of regions from Map B are passed through the
pipeline and at each stage are compared to the regions in
Map A to find the overlapping regions.

As there is no ordering dependency within the stages (i.e.
the work done in a stage is independent from the other work
done in the same stage), the stages are unordered (i.e. the
stages are subclasses of the unordered abstract class).

5.5. The effects of using CO2P3S

The results of using CO2P3S to implement solutions to
the Cowichan Problems are presented here. These results
take on two forms: code metrics to show the effort required
by a user to take a sequential program and convert it into a
parallel program, and performance results. Together, these
results show that with minimal effort on the part of the user,
reasonable speedups can be achieved. The speedups are not
necessarily the best that can be achieved, since the applica-
tions could be further tuned to improve performance using
the CO2P3S layered model [18]. Tables 2 and 3 show the
results of using CO2P3S to generate shared-memory frame-
works, and Tables 4 and 5 show the results for generating
distributed-memory frameworks.

5.5.1. Shared-memory solutions
Recall from Section 3 that for the programmer to trans-

form a sequential solution for the Fifteen Puzzle into a
parallel solution using CO2P3S meant that the program-
mer had to write very little code. Table 2 shows this is not
a unique case. It demonstrates that for a variety of prob-
lems a sequential Java program can be adapted to a shared-
memory version with little additional effort on the part of the
programmer. The time required to move from a sequential

Preprint - final version at:

 www.sciencedirect .com



1554 J. Anvik et al. / J. Parallel Distrib. Comput. 65 (2005) 1542–1557

implementation to a parallel implementation took in the
range of a few hours to a few days in each case.

While the sequential C code used in the Orca study [30]
was available, the sequential solutions were completely
rewritten in Java in order to use CO2P3S and to gain a
better understanding of the problems. They were written by
hand based on the descriptions of the problems [29] before
CO2P3S was used to create the parallel implementations.
This was done to try and minimize their tailoring to the
CO2P3S system. However, as we knew that the programs
would be used with CO2P3S we cannot be certain that all
biases were removed.

The first two columns of Table 2 show the size of the
sequential and parallel programs. Note that the parallel ver-
sions are 1.5 to 5 times larger than their sequential coun-
terparts. This is due to the generation of all the necessary
code for the spawning, synchronization, and load balanc-
ing of the processes that would normally be written by the
programmer. The amount of code generated by CO2P3S is
shown in the third column. If this same code had been writ-
ten by the programmer, they would likely have to debug all
this code before they had a working program. This would
require the programmer to include error checking code in
addition to what was required for the parallelization. As the
parallel code is generated by the CO2P3S tool, this debug-
ging has already been performed and the programmer has
a working parallel program that is free of extraneous error
checking.

The next column of Table 2 shows how much code was
reused without modification from the sequential program.
This reuse was either the result of directly reusing classes
created for the sequential application or from cutting and
pasting code into the hook methods.

The last column of Table 2 shows how much new code
was required by the programmer to achieve a working solu-
tion to the problems. The additional code that the user had to
write was typically changes to the sequential driver program
to use the parallel framework, and/or changes necessary due
to the use of the sequential hook methods. The extreme case
of this is for the Map Overlay problem where there was a
fundamental change in paradigm between the two imple-
mentations. In order to use the Pipeline pattern, the user has
to create classes for the various stages of the pipeline. Each
of these classes contains a specific hook method for per-
forming the computation of that stage, and then transforming
the current object to the object representing the next stage.
As this was not necessary in the sequential application, the
user had to write more code in order to use the Pipeline
pattern.

That a significant amount of work on the part of the pro-
grammer was needed to use the Pipeline pattern demon-
strates an important aspect of utility; how much must the
original program be changed in order to use the tool? For the
Map Overlay problem, extensive modifications were neces-
sary to use this pattern. This point is especially important in
the context of legacy code. Without knowing more about the

structure of the legacy applications, this is clearly an aspect
of utility that is hard to quantify.

The performance results presented in Table 3 are for a
shared-memory architecture. The machine used to run the
applications was an SGI Origin 2000 with 46 MIPS R100
195 MHz processors and 11.75 gigabytes of memory. A na-
tive threaded Java implementation from SGI (Java 1.3.1) was
used with optimizations and JIT turned on, and the virtual
machine was started with 1 GB of heap space.

Table 3 shows that the use of the patterns can produce pro-
grams that have reasonable scalability. Again, these figures
are not the best that can be achieved, since only the Patterns
Layer of CO2P3S was used. All of these programs could be
further tuned to improve the performance. However, the re-
sults are impressive considering that the programmer only
wrote less than one hundred lines of code in most of the
cases. This is possible because CO2P3S uses pattern tem-
plates to allow the programmer to customize the generated
code for a particular application and hardware.

While most of the programs do show reasonable scala-
bility, the two that do not, Kece and Map Overlay, are the
result of application-specific factors and not a consequence
of the use of the specific pattern. In the case of Kece, the
number of siblings processed in parallel during the depth-
first search was found to never exceed 30. If we assume that
all nodes at a single level take the same amount of time to
process, then the number of siblings is such that many of
the processors will remain idle at each level. This is not as
much of a problem at the lower levels, where the granu-
larity of the nodes is small, as at the higher levels, where
the granularity of nodes could be quite large. However, the
previous assumption that all nodes require the same amount
of work is not true. Due to pruning effects, some nodes re-
quire a disproportionate amount of processing. This makes
the problem worse as it is even more likely that processors
will remain idle for a given level.

For the Map Overlay problem, the problem was only run
using up to 8 processors, as the application ran for 5 s using
8 processors for the largest dataset size that the Java Virtual
Machine could support.

5.5.2. Distributed-memory solutions
Table 4 shows the code metrics for using CO2P3S to

generate distributed-memory code. As the distributed im-
plementations of the Pipeline and Search-Tree patterns have
not been done, only a subset of the problems are shown. As
with Table 2, the first two columns show the size of the se-
quential and distributed-memory programs. The remaining
three columns show the amount of code that is generated
by CO2P3S, reused from the sequential application, and
written by the programmer. A key point is that although
CO2P3S generates very different frameworks for the shared-
and distributed-memory environments, the code that the
user provides is almost identical. There are only two small
differences.

Preprint - final version at:

 www.sciencedirect .com



J. Anvik et al. / J. Parallel Distrib. Comput. 65 (2005) 1542–1557 1555

Fig. 15. Example of the minor code difference between using shared-
and distributed-memory framework code in an application: (a) use of
shared-memory code; (b) use of distributed-memory code.

The first difference is that the method signatures of
the generated hook methods for the distributed environ-
ment may contain a throws clause. For example, in the
skyline matrix solver application, the signature of one of
the hook methods for the shared memory environment
is operateLeft(. . .). In the distributed memory en-
vironment, the signature becomes operateLeft(. . .)
throws java.rmi.RemoteException. In the dis-
tributed memory case, if an exception occurs due to a node
failure, the framework code catches the exception and dis-
plays an error. Note that the user fills in exactly the same
code for the hook methods in both cases. Therefore, no user
code changes are required to move from one environment
to the other.

The second difference is that in the distributed memory
environment, the user must use a try-catch statement to
enclose the constructor of the object that initiates the par-
allel computation. Fig. 15 shows an example of the shared-
and distributed-memory versions of this statement for the
skyline matrix solver application. It is impossible to absorb
this difference into the generated framework code since the
user can write code that initiates a parallel pattern from any-
where in their application code.

Two important points are demonstrated by Fig. 15 and Ta-
ble 4. The first is that a user can switch between shared and
distributed memory implementations by one trivial change
in their application code. We are unaware of any other high-
level parallel programming system that supports both shared-
and distributed-memory environments in such a transparent
manner. The second is how much effort the programmer
saves by using the tool. For these four applications 85–95%
of the final application code is generated by CO2P3S. Writ-
ing the same program in MPI would have taken the program-
mer days to weeks to produce a correct program instead of
a few hours.

Table 5 shows the performance results for the distributed
implementation of the Reaction/Diffusion problem. The re-
sult of just using the Pattern Layer of CO2P3S is shown in
the first column. While these results appear poor, given the
minimal amount of effort required to create the program,
this is a significant result. The adjacent column shows the
performance after optimizations were made to the generated
Pattern Layer code at the Native Code Layer. The perfor-
mance results using the Pattern Layer for the other three
problems from Table 4 are not shown as they were found to
be similar.

6. Conclusions

While parallel programs are known to improve the per-
formance of computationally intensive applications, they are
also known to be challenging to write. Parallel programming
tools, such as CO2P3S, provide a way to alleviate this dif-
ficulty. The CO2P3S system is a relatively new addition to
a collection of such tools. Before it can gain wide user ac-
ceptance, there needs to be confidence that the tool can pro-
vide the assistance necessary. To this end, the utility of the
CO2P3S system was tested by implementing the Cowichan
Problem Set. This required the addition of two new patterns
to CO2P3S, the Wavefront pattern and the Search-Tree pat-
tern. The addition of these patterns highlight the extensibility
of CO2P3S, an important contribution to a system’s utility.

Creating shared and distributed memory solutions to the
Cowichan Problems is not the only place that the CO2P3S
system has been used. CO2P3S has also been used to assist
in building both a web (http) server and an ftp server [31].
While this is additional evidence of the utility of CO2P3S,
describing this problem and its solution would not have con-
tributed significantly more to our claims.

The Cowichan Problems are 10 years old. They are an
excellent representative sample of commonly occurring par-
allel structures. However, while measuring utility, perfor-
mance cannot be ignored, and the Cowichan Problems have
not scaled well to modern architectures. We challenge the
community to develop a comprehensive set of applications
for measuring the utility of high-level parallel programming
tools. Without such a benchmark, it will be very difficult
for any high level tool to prove its value and gain high
acceptance.

Parallel computing must eventually move away from MPI
and OpenMP. High-level abstractions have been researched
for years. The most serious obstacles—performance, utility,
and extensibility—are all addressed by CO2P3S. Another
way in which the utility of CO2P3S is demonstrated is by
the MetaCO2P3S tool, which produces an XML description
of the patterns so that patterns may be made available to all
for use in other tools through a pattern repository.

The CO2P3S tool is publicly available for downloading
at http://www.cs.ualberta.ca/∼systems/cops.

Preprint - final version at:

 www.sciencedirect .com

http://www.cs.ualberta.ca/{{mathsurround =0ptunhbox voidb@x hbox {$	empsim $}}}systems/cops


1556 J. Anvik et al. / J. Parallel Distrib. Comput. 65 (2005) 1542–1557

Acknowledgments

We thank iCORE and NSERC for their support of this
project. We also thank Steve MacDonald who developed the
initial CO2P3S system and Steve Bromling who created the
MetaCO2P3S tool.

References

[1] J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling, K.
Tan, Generating parallel programs from the wavefront design pattern,
Proceedings of the seventh International Workshop on High-Level
Parallel Programming Models and Supportive Environments, April
2002. On CD.

[2] J. Anvik, Asserting the utility of CO2P3S using the Cowichan
Problems, Master’s Thesis, Department of Computing Science,
University of Alberta, 2002.

[3] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, M. Vanneschi, P3L:
A structured high level programming language and its structured
support, Concurrency Practice Exp. 7 (3) (1995) 225–255.

[4] H.E. Bal, A.S. Tanenbaum, M. Frans Kaashoek, Orca: A language for
parallel programming of distributed systems, IEEE Trans. Software
Eng. 18 (3) (March 1992) 190–205.

[5] A. Beguelin, J. Dongarra, A. Giest, R. Manchek, K. Moore, HeNCE:
A heterogeneous network computing environment, Technical Report
UT-CS-93-205, University of Tennessee, 1993.

[6] P. Boncz, Parallelizing the crossword generation game in Orca,
Student Project Report, Vrije Universiteit Amsterdam, May 1994.

[7] D.S. Bouman, Parallelizing a skyline matrix solver using Orca,
Student project Report, Vrije Universiteit Amsterdam, August 1995.

[8] S. Bromling, Meta-programming with parallel design patterns,
Master’s Thesis, Department of Computing Science, University of
Alberta, 2002.

[9] S. Bromling, S. MacDonald, J. Anvik, J. Schaeffer, D. Szafron, K.
Tan, Pattern-based parallel programming, Proceedings of the 2002
International Conference on Parallel Processing, August 2002, pp.
257–265.

[10] F.J. Budinsky, M.A. Finnie, J.M. Vlissides, P.S. Yu, Automatic code
generation from design patterns, IBM Systems J. 35 (2) (1996)
151–171.

[11] M. Cole, Algorithmic Skeletons: A Structured Approach to the
Management of Parallel Computations, MIT Press, Cambridge, MA,
1988.

[12] TogetherSoft Corporation, TogetherSoft ControlCenter tutorials:
Using design patterns, http://www.togethersoft.com/services/tutorials/
index.jsp.

[13] R.S. de Boer, Parallel thinning and skeletonization using Orca,
Student Project Report, Vrije Universiteit Amsterdam, August 1994.

[14] G. Dutton, (Ed.), Harvard Papers on Geographic Information
Systems: vol. 6—Spatial Algorithms: Efficency in Theory and
Practice, Laboratory for Computer Graphics and Spacial Analysis,
1978.

[15] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley,
Reading, MA, 1995.

[16] D. Goswami, A. Singh, B.R. Priess, Architectural skeletons: The re-
usable building-blocks for parallel applications, Proceedings of the
1999 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’99), 1999, pp. 1250–1256.

[17] P. Langendoen, Parallelizing the polygon overlay problem using Orca,
Student Project Report, Vrije Universiteit Amsterdam, August 1995.

[18] S. MacDonald, D. Szafron, J. Schaeffer, Rethinking the Pipeline
as Object-Oriented States with Transformations, 9th International
Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS’2004) at IPDPS, April 2004, Santa
Fe, U.S., pp. 12–21.

[19] B.L. Massingill, T.G. Mattson, B.A. Sanders, A pattern language
for parallel application programs, Proceedings of the Sixth Eurpeoan
Conference on Parallel Computing (Euro-Par 2000), 2000, pp.
678–681.

[20] P. Newton, J.C. Browne, The CODE 2.0 graphical parallel
programming language, Proceedings of the Sixth ACM International
Conference on Supercomputing, 1992, pp. 167–177.

[21] D. Nicolaas, Parallelizing the Turing ring using Orca, Student Project
Report, Vrije Universiteit Amsterdam, August 1994.

[22] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach,
Prentice-Hall, Englewood Cliffs, NJ, 1995 (Chapter 5).

[23] J. Schaeffer, D. Szafron, G. Lobe, I. Parsons, The Enterprise
model for developing distributed applications, IEEE Parallel Distrib.
Technol. 1 (3) (1993) 85–96.

[24] M. Schuetze, J.P. Riegel, G. Zimmermann, A pattern-based
application generator for building simulation, Proceedings of
the Sixth European Software Engineering Conference (ESEC’97),
Lecture Notes in Computer Science, Springer, Berlin, 1997, vol.
1301, pp. 468–482.

[25] A.R. Sukul, Parallel implementation of an Active Chart parser in
Orca, Student Project Report, Vrije Universiteit Amsterdam, August
1995.

[26] K. Tan, Supporting pattern-based parallel programming in a
distributed-memory environment, Master’s Thesis, Department of
Computing Science, University of Alberta, 2002.

[27] ModelMaker Tools, Design patterns in ModelMaker,
http://www.modelmakertools.com/mm_design_patterns.htm.

[28] A.M. Turing, The chemical basis of morphogenesis, Trans. Roy. Soc.
London 237 (1952) 37–42.

[29] G.V. Wilson, Assessing the usability of parallel programming
systems: The Cowichan Problems, in: Proceedings of the IFIP
Working Conference on Programming Environments for Massively
Parallel Distributed Systems, April 1994, pp. 183–193.

[30] G.V. Wilson, H.E. Bal, An empirical assessment of the usability of
Orca using the Cowichan Problems, IEEE Parallel Distrib. Technol.
4 (3) (1996) 36–44.

[31] G. Zhuang, J. Schaeffer, D. Szafron, P. Earl. Using Generative
Design Patterns to Develop Network Server Application, 10th
International Workshop on High-Level Parallel Programming Models
and Supportive Environments (HIPS’2005), 2005, pp. 178.

John Anvik received a Masters degree
in Computer Science from the University
of Alberta in 2002. His work examined
the use of generative design patterns for
shared-memory parallel programs. Follow-
ing his Masters degree, John worked on a
bioinformatics research project and taught
undergraduate courses at the University of
Alberta. He is currently a PhD student at
the University of British Columbia working
in the Software Practices Lab.

Jonathan Schaeffer is a professor of Com-
puting Science at the University of Alberta.
He is a Canada Research Chair and an
iCORE Chair. His research interests are in
artificial intelligence and parallel/distributed
computing. He is best known for his work
on computer games. He is the creator of the
checkers program Chinook, the first program
to win a human world championship in any
game. He is a co-founder of BioTools (bioin-
formatics software and the popular Poker
Academy) and Chenomx (medical diagnos-
tic software).

Preprint - final version at:

 www.sciencedirect .com

http://www.togethersoft.com/services/tutorials/index.jsp
http://www.togethersoft.com/services/tutorials/index.jsp
http://www.modelmakertools.com/mmprotect LY1	extunderscore designprotect LY1	extunderscore patterns.htm


J. Anvik et al. / J. Parallel Distrib. Comput. 65 (2005) 1542–1557 1557

Duane Szafron is a Professor of Comput-
ing Science and Vice Dean of the Fac-
ulty of Science at the University of Alberta.
He has been doing object-oriented comput-
ing research since 1980, including language
design, language implementation, program-
ming environments and parallel computing.
He is also doing research in bioinformat-
ics and computer games. He teaches object-
oriented computing courses to students at
all levels, from first year through gradu-
ate school. He is one of the founders of

two University of Alberta spin-off companies: BioTools, a developer of
bioinformatics software and the popular Poker Academy poker software,
and Chenomx, a developer of medical diagnostic software.

Kai Tan received a Masters degree in Com-
puter Science in 2002. He did work on
pattern-based distributed and parallel pro-
gramming and developed a distributed en-
vironment for the CO2P3S system. He cur-
rently works as a software developer for a
storage virtualization company in Edmon-
ton, Alberta.Preprint - final version at:

 www.sciencedirect .com


