
Generating Ambient Behaviors in Computer Role-
Playing Games

Maria Cutumisu1, Duane Szafron1, Jonathan Schaeffer1, Matthew McNaughton1,
Thomas Roy1, Curtis Onuczko1, and Mike Carbonaro2

1 Department of Computing Science, University of Alberta, Canada
{meric, duane, jonathan, mcnaught, troy,

onuczko}@cs.ualberta.ca
2 Department of Educational Psychology, University of Alberta, Canada

{mike.carbonaro}@ualberta.ca

Abstract. Many computer games use custom scripts to control the ambient be-
haviors of non-player characters (NPCs). Therefore, a story writer must write
fragments of computer code for the hundreds or thousands of NPCs in the game
world. The challenge is to create entertaining and non-repetitive behaviors for
the NPCs without investing substantial programming effort to write custom
non-trivial scripts for each NPC. Current computer games have simplistic am-
bient behaviors for NPCs; it is rare for NPCs to interact with each other. In this
paper, we describe how generative behavior patterns can be used to quickly and
reliably generate ambient behavior scripts that are believable, entertaining and
non-repetitive, even for the more difficult case of interacting NPCs. We demon-
strate this approach using BioWare's Neverwinter Nights game.

1 Introduction

A computer role-playing game (CRPG) is an interactive story where the game player
controls an avatar called a player character (PC). Quickly and reliably creating engag-
ing game stories is essential in today’s market. Game companies must create intricate
and interesting storylines cost-effectively and realism that goes beyond graphics has
become a major product differentiator. Using AI to create non-player characters
(NPCs) that exhibit near-realistic ambient behaviors is essential, since a richer back-
ground “tapestry” makes the game more entertaining. However, this requirement must
be put in context: the storyline comes first. NPCs that are not critical to the plot are
often added at the end of the game development cycle, only if development resources
are available. Consider the state-of-the-art for ambient behaviors in recent CRPGs. In
Fable (Lionhead Studios), the NPCs wake at dawn, walk to work, run errands, go
home at night, and make random comments about the disposition and appearance of
the PC. However, the behaviors and comments are “canned” and repetitive and NPCs
never interact with each other. The Elder Scrolls 3: Morrowind (Bethesda Softworks)
has a huge immersive world. However, NPCs either wander around areas on prede-
fined paths or stand still, performing a simple animation, never interacting with each
other and ignoring the simulated day. In The Sims 2 (Electronic Arts), players control

This is a pre-print of a paper that will appear in the Proceedings of Intelligent
Technologies for Interactive Entertainment (INTETAIN), November 2005
and will be published in Springer Lecture Notes in Computing Science.

1

the NPCs (Sims) by choosing their behaviors. Each Sim chooses its own behaviors
using a motivational system if it is not told what to do. The ambient behaviors are
impressive, but they hinge on a game model (simulation) that is integral to this game
and not easily transferable to other game genres, including CRPGs. Halo 2 (Bungie) is
a first person shooter with about 50 behaviors, including support for “joint behaviors”
[11][20]. The Halo 2’s general AI model is described, but no model for joint behav-
iors is given. Façade [7] has an excellent collaborative behavior model for NPCs, but
there are only a few NPCs, so it is not clear if it will scale to thousands of ambient
NPCs. They also comment about the amount of manual work that must be done by a
writer when using their framework. Other research includes planning, PaTNets, sen-
sor-control-action loops [1][16], and automata controlled by a universal stack-based
control system [3] for both low-level and high-level animation control, but not in the
domain of commercial-scale computer games. However, planning is starting to be
used in commercial computer games in the context of Unreal Tournament [5][21].
Crowd control research involves low-level behaviors such as flocking and collisions
[14] and has recently been extended to a higher-level behavioral engine [2]. Group
behaviors provide a formal way to reason about joint plans, intentions and beliefs
[10]. Our approach is dictated by the practical requirements of commercial computer
games. The model we describe in this paper is robust, flexible, extendable, and scal-
able [6] to thousands of ambient NPCs, while requiring minimal CPU resources.
Moreover, our generative pattern abstraction is essential to story designers, shielding
them from manual scripting and the synchronization issues of collaborative behaviors,
and allowing them to concentrate on story construction.

In most games, scripts control NPC behaviors. A game engine renders the story
world objects, generates events on the objects, dispatches events to scripts and exe-
cutes the scripts. Different stories can be “played” with the same game engine using
story-specific objects and scripts. Programmers create game engines using program-
ming languages such as C or C++. Writers and artists, who are not usually program-
mers [17], write game stories by creating objects and scripts for each story. The goal
of our research is to improve the way game stories, not game engines, are created.

A writer may create thousands of game objects for each story. If a game object
must interact with the PC or another game object, a script must be written. For exam-
ple, BioWare Corp.’s popular Neverwinter Nights (NWN) [15] campaign story con-
tains 54,300 game objects of which 29,510 are scripted, including 8,992 objects with
custom scripts, while the others share a set of predefined scripts. The scripts consist of
141,267 lines of code in 7,857 script files. Many games have a toolset that allows a
writer to create game objects and attach scripts to them. Examples are BioWare’s
Aurora toolset that uses NWScript and Epic Game’s UnrealEd that uses UnrealScript.

The difficulties of writing manual scripts are well documented [12]. Writers want
the ability to create custom scripts without relying on a set of predefined scripts or on
a programmer to write custom scripts. However, story creation should be more like
writing than programming, so a writer should not have to write scripts either. A tool
that facilitates game story writing, one of the most critical components of game crea-
tion, should: 1) be usable by non-programmers, 2) support a rich set of non-repetitive
interactions, 3) support rapid prototyping, and 4) eliminate most common types of
errors. ScriptEase [19] is a publicly available tool for creating game stories using a
high-level menu-driven “programming” model. ScriptEase solves the non-

2

programmer problem by letting the writer create scenes at the level of “patterns”
[9][13]. A writer begins by using BioWare’s NWN Aurora toolset to create the physi-
cal layout of a story, without attaching any scripts to objects. The writer then selects
appropriate behavior patterns that generate scripting code for NPCs in the story. For
example, in a tavern scene, behavior patterns for customers, servers and the owner
would be used to generate all the scripting code to make the tavern come alive.

We showed that ScriptEase is usable by non-programmers, by integrating it into a
Grade 10 English curriculum [4]. The version of ScriptEase that was used had a rich
set of patterns for supporting interactions between the PC and inanimate objects such
as doors, props and triggers. It also had limited support for plot and dialogue patterns
(the subject of on-going work). In this paper, we describe how we have extended the
generative pattern approach of ScriptEase to support the ambient behaviors of NPCs.

NPC interactions require concurrency control to ensure that neither deadlock nor
indefinite postponement can occur, and to ensure that interactions are realistic. We
constructed an NPC interaction concurrency model and built generative patterns for it.
We used these patterns to generate all of the scripting code for a tavern scene to illus-
trate how easy it is to use behavior patterns to create complex NPC interactions. The
ambient background includes customers, servers and an owner going about their busi-
ness but, most importantly, interacting with each other in a natural way. In this paper,
we describe our novel approach to NPC ambient behaviors. It is the first time patterns
have been used to generate behavior scripts for computer games. The research makes
three key contributions: 1) rich backgrounds populated with interacting NPCs with
realistic ambient behaviors are easy to create with the right model, 2) pattern-based
programming is a powerful tool and 3) our model and patterns can be used to generate
code for a real game (NWN). We also show that the patterns used for creating the
tavern scene can be reused for other types of NPC interactions. Finally, we show how
ambient behavior patterns are used to easily and quickly regenerate and improve all of
the behaviors of all ambient NPCs in the NWN Prelude.

2 Defining, Using, and Evaluating Ambient Behavior Patterns

A standard CRPG tavern scene can be used to demonstrate ambient behavior patterns.
We focus on three ambient behavior patterns from this scene: owner, server, and
customer. More complex behaviors could be defined, but these three behaviors al-
ready generate more complex behavior interactions than most NPCs display in most
CRPGs. In this section, we describe the basic behaviors generated for these patterns,
how a story writer would use the patterns and how the patterns were evaluated.

Each pattern is defined by a set of behaviors and two control models that select the
most appropriate behavior at any given time. In general, a behavior can be used pro-
actively (P) in a spontaneous manner or reactively (R) in response to another behav-
ior. Table 1 lists all of the behaviors used in the tavern. Some behaviors are used
independently by a single NPC. For example, posing and returning to the original
scene location are independent behaviors. This paper addresses only high-level be-
haviors, since the NWN game engine solves low-level problems. For example, if the
original location is occupied by another creature when an NPC tries to return, the

3

game engine moves the NPC as close as possible. Subsequent return behaviors may
allow the NPC to return to its original location. Behaviors that involve more than one
NPC are collaborative (joint) behaviors. For example, an offer involves two NPCs,
one to make the offer and one to accept/reject it. The first column of Table 1 indicates
whether a proactive behavior is independent or collaborative. Note that interactions
with the PC are not considered ambient behaviors and they are not discussed in this
paper. The most novel and challenging ambient behaviors are the ones that use behav-
iors collaboratively (interacting NPCs). The second column lists the proactive behav-
iors. The letters in parentheses indicate which kind of NPC can initiate the proactive
behavior. For a collaborative behavior, the kind of collaborator is given as part of the
behavior name, e.g., the “approach random C” behavior can be initiated by a server or
customer (S, C) and the collaborator is a random customer (C).

Table 1. Behaviors in the Server (S), Customer (C), and Owner (O) Patterns

Behavior Type Proactive Behavior Reactive Chains
pose (S, C, O) pose, done
return (C, O) return, done
approach bar (S, C) approach, done

Independent

fetch (O) fetch, done
approach random C (S, C) approach, done
talk to nearest C (C) speak, speak, converse*
converse with nearest C (C) (speak, speak)+ done
ask-fetch nearest S (C, O) speak, fetch, receive, speak, done
ask-give O (C) speak, give, receive, speak, done
offer-give to nearest C (O) speak, decide, ask-give*; (accept)

speak, decide, speak, done (reject)

Collaborative

offer-fetch to nearest C (S) speak, decide, ask-fetch*; (accept)
speak, decide, speak, done (reject)

The third column of Table 1 shows the reactive chains for each proactive behavior.

For example, the ask-fetch proactive behavior generates a reactive chain where the
initiator speaks (choosing an appropriate one-liner randomly from a conversation
file), the collaborator fetches (goes to the supply room while speaking), the initiator
receives something, the collaborator speaks and the done behavior terminates the
chain. Each reactive chain ends in a done behavior, unless another chain is reused
(denoted by an asterisk such as converse* in the talk behavior). Each behavior con-
sists of several actions. For example, a speak behavior consists of facing a partner,
pausing, performing a speech animation and uttering the text. A ()+ indicates that the
parenthesized behaviors are repeated one or more (random) times. For example, the
converse proactive behavior starts a reactive chain with one or more speak behaviors,
alternating between two characters. The talk proactive behavior starts a reactive chain
with a speak behavior (a greeting) for each interlocutor, followed by a converse be-
havior. The offer-give (owner offers a drink) and offer-fetch (server offers to fetch a
drink) proactive behaviors each have two different reactive chains (shown in Table 1)
depending on whether the collaborator decides to accept or reject the offer.

The writer uses the Aurora toolset to construct the tavern area, populate it with cus-
tomers, servers and an owner, and saves the area in a module. The writer then opens

4

the module in ScriptEase and performs three kinds of actions. First, create some in-
stances of the server, customer and owner patterns by selecting the patterns from a
menu and then binding each instance to an appropriate NPC. Second, bind the options
of each pattern instance to game objects and/or values. Fig. 2 shows how to set op-
tions (gray tabs in the left pane) for the server NPC. The center pane shows how the
Actor option is bound to a Server NPC, created in the Aurora toolset. The right
pane shows how to (optionally) change the relative default proactive behavior chances
described in Section 3. The spin chances do not need to add to 100 – they are auto-
matically normalized. Third, select the “Save and Compile” menu command to gener-
ate 3,107 lines of NWScript code (for the entire tavern scene) that could be edited in
the Aurora toolset if desired. The simplicity of the process hides the fact that a large
amount of scripting code is generated to model complex interactive behaviors.

Fig. 1. Using ScriptEase ambient behavior patterns for a tavern scene

The behavior patterns are easy to use - creating and testing a tavern scene in NWN
required less than half an hour. The generated code is efficient, producing ambient
behaviors that are crisp and responsive, with no perceptible effect on response time
for PC movement and actions. The NPCs interacted with each other flawlessly with
natural movements. A scene with ten customers, two servers and an owner was left to
play for hours without any deadlock, degradation in performance, repetition or indefi-
nite postponement of behaviors for any actor. Since the effectiveness and perform-
ance of ambient behaviors is best evaluated visually, we illustrate our approach using
a series of movies captured from actual game-play [19]. These patterns were designed
for a tavern scene. However, they are general enough to generate scripts for other
scenes. For example, in a house scene, the customer pattern can be used for the in-
habitants, the server pattern for a butler, and the owner pattern for a cook. The butler
interacts with the inhabitants, fetching for them by going to the kitchen. The inhabi-
tants talk amongst themselves and the cook occasionally fetches supplies. Our ap-
proach handles group (crowd) behaviors in a natural way. The customers constitute an
example of a crowd – a group of characters with the same behavior, but each selecting
different behaviors based on local context.

5

To determine the range of CRPG ambient behaviors that can be accommodated by
patterns, we conducted a case study for the Prelude of the NWN official campaign,
directed at both independent and collaborative behaviors. The original code used ad-
hoc scripts to simulate collaborative behaviors. We removed all of the manually
scripted NPC behaviors and replaced them with behaviors generated from patterns.
Six new ambient behavior patterns were identified: Poser, Bystander, Speaker, Duet,
Striker, and Expert. These patterns were sufficient to generate all of the NPC ambient
behavior scripts. Further evidence of the generality of ambient behavior patterns will
require a case study that replaces behaviors in other game genres as well. There is no
reason why a soccer or hockey goaltender could not be provided with entertaining
ambient behaviors to exhibit when the ball (puck) is in the other end of play, such as
standing on one leg, stretching, leaning against a goal post, or trying to quiet the
crowd with a gesture. For example, one of the criticisms for EA FIFA 04 was directed
to the goalie’s behavior [18] and will be addressed in the announced EA FIFA 06 [8].

3 Creating New Ambient Behavior Patterns

To create new behavior patterns or adapt existing behavior patterns, one must look
one level below the pattern layer at how the patterns are constructed from basic be-
haviors. A pattern designer can compose reusable basic behaviors to create a new
behavior pattern or add basic behaviors to existing patterns, without writing any
scripts. It is easy to mix/combine behaviors. There are two more levels below the
pattern construction layer – the concurrency control and the script layers.

Each behavior pattern includes a proactive model and a reactive model. The proac-
tive model selects a proactive behavior based on probabilities. This simplest proactive
model uses static probabilities assigned by the writer. For example, the server pattern
consists of the proactive behaviors approach a random customer, approach the bar,
offer-fetch a drink to the nearest customer and pose. In this case, a static probability
distribution function [.10, .05, .03, .82] could be used to select one of these behaviors
for each proactive event. The left pane of Fig. 2 shows the proactive model for the
server. The reactive model specifies a reactive chain for each proactive behavior. For
example, the right pane of Fig. 2 shows the reactive chain for the server’s offer-fetch
proactive behavior listed in Table 1. Each reactive behavior fires an event that triggers
the next reactive behavior until a done behavior signals the end of the reactive chain.
The circle identifies the actor that performs the behavior (S, server; C, customer).
Other options, such as what is spoken, have been removed from the diagram for clar-
ity. Each of the other three proactive behaviors for the server (approach bar, ap-
proach customer, and pose) has a reactive chain that consists of a single behavior
followed by a done behavior, as listed in Table 1.

A behavior can use selection to choose between multiple possible following behav-
iors. For example, the decide behavior can fire either one of two speak events based
on the customer’s drink wishes. A loop can be formed when a behavior later in the
chain fires an event earlier in the chain. Loop termination can result from using selec-
tion to exit the loop. In general, the reactive model could be a cyclic graph, providing
complete expressive power. For ambient behaviors, loops do not appear to be neces-

6

sary – reactive chains (with decision points) seem to be sufficient. For non-ambient
behaviors, these loops may be necessary. Each proactive behavior that has reactive
components serves as an entry point into the reactive model. The simplicity of the
reactive model hides a necessarily complex concurrency model underneath (described
in Section 4). The basic behaviors we created for the tavern scene (speak, decide,
receive etc.) provide sufficient reusable components to create other ambient behavior
patterns. However, it is easy to create new reusable basic behaviors as well. A new
basic behavior is a series of simple ScriptEase actions, such as move to a loca-
tion/object or face a direction. If no new basic behaviors are required, a new behavior
pattern can be constructed in about an hour. Each new basic behavior could also take
about an hour to complete. Once made, basic behaviors can be reused in many behav-
ior patterns and behavior patterns can be reused in many stories. ScriptEase contains a
pattern builder that allows a pattern designer to create new encounter patterns. We
have added support to it for building basic behaviors and ambient behavior patterns.

Fig. 2. The proactive model and a reactive chain for the Server pattern’s offer-fetch behavior

Our proactive model also supports complex decisions, based on motivation or con-
text so that it can be used for NPCs that are more important to the story. In each case,
the probabilities for each proactive behavior are dynamic, based on either the current
motivations (state of the NPC) or the context (state of the world). However, in this
paper we focus on a static probabilistic proactive model – most NPC “extras” do not
need motivational models to control their ambient behaviors.

4 The Concurrency Control Model

Concurrency models have been studied extensively for general-purpose computing. A
description of the difficulties in building a concurrency model for interacting NPCs is
beyond the scope of this paper. However, we raise a few points to indicate the diffi-
culty of this problem. First, synchronization between actors is essential so that an
actor completes all of the actions for an event before the next event is fired. For ex-
ample, the server should not fetch a drink before the customer has decided whether to

7

order a drink or not. Second, deadlock must be avoided so a pair of actors does not
wait forever for each other to perform a behavior in a reactive chain. Third, indefinite
postponement must be avoided or some behaviors will not be performed.

Our concurrency control mechanism is invisible to the story writer and is only par-
tially visible to the pattern designer. It has proactive and reactive components that use
proactive and reactive events respectively (user-defined events are used in NWN).
The proactive model has a proactive controller. When the PC enters an area, the con-
troller triggers a register proactive event on each NPC within a range of the PC.
There is no need to control ambient behaviors in areas not visible to the user, since
doing so slows down game response. In games such as Fable, NPCs uphold their daily
routine whether the user can see them or not. Computational shortcuts are needed to
minimize the overhead. On each NPC, the registering proactive event triggers a spin
behavior that, in turn, fires a single proactive event (for instance, offer-fetch) as a
result of a probabilistic choice among all the proactive behaviors that the actor could
initiate. The selected proactive event (offer-fetch) fires a single reactive event that
corresponds to the first behavior in the reactive chain (speak). To follow the chain
properly, each behavior event (proactive or reactive) has one additional string pa-
rameter called the context. As its last action, the basic behavior for each event (except
decide and done) fires a reactive event with this context as a parameter. The pattern
designer creates a reactive chain by providing suitable context values in the correct
order for the desired chain. For example, to construct the ask-fetch chain from Table
1, the designer provides the context parameters: “speak”, “fetch”, “receive”, “speak”,
“done”. The decide behavior returns its context parameter with either “-yes” or “-no”
appended so the reactive event can select the next appropriate event.

This reactive control model ensures synchronization in a single chain by prevent-
ing an actor from starting a behavior before the previous behavior is done. However,
it does not prevent synchronization problems due to multiple chains. For example,
suppose the server begins the reactive chain for the offer-fetch proactive behavior
shown in Fig. 1 by speaking a drink offer, and suppose the owner starts a proactive
ask-fetch behavior to send the server to the supply room. The server will receive
events from both its own reactive offer-fetch chain and the owner’s reactive ask-fetch
chain in an interleaved manner that violates synchronization.

To ensure synchronization, we introduced an eye-contact protocol that ensures
both actors agree to participate in a collaborative reactive chain before the chain is
started. Actor1 suspends all proactive events and tries to make eye-contact with actor2.
If actor2 is involved in a reactive chain, actor2 denies eye-contact by restarting actor1’s
proactive events. If actor2 is not involved in a reactive chain, actor2 sends a reactive
event to actor1 to start the appropriate reactive chain. This protocol cannot be imple-
mented with events alone, so we use state variables of the actors.

We use another mechanism to eliminate deadlock and indefinite postponement. Ei-
ther of these situations can arise in the following way. First, an eye-contact is estab-
lished with an actor, so that the proactive controller does not generate another proac-
tive event. Second, at the conclusion of the reactive chain started by the eye-contact,
the actor is not re-registered to generate a new proactive event. Not only will this
actor wait forever, but the other actor in the collaborative reactive chain can wait
forever as well. One way for this situation to occur is for a script to clear all of the
actions in an actor’s action queue, including an expected action to fire an event in the

8

reactive chain. In this case, the reactive chain is broken and the proactive controller
will never generate another proactive event for the NPC. For example an NPC’s ac-
tion queue is cleared if the user clicks on an NPC to start a conversation between the
PC and the NPC. Our solution uses a heartbeat event to increment a counter for every
NPC and to check whether the counter has reached a specific value. The game engine
fires a heartbeat event every 6 seconds. If the counter reaches a threshold value, that
NPC’s ambient proactive controller is restarted. The counter is reset to zero every
time an event is performed by the NPC, so as long as the NPC is performing events
(not deadlocked) no restart will occur. Neither the story writer nor the pattern de-
signer need be aware of these transparent concurrency control mechanisms.

We have recently added a perceptive model to our system. The perceptive model
allows NPCs to be aware of the PC’s presence and act accordingly. When an NPC
who is performing its proactive/reactive behaviors perceives the PC, the NPC’s action
queue is cleared, proactive behavior generation is suspended, and the NPC performs
an appropriate perceptive behavior. After the perceptive behavior is completed, proac-
tive behavior generation resumes. This model allows NPC behaviors to be interrupted
and it also supports NPC-PC interactions in addition to NPC-NPC collaborations. The
success of this exercise has shown the robustness and flexibility of our proactive and
reactive models, and of the underlying concurrency control mechanism.

5 Conclusion

We described a model for representing NPC ambient behaviors using generative pat-
terns that solves the difficult problem of interacting NPCs. We implemented this
model in the NWN game using ScriptEase generative patterns. We are building a
common library of rich ambient behavior patterns for use and reuse across CRPGs.
Our next goals are to develop patterns that support NPCs that are more central to the
plot of the game and NPCs that act as henchmen for the PC. Each of these goals in-
volves escalating challenges, but we have constructed our ambient behavior model
with these challenges in mind. For example, the model supports the non-deterministic
selection of behavior actions based on game state. For ambient behaviors this ap-
proach can be used with a static probability function to eliminate repetitive behaviors
that are boring to the player. For non-ambient behaviors these probabilities can be
dynamic and motivation-based for more challenging opponents and allies. We have
constructed a synchronization model that is scalable to the more complex interactions
that can take place between major NPCs and between these NPCs and the PC. We
demonstrated our approach using a real commercial application, BioWare Corp.'s
Neverwinter Nights game. However, our model could have a broader application
domain that includes other kinds of computer games, synthetic performance, autono-
mous agents in virtual worlds, and animation of interactive objects.

Acknowledgements: This research was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), the Institute for Robotics and Intelli-
gent Systems (IRIS), and Alberta’s Informatics Circle of Research Excellence
(iCORE). We are grateful to our anonymous reviewers for their valuable feedback.

9

References

1. Badler, N., Webber, B., Becket, W., Geib, C., Moore, M., Pelachaud, C., Reich, B., and
Stone, M.: Planning and Parallel Transition Networks: Animation's New Frontiers. In Com-
puter Graphics and Applications: Pacific Graphics '95 (1995) 101-117

2. Caicedo, A., Thalmann, D.: Virtual Humanoids: Let Them Be Autonomous without Losing
Control. In the 4th Conference on Computer Graphics and Artificial Intelligence (2000)

3. Capin, T.K., Pandzic, I.S., Noser, H., Thalmann, N. M., and Thalmann, D.: Virtual Human
Representation and Communication in VLNET. IEEE Computer Graphics and Applications.
17(2) (1997) 42-53

4. Carbonaro, M., Cutumisu, M., McNaughton, M., Onuczko, C., Roy, T., Schaeffer, J., Sza-
fron, D., Gillis, S., Kratchmer, S.: Interactive Story Writing in the Classroom: Using Com-
puter Games. In Proceedings of the International Digital Games Research Conference (Di-
GRA 2005). Vancouver, Canada (2005) 323-338

5. Cavazza, M., Charles, F. and Mead, S.J.: Interacting with Virtual Characters in Interactive
Storytelling. In ACM Joint Conference on Autonomous Agents and Multi-Agent Systems.
Bologna, Italy (2002) 318-325

6. Charles, F. and Cavazza, M.: Exploring the Scalability of Character-based Storytelling. In
ACM Joint Conference on Autonomous Agents and Multi-Agent Systems (2004) 872-879

7. Mateas, M. and Stern, A.: Façade: An Experiment in Building a Fully-Realized Interactive
Drama. Game Developers Conference (GDC 2003), Game Design Track (2003)

8. GameSpot EA FIFA Soccer 2006: http://www.gamespot.com/xbox360/sports/fifa2006/
preview_6125667.html

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, MA, Addison-Wesley (1994)

10. Grosz, B. and Kraus, S.: Collaborative Plans for Complex Group Actions. Artificial Intelli-
gence. 86 (1996) 269 -358

11. Isla, D.: Handling Complexity in the Halo 2 AI. Game Developers Conference (GDC 2005)
12. McNaughton, M., Cutumisu, M., Szafron, D., Schaeffer, J., Redford, J., Parker, D.: Script-

Ease: Generative Design Patterns for Computer Role-Playing Games. In Proceedings of the
19th IEEE Conference on Automated Software Engineering (ASE 2004) 88-99

13. McNaughton, M., Redford, J., Schaeffer, J. and Szafron, D.: Pattern-based AI Scripting
using ScriptEase. In Proceedings of the 16th Canadian Conference on Artificial Intelligence
(AI 2003). Halifax, Canada (2003) 35-49

14. Musse, S. R., Babski, C., Capin, T. K., and Thalmann, D.: Crowd Modelling in Collabora-
tive Virtual Environments. In Proceedings of ACM Symposium on VRST (1998) 115-123

15. Neverwinter Nights: http://nwn.bioware.com
16. Perlin, K. and Goldberg, A.: Improv: A System for Scripting Interactive Actors in Virtual

Worlds. In Proceedings of SIGGRAPH 96. New York. 29(3) (1996) 205-216
17. Poiker, F.: Creating Scripting Languages for Non-programmers. AI Game Programming

Wisdom. Charles River Media (2002) 520-529
18. Review Amazon, EA FIFA Soccer 2004: http://www.amazon.com/exec/obidos/tg/detail/-

/B00009V3KK/104-2888679-3521549?v=glance
19. ScriptEase (2005): http://www.cs.ualberta.ca/~script/scriptease.html
20. Valdes, R.: In the Mind of the Enemy: The Artificial Intelligence of Halo 2 (2004):

http://stuffo.howstuffworks.com/halo2-ai.htm
21. Young, R. M.: An Overview of the Mimesis Architecture: Integrating Intelligent Narrative

Control into an Existing Game Environment. In AAAI Spring Symposium on Artificial In-
telligence and Interactive Entertainment, USA (2001)

10

