
Generative Design Patterns

S. MacDonald, D. Szafron, J. Schaeffer, J. Anvik, S. Bromling and K. Tan
Department of Computing Science, University of Alberta, Edmonton, AB T6G 2H1, Canada

{stevem, duane, jonathan, janvik, bromling, cavalier}@cs.ualberta.ca

Abstract
A design pattern encapsulates the knowledge of

object-oriented designers into re-usable artifacts. A
design pattern is a descriptive device that fosters
software design re-use. There are several reasons why
design patterns are not used as generative constructs that
support code re-use. The first reason is that design
patterns describe a set of solutions to a family of related
design problems and it is difficult to generate a single
body of code that adequately solves each problem in the
family. A second reason is that it is difficult to construct
and edit generative design patterns. A third major
impediment is the lack of a tool-independent
representation. A common representation could lead to a
shared repository to make more patterns available. In
this paper we describe a new approach to generative
design patterns that solves these three difficult problems.
We illustrate this approach using tools called CO2P2S
and Meta-CO2P2S, but our approach is tool-independent.

Keywords: design patterns, frameworks, programming
tools.

1. Introduction
The most common form of a design pattern is a

descriptive one such as a pattern catalogue entry or a Web
page. This form preserves the instructional nature of
patterns, as a cache of known solutions to recurring
design problems. Design patterns provide a common
design lexicon, and communicate both the structure of a
design and the reasoning behind it [2].

We use the well-known Composite design pattern as an
example [10]. Figure 1 shows how this design pattern
maintains part–whole object hierarchies, where individual
parts and compositions of parts are treated uniformly. It
supports hierarchy traversal operations. A leaf class
instance implements each traversal as a local operation on
itself. An composite instance implements the traversal as
an optional local operation on itself, together with calls
that apply that same operation to each of its child objects.
Each child may be a leaf instance or another composite.
There are also a set of child management operations like
add(Component) and remove(Component).

Figure 1. The Composite design pattern.

In addition to a diagram like Figure 1, the design
pattern documentation usually contains a description of
the pattern that consists of eleven parts: intent,
motivation, applicability, structure, participants,
collaborations, consequences, implementation, sample
code, known uses and related patterns [10]. There are
many variations of this pattern, but in this paper we are
using the pattern as defined in [10] since that is the most
common version. In Section 4.5 we show another version
of this pattern as an example of pattern evolution.

During application design, each pattern must be
adapted for use, since each pattern is a family of
solutions. Each family member has the same basic
structure but must be adapted to its specific context. For
example, if a Composite pattern is used for drawing, then
particular leaf and composite classes must be identified.
Perhaps the leaf classes are Line and Circle, while the
composite classes are Group (an arbitrary collection of
other components) and Quadrilateral (a specific
collection of four lines). Some specific methods must
also be identified during adaptation. For example, there
may be two traversal operations:
draw(GraphicsContext) and boundingBox().

During the implementation process, the adapted design
pattern is a specification. Experienced programmers can
quickly transform the specification into code since they
have probably implemented the Composite pattern many
times. For novice programmers, the process of coding the
design pattern is more difficult and error-prone. This is

Component

operation(…)
[add(Component)]

[remove(Component)]

client

Leaf

operation(…)

Composite

operation(…)
add(Component)

remove(Component)

for each c in children
 c.operation(…)

partly due to the fact that design patterns are written
documents that are subject to human interpretation. This
makes them vulnerable to the ambiguities in natural
language. An incorrect interpretation of a pattern can lead
to an incorrect implementation. It would be beneficial to
use generative design patterns that generate code. They
reduce implementation time, are less prone to programmer
error, promote rapid prototyping and code reuse, support
performance tuning, and provide better overall software
engineering benefits.

1.1 Generative design pattern problems
Unfortunately, there are several problems that must be

solved to make design patterns generative. The first
problem is related to design pattern adaptation and the
interplay between adaptation and code generation. There
are three choices for when to generate code: before
adaptation, during adaptation, or after adaptation.

First, consider code generation before adaptation. Since
a design pattern represents a broad solution family, the
generated code will be quite complex and quite generic.
There are several ways of dealing with the complexity.
First, the generated code could be a framework so that
adaptation is done by framework specialization [11].
However, most design patterns represent families of
solutions whose structures cannot be adequately
represented by a static framework.

As an example, consider the name and arguments of
the traversal operations in the Composite pattern. One
program may require draw(GraphicsContext), while
another program may require containsPoint(Point). A
static framework cannot meet these conflicting
requirements unless the traversal code is not included in
the framework. This defeats the purpose of generating the
code from the design pattern. Un-adapted design pattern
code is too complex to represent by a static framework.
The complexity can sometimes be mitigated by a
mechanism that supports cross-cutting. For example, the
names and parameter lists of the traversal operations could
be generated using aspect-oriented programming (AOP)
[12]. In this case the names and signatures could be
weaved with a generic framework to produce the final
framework code. However, this is just an example of
generating code during adaptation.

In fact, there are many situations when cross-cutting
cannot compensate for generating code too early. For
example, in the Composite pattern, there is a choice
(safety or transparency) about where to declare the child
management operations. In the safe implementation, they
are declared in the composite class. Applying these
operations to a leaf class instance results in a compile-
time error. The disadvantage is that you must query a
component to get its type or perform an unsafe type-cast
before you apply a child management operation. In the
transparent implementation, child management operations
are declared in the component class. In this case, you can
apply them on any components without type testing or

casting. The disadvantage is that you must implement the
operations in the leaf classes. You might implement these
operations to do nothing for a leaf instance. However, in
this case, trying to apply one of these operations to a leaf
class instance might signal a logic error that you would
miss. The important point is that it is impossible to
generate a single static framework that will be adaptive to
both choices: safety or transparency.

When code is generated before adaptation, there can be
a genericity problem. Design patterns try to introduce
flexibility to support application evolution that is often
called “designing for change” [10]. This flexibility is
usually achieved by adding indirection between objects.
Unfortunately, this approach requires more code to be
written and maintained and the indirection can reduce
performance. In effect, the indiscriminant use of patterns
can result in a slower application [17]. For example, we
may not want to use the same kind of implementation for
our Quadrilateral and Group classes. We can avoid
indirection in our Quadrilateral class by using four
Line instance variables.

In summary, it is very difficult to generate code before
adaptation that is general for all of the problems the
pattern is designed to solve. If this problem could be
solved, the code would often be too complex and often
too generic to achieve good performance.

Second, consider code generation after adaptation,
which can generate simple efficient code. Unfortunately,
during adaptation, the pattern quickly gathers application-
specific characteristics. For example, the identification of
a draw(GraphicsContext) during pattern adaptation
means that if code is generated after this adaptation, the
generated code is only applicable to applications similar
to our graphics application. This approach leads to an
explosion of specialized versions of each pattern or the
situation where we need a version that is slightly different
than the available versions and we don't have it.

The third approach is to generate code during
adaptation. In general, there can be an arbitrary number of
adaptation and code generation cycles. However, we are
interested in the simplest process that provides usable
results. Therefore we propose (and have created) a simple
three-phase process consisting of: initial adaptation, code
generation and final adaptation. The initial adaptation
phase adapts the design pattern to a single structural and
control flow model suitable for the application. The code
generation phase generates a framework for this
architecture and the final adaptation phase performs
standard specialization operations on the framework to
adapt it to the final application domain. This approach
solves the problem that frameworks cannot be easily
adapted to support different structures or control flows,
while maintaining the advantage that framework
specialization is a good technique for specializing code for
specific applications. A framework is the most popular
adaptation technique that can be used after code
generation. Other popular adaptation techniques (such as
AOP) occur before code generation.

1.2 Parameterized design patterns
Published descriptive design patterns include lists of

participants, implementation issues and sample code.
These three parts of the pattern are used most when
implementing a design pattern manually. However, they
are not sufficient for generative design patterns. The key
novel contributions of our research efforts is to quantify
each adaptation option as a parameter with a fixed set of
possible values that must be set during the initial
adaptation process. There have been several efforts to
produce generative design patterns. Some of these
approaches are ad-hoc and some use more structured
approaches [4][6][7][8][9][19]. However, our approach is
new. Each descriptive design pattern is transformed into a
generative design pattern using quantitative parameters
with specific domains. We have discovered that although
the specific parameters vary from design pattern to design
pattern, the parameters can be classified into a few distinct
types. After this initial adaptation, our approach has the
flexibility of further adaptation by specializing a
framework that still spans many application choices.

 In this paper we show that our approach is viable by
describing solutions to these three important problems:
1. Generative design patterns are conceptually complex.
However, with good abstractions, a well-defined process,
and proper tool support, the difficulties can be managed.
Each design pattern must be analyzed to identify specific
adaptation parameters. Then, the legal values of these
adaptation parameters must be specified and code must be
written that implements each combination of legal values.
Since the number of combinations is exponential in the
number of parameters, tool support is essential.
2. Generative design patterns must be adapted by the
pattern user, and this is conceptually complex. Once
again, the right abstraction, a well-defined process, and
tool support are required. Tool support should help the
user assign legal values for each design pattern parameter,
generate code based on these parameter values, and
support specialization of the generated framework code.
3. If only a few generative design patterns exist, few
people will use them. A standard tool-independent
representation is necessary to foster sharing and to
encourage the construction of generative pattern

repositories. However, due to the wide variability of
application requirements, generative design patterns must
be living entities.

In this paper, we present a solution to these three
problems. Our approach to generative design patterns is
independent of programming language and tools.
However, to validate our process we have implemented
two support tools, CO2P2S (Correct Object-Oriented
Pattern-based Programming System - www.cs.ualberta.ca
/~systems/cops) [1][13][14] and Meta-CO2P2S [5].
CO2P2S is used to adapt design patterns and generate
framework code for use in specific applications. The
complete process takes three steps. First, the user selects
an appropriate generative design pattern from a set of
supported patterns. Second, the user adapts this pattern
for their application by providing parameter values.
Finally, the adapted generative pattern is used to create
object-oriented framework code for the chosen pattern
structure. Meta-CO2P2S is used to create new generative
design patterns, to generate tool-independent
representations and to edit and evolve existing design
patterns. Figure 2 shows the specialization flow, from
generative design pattern to final application code.

Section 2 describes our process for generative design
pattern adaptation using the Composite pattern as an
example. Section 3 describes our solution to the difficult
problem of constructing generative design patterns.
Section 4 looks "under the covers" at the tool-independent
representation that is generated during the generative
design pattern construction process described in Section
3. Section 5 summarizes the paper. One of the important
challenges of our approach is to manage the evolution of
generative design patterns, especially the tension between
genericity and simplicity.

2. Design pattern adaptation - parameters
In this section we describe a new view of generative

design patterns that is parameter-based. We use the
Composite pattern as an example pattern because it is
well-known and has a variety of parameters. We also use
the CO2P2S tool as an example of an adaptation and
generation tool. The specific pattern and tool are not as
important as the idea of parameterized patterns.

Figure 2. Patterns to frameworks to applications.

Generative Pattern
Description

Graphical
Representation

Parameter
Descriptions

Source Code
Template

Generative
Pattern

Generator

Graphical
Display

User-supplied
Parameter Values

Application-specific
Code

Generative
Pattern

Code
Generator

Framework
Code

Structural
Code

Hook
Methods

2.1 Parameters for the Composite pattern
The Composite design pattern has seven parameters.

The parameters are divided into four categories, lexical
parameters, design parameters, performance parameters
and verification parameters. A lexical parameter is used
to specify a class name, method name or some other
syntactic structure in the generated framework. A design
parameter affects the structure of the generated
framework. A performance parameter only affects the
performance of the generated code. When a verification
parameter is turned on, the generated code performs run-
time semantic checks on user-supplied code. When it is
off, no verification code is generated. The Composite
pattern has four lexical parameters, two design parameters
and one performance parameter:
1. (lexical) The name for the abstract component class in
the generated framework, called component name.
2. (lexical) The name for the abstract composite class in
the generated framework, called composite name.
3. (lexical) The name for the abstract leaf class in the
generated framework, called leaf name.
4. (lexical) A name for the pattern superclass, called
superclass name.
5. (design) The location of the child management
operations – safe versus transparent, called safe-
transparent.
6. (design) A traversal list, called operation list.
7. (performance) The types of containers used, called
containers.

Each parameter has a name so that it can be referenced
and a type that specifies its legal domain of values.
Although the parameter names are pattern-specific, the
types are re-used across patterns. We use the simple
drawing application from Section 1 to illustrate
parameters and parameter value selection. Assume we
want to generate a framework that supports an operation
draw(GraphicsContext), that draws any component on
a GraphicsContext, and an operation boundingBox()
that returns a Rectangle that bounds an arbitrary
component. To make the framework more realistic (and
challenging), we assume that when a composite instance
draws itself, it must first draw a background and then
draw each of its components. We assume that we will
need at least two application leaf classes: Line and
Circle. We will also need at least two composite classes:
Group and Quadrilateral. A Group can contain an
arbitrary collection of components. A Quadrilateral is
a specific collection of four Lines.

The user controls the names of the abstract classes in
the composite pattern of Figure 1, by supplying values
for the component name, composite name and leaf name
parameters of type Class Name. For example, the user
might use the names: DrawingComponent,
ListComposite and DrawingLeaf. The user also enters
an arbitrary superclass name for the component class.
This facility is necessary to support general composition

of generated framework code. If no superclass is required,
the user can enter Object. In this paper, we will use Java
as an example target language. If C++ was the target
language, an empty superclass name could be used.

The design parameter, safe-transparent, has parameter
type Enumeration. Each Enumeration parameter has a
small set of legal values. In this case, there are two
values: safe and transparent. If the safe value is selected,
the child management operations are generated in the
composite class. If the transparent value is selected, the
child management operations are also generated in the
component class.

The sixth pattern parameter is used to select all of the
traversal operations that are generated for the pattern. The
operation list parameter has type List. In general, a List
parameter is a list of parameters of arbitrary type. In this
case, each parameter in the list represents a traversal
operation. For a List parameter, the user can add as many
elements to the List as necessary. In our example, the list
has size two since we must generate two traversal
operations. Each list element in the operation list has
type Structure. A Structure parameter has a fixed number
of sub-parameters. In this case, each operation list
element must represent all of the information necessary to
generate code for one traversal operation.

To define the structure of each operation list element,
we must look at what kind of information it must
specify. In some composite applications, it is necessary to
perform a computation in each composite instance, in
addition to delegating the traversal operation to its child
instances. In general, this composite action may occur
before or after the child instances are traversed. For
example, in our draw(GraphicsContext) method, a
composite instance must draw a background before calling
the draw(GraphicsContext) method on each of its
children to draw the foreground. This is an example of a
prefix method since it is called before traversing the child
instances. As a second example, consider our
boundingBox() method. Each composite instance must
invoke this method on each of its children and then use
the results to construct a bounding box from all of the
Rectangle objects that are returned from the children.
Such a method is called a suffix method and it takes as an
argument an array of the results of the traversal operation
that has been applied to its children.

Each element in the operation list must specify the
signature of the operation method, whether the operation
has a prefix method or not and whether the operation has
a suffix method or not. If the operation has a prefix
method, the name must be specified. The signature of the
prefix method will be the same as the operation method
that calls it. For example, the user will specify that the
draw operation has method signature void

draw(GraphicsContext gc), that it has a prefix method
and that it does not have a suffix method. The user will
specify that the prefix method is called
"drawBackground". The signature of the prefix method
will be void drawBackground(GraphicsContext gc).

If the operation has a suffix method, the name of the
suffix method must be specified. The signature of the
suffix method will include all of the parameters of the
operation method that calls it, plus an array of the return
values of the operation method applied to the children.
So, in our example, the user will also specify that the
boundingBox operation has method signature Rectangle
boundingBox(), that it has no prefix method and that it
has a suffix method. The user will specify that the suffix
method is called "computeBoundingBox". The signature
of the suffix method will be generated as Rectangle
computeBoundingBox(Rectangle[] anArray).

 Each element of the operation list has type Structure
and has three sub-parameters. The first sub-parameter,
called operation signature has type Method Signature.
The other two sub-parameters, prefix and suffix, each have
type Structure and share a common structure.

The containers parameter is the only performance
parameter of the Composite pattern. Each composite
object must store its child components in a container. For
example, a vector, array, linked list, or hash table could
be used. The overall structure of the generated code is
independent of the kind of container used and the choice
of container mainly affects the relative performance of the
add(Component), remove(Component) and traversal
methods. However, the choice can have some semantic
consequences as well, since if a hash table is chosen, the
order of elements is arbitrary and a traversal may select
children in any order. Similarly, if an array is chosen, the
number of children has a fixed maximum.

Alternately, to increase performance by reducing
indirections, a fixed number of named instance variables
may be used. This container choice must be made before
code generation, since the code for add(Component),
remove(Component) and the traversal operations is
generated. In fact, the user may want to create application
subclasses for more than one choice. For example, the
Group of drawing objects should be a subclass of a
composite that uses a variable sized container like vector,
linked list or hash table. For efficiency, Quadrilateral
could be a subclass of an abstract composite class that has
four named instance variables.

The containers parameter has type Dictionary. It
supports an arbitrary number of abstract composite
classes, with different names and implementations. Each
key in this Dictionary is an Enumeration value from:
{vector, array, list, hash table, two children, three
children, four children}. The last three choices generate a
fixed number of instance variables. If a fixed number of
children are required that is more than four, then an array
should be used. This Dictionary starts with one entry
whose default key is list and whose value is the value of
the composite name parameter. New entries are added for
each container that is selected from the Enumeration. For
example, in our application the composite name is
ListComposite. Notice that there are two abstract
composite classes, ListComposite to support Group and
FourComposite to support Quadrilateral.

2.2 Tool support for setting parameters
Figure 3 shows a sample CO2P2S screenshot with

parameter values for this drawing application. Tool
support can make the adaptation process straightforward.
The left side of the tool provides a palette of supported
generative design patterns, of which the Composite is one
example. The right side of the tool shows the current state
of the selected pattern. The set of generative patterns in an
application is shown in the center pane. CO2P2S uses
dialog boxes to guide the user through the parameter
value selection process, by constraining user choices. For
example, CO2P2S uses radio buttons for Enumeration
parameters and checks for syntactic correctness of
Identifier parameters after they are entered in a text field.

Figure 3. Composite pattern for the
Drawing application.

The parameter types described in Section 3.1, Class
Name, Method Name, Method Signature, Enumeration,
Boolean, Structure, List and Dictionary, are most of the
types required to implement our current set of supported
design patterns. In fact, as described in Section 3.1, these
parameter types can be expressed in terms of three simple
parameter types: String, Enumeration and List. All
parameter types can be constructed from these three basic
types and a fourth type, called Extended.

After parameter value specification, the adapted design
pattern is used to generate a code framework. This
framework can be further adapted using framework
specialization. For example, the user can create the classes
Line, Circle, Group and Quadrilateral as subclasses
of the abstract classes DrawingLeaf, DrawingLeaf,
DrawingComposite and FourComposite respectively.
The user inherits the code for the two traversal operations
draw(GraphicsContext) and boundingBox() in each of
the composite classes Group and Quadrilateral. The
user must implement each of these methods in the leaf
subclasses Line and Circle. In addition, the user must
implement the drawBackground(GraphicsContext)

prefix method in the Group class to draw whatever
background is desired. The Quadrilateral class can just
inherit the default implementation of
drawBackground(GraphicsContext) which does
nothing. The user must also implement the

computeBoundingBox(Rectangle[]) suffix method in
the Group and Quadrilateral classes. Other leaf and
composite classes can be added by framework
specialization. However, if the user wants another abstract
composite class with a different implementation strategy,
the user will have to edit the adaptation parameters and re-
generate the code. For example, if the user wants to add a
Triangle class as a subclass of an abstract composite
class that has three instance variables, another entry must
be added to the containers Dictionary and the code must
be re-generated. This regeneration will not affect the code
already written in the user's concrete framework
subclasses.

3. Constructing generative patterns
For a new generative design pattern, the designer

begins by defining each parameter and its parameter type.
This information should be stored in a tool independent
representation. In Section 4, we will describe our
proposed XML-based representation. Besides storing
parameter names and types, the representation also
supports information that can be used to generate a
graphical user interface when the pattern is loaded into an
end-user tool that supports pattern users. Patterns and
parameter values can be attributed with labels, images and
layout information.

For example, the CO2P2S tool uses such pattern
attributes to generate a graphical user interface for each
pattern, so that the pattern user can easily set all of the
pattern parameters. The basic CO2P2S environment
includes no patterns. Instead, any generative design
pattern can be loaded into CO2P2S using a simple load
pattern operation from a menu. At this point, the pattern
representation is read and the entire GUI for that pattern is
generated and added to CO2P2S. The new pattern appears
in the palette and all of the dialogs for setting parameter
values are also added. The user is free to add as few or
many patterns to CO2P2S as needed. As new patterns
become available, they can be loaded on demand.

Even though the pattern representation is tool
independent, tool support for parameter definition serves
two fundamental purposes. First, it reduces errors by
providing menu-based choices for legal parameter types
and by automatically generating the details of the storage
format. Second, it supports rapid editing or generalization
of existing generative design patterns. The pattern
designer can load a pattern, browse its parameters and add
new parameters. The CO2P2S tool was first constructed to
support parallel programming. In fact it was called
CO2P3S, where the third "P" stood for Parallel. It began
with several "built-in" patterns. We quickly realized that
adding patterns by hand was too slow and error-prone. We
created the pattern representation and Meta-CO2P2S tool
to support rapid pattern addition.

3.1 Generative pattern parameter types
Generative pattern parameters allow a pattern designer

to customize a pattern and alter the framework code that it
generates. These parameters are a key part of preserving
the idea that our generative patterns are still a family of
solutions that can be applied in a particular context. It
must be possible to adapt the generative pattern to its
intended use.

If we permit the pattern designer to create generative
patterns with arbitrary parameter types, then describing
these parameters will require considerable effort. Instead,
to simplify the description of the generative patterns, we
enumerate the different types of parameters that can be
used. There are three basic parameter types (String,
Enumeration and List), and all other types are derived
from them. Figure 4 is a specialization diagram for these
types.
Each String is a simple legal string value.
An Enumeration is a value from a fixed set of values.
A List handles the common situation where the pattern
user supplies a list of other parameters, which may be of
any type.
An Identifier has a value that is any legal identifier in the
target programming language.
A Class Name is included in each generative pattern.
Pattern users should be able to specify class names in the
generated frameworks so that they are meaningful in the
context of the application. In addition this allows
multiple instances of a pattern in the same application,
without name clashes. All of the generative patterns have
at least one class name that the user provides. Normally,
this is the name of the class that the user must specialize.
The framework class names are derived from this user-
supplied name by adding text to make them unique.
 A Method Name represents the name of a method. It is
especially useful when the rest of the signature is fixed by
the pattern or by previous user choices.
A Boolean is a special case of Enumeration, where the
legal values are true and false.
A Structure deals with the common case where a
parameter consists of a fixed number of sub-parameters.
A Method Signature specifies the name, return type and
argument types of a method. It is a special case of a
Structure parameter since a signature consists of the return
type (Identifier), a Method Name, and an arguments List.
The elements in the arguments List are Structure
parameters with two sub-parameters, an argument type
(Identifier) and an argument name (Identifier). It is
possible to define a separate argument parameter type for
the Java target language. An argument type would be
restricted to a Class Name or a primitive type. It is also
possible to define a return type since it is either an
argument type or void.
A Dictionary maps keys to values for the code generator.
This is particularly useful for multiple selection
parameters, where each selected value must be mapped to
a class name for code in the generated framework.

An Extended parameter supports the case where the
parameter values have an arbitrary form. The pattern
designer must provide extra information for each of these
parameters, such as a way for the pattern user to supply
the parameter value and how different values affect the
generated code.

These parameter types are sufficient to cover a broad
range of generative pattern parameters. Extended
parameters can be used to implement any other parameter
types. In fact, if a new parameter type is needed for a
pattern and it cannot easily be derived from one of the
existing types, it usually starts out with type Extended.
All parameter types except for String, and Enumerated
started as Extended parameters before they were promoted
to named types and derived from existing types.

Figure 4. The specialization hierarchy for
parameter types.

3.2 Framework generation
After a pattern user specifies values for all of the

parameters, the set of values is used to generate object-
oriented framework code. The code generation problem is
a problem of conditional compilation of a code template,
based on the set of parameter values. We need a way to
represent each parameter in the code template and to
transform each parameter to concrete code. The
transformation is based on:
• the parameter definitions for a particular design pattern
like the ones described in Section 2.1.

• the design pattern independent parameter type
definitions listed in Section 3.1,

• and the values of the parameters for a particular design
pattern as described in Section 2.1.

We can enumerate the set of representations and the
potential transformations that must be supported by the
code generator to derive its basic requirements:
• Each String parameter is represented by a String
Placeholder in the source code template. It must be
replaced with its parameter value during code generation.
Sometimes, a transformation directly replaces the String
Placeholder by a user-supplied parameter value.
Sometimes the String Placeholder is constructed from the
user supplied String value. For example, framework class
names that are hidden from the user are derived from the
user-supplied class names by adding additional text that
describes the role of the class in the framework. Identifier,
Class Name and Method Name parameters all map to
String Placeholders.

• Each Enumeration parameter is represented by a Guard
Variable that can be assigned one value from the domain
of the Enumeration parameter. The key requirement for
code generation is that methods, parts of method bodies
and variables can be conditionally generated based on the
value of a Guard Variable. To reduce the complexity of
code generation, conditional generation based on a
combination of values for different Guard Variables
should also be supported. Boolean parameters map to
simple Guard Variables with legal values true and false.

• Each List parameter is represented in the code by a List
Placeholder that indicates its location. As the parameters
in a list are expanded, the code for each parameter in the
list is decorated and concatenated. Note that it is possible
to nest lists. Structure parameters, Method Signature
parameters and Dictionary parameters also map to lists.

• Each Extended parameter has no fixed transformation
technique for code generation. An Extended Placeholder
marks its location in the code template. However, it is an
ad-hoc parameter type for which the pattern designer must
provide custom code generation support. When the
placeholder is encountered during code generation, a
designer-supplied method must be called that returns the
code to be inserted.

3.3 Using Javadoc for code generation
In this Section, we describe a code generator that we

implemented using Javadoc. Although Javadoc does not
directly support all of the types defined in the previous
section, it has sufficient functionality to test our
approach. All types that weren't implemented directly
were implemented using the Extended parameter type.

Javadoc is a tool whose original purpose was to
generate HTML formatted API documentation for Java
classes. Javadoc parses Java source code files. In fact, it
only parses declarations. However, Javadoc also parses
specially formatted comment blocks that:
• start with /**,

• end with */,

• include lines that contain a pre-defined or user-defined
tag name (@identifier) followed by a blank and text,

• are followed on the next line by a class declaration, field
declaration, or method declaration.

For example, Figure 5 shows a Javadoc comment
block that contains two tag names and precedes a method
declaration. The first tag, @param, is a pre-defined tag
name. It is a standard part of Javadoc that is used to
provide a comment for each parameter in a method
declaration. The other tags, @parameter and @editable,
are user-defined tags that we have defined for code
generation purposes (described below).

Javadoc has been extended to support pluggable
Doclets. A Doclet is a Java program that can receive
parsing information from Javadoc. This information
includes declarations and comment blocks and is provided

String

Identifier

Class Name Method Name

ExtendedEnumeration

Boolean

List

Structure

Method Signature

Dictionary

using the Doclet API, which provides access to the
following information for each class: the imported classes
and packages, the package of the class, the class
declaration, and the declarations of the constructors,
methods and fields.

/**
 * Iteration op for a top edge node in a 4 point mesh.
 *
 * @param east the node to the right
 * @param south the node below
 * @param west the node to the left
 * @parameter numNeighbours 4
 * @parameter boundary Non
 * @parameter boundary Horizontal
 * @editable
 */
 public void topEdge(SP_MeshElement east,
 SP_MeshElement south, SP_MeshElement west)
 {
 }

Figure 5. Using javadoc for parameters.
For each declaration, Javadoc also provides the text and

tags from any associated comment block. By defining our
own tags, we can allow the pattern designer to write code
templates in standard Java with all pattern parameter
information either in String Placeholders or encoded in
Javadoc comments. This means that the code templates
are much easier to read and that they can be compiled
with no pre-processing during testing. Our code generator
calls Javadoc and gains access to the parsed information
using a Doclet. Javadoc has been used before for code
generation [16], but in a simpler context.

String Placeholders are represented using the syntax of
Java identifiers, so Javadoc can parse them. Since they
all begin with a distinctive SP_ prefix the Doclet can
recognize them. Since they contain the parameter name,
the Doclet can simply look up the parameter name in the
parameter dictionary and replace them by the parameter
value that is also a Java identifier. For example, Figure 5
shows the String Placeholder, SP_MeshElement that
represents the user-defined class name of a mesh element.
All other representations can be expressed in terms of
Guard Variables, List Placeholders and Extended
Placeholders.

Guard Variables that guard classes, methods or fields
are expressed using the @parameter tag. The declaration
that follows the comment block containing the tag is only
generated if the parameter named in the tag has the value
that follows the parameter name. If generation depends on
one of several acceptable values, then the parameter value
is repeated on separate lines, each with one acceptable
value. If two different parameters must have specific
values for code generation, then each different parameter
should appear on a separate line with its required value.
This allows arbitrary ORing of parameter values for the
same parameter and arbitrary ANDing between different
parameters. For example, Figure 5 shows the first line of
a method that is generated only if the boundary parameter

has the value Non or Horizontal, and the
numNeighbours parameter has the value 4.

List Placeholders and Extended Placeholders are both
supported in Javadoc using the tag @extParameter
followed by the parameter name. For example, consider
the operation list parameter for the Composite pattern.
Code for the operation list must be inserted in two
different locations in the Composite code template. A list
of traversal operation methods must be inserted into the
component class. This list could either consist of abstract
methods, or methods with empty bodies. The same list of
traversal operation methods must be inserted into the
composite class. However, this list must have functioning
method bodies that delegate the operations to the child
objects plus optional calls to prefix and suffix methods,
depending on user-selected parameter values. The pattern
designer will place the same Javadoc tag and parameter
value, @extParameter operationList, into the class
files for the component class and the composite class.
Somehow, Javadoc must expand these two tags into
different code in the two contexts.

The pattern designer must implement a Java class for
each List or Extended parameter that is used in a pattern.
If the class represents an Extended parameter it must be a
subclass of a pre-defined CO2P2S class called
AbstractPatternParameter. If the class represents a
List parameter, it must be a subclass of a pre-defined
CO2P2S class called PatternListParameter. In either
case, it must implement the method public List

getCodeGenMethod(String classname).
When Javadoc encounters the @extParameter tag, it

calls our Doclet and passes it the tag name and parameter
name. The Doclet code maps the tag and parameter name
to the corresponding class written by the pattern designer.
For example, the parameter operationList may be mapped
to a class called OperationList. The Doclet creates an
instance of the class and invokes the
getCodeGenMethod(String classname) method on this
instance. The pattern designer must implement this
method in each List or Extended parameter class that is
defined for the pattern. This method checks the classname
argument and generates the appropriate code that should
appear in this class. For example, in the Composite
pattern, the code would generate abstract methods for the
component class and traversal methods for the composite
class. To generate the correct code, the method checks the
data structure that contains the user-selected parameter
values for the pattern being adapted.

Unfortunately, our simple Javadoc implementation will
not work for generating code inside a method body, since
Javadoc does not parse method bodies. Therefore, we have
written a small macro processor to support code
generation inside method bodies. To simplify the macro
processor and to support default method bodies for some
generated methods, we have separated the bodies of all
methods in the code template from the methods that
contain them. Therefore, each class in a code template
currently consists of a class skeleton file that contains

empty method bodies together with a directory of files,
one for each method body, defined in the class. At code
generation time, the class skeleton file is processed by
Javadoc and the method body files are processed by the
CO2P2S macro-processor.

CO2P2S provides an HTML-based browser for viewing
the generated framework. The pattern designer marks
some of the framework methods as editable (using a user-
defined Javadoc tag called @editable). The editable
methods are called hook methods and although default
implementations are supplied to the user, the browser
allows the user to edit the bodies of these methods, but
not their signatures.

The macro processor supports Guard Variables using a
#IF# macro, which guards portions of method bodies.
The macro-processor supports List Placeholders and
Extended Placeholders using a single #Extended# macro
that has the parameter name as an argument. When this
macro is found by the macro-processor it calls the same
Java code as was called by Javadoc to compute a String
replacement for the macro.

3.4 Tool support: Meta-CO2P2S
Creating a generative design pattern is not a simple

task. The parameters for a pattern must be specified and a
framework must be created. To support graphical tools
like CO2P2S, the pattern's graphical components must
also be created and assembled so they can be displayed on
a user interface.

To simplify this process, we provide tool support in
the form of Meta-CO2P2S. One goal of this meta-
programming environment is that its generative patterns
should be first-class. That is, they should be
indistinguishable in form and function from those
patterns supplied with CO2P2S. We do not want to create
a dichotomy of generative patterns: those supplied by the
tool builders and those created by pattern designers using
Meta-CO2P2S. The pattern designer's ability to create new
patterns should not be hindered in any way.

Meta-CO2P2S provides dialogs for defining each
parameter in a generative pattern, as well as other
information that the pattern user never sees. For
convenience, parameters are grouped into categories. The
"Class Names" category is one example. Each class is
assigned a role as structural or user-accessible. Structural
classes are internal framework classes that a user does not
normally need to access. User-accessible classes, which
export hook methods that the user must implement, are
flagged so that these files can be preprocessed before
being presented to the user. For example, CO2P2S
converts these files to HTML, as explained later in
Section 4.4. The @editable tab in the source code
template indicates which methods in these classes can be
changed by the user.

User interface descriptions are in the "Constants" and
"GUI Configuration" categories. Some of the constants
are label strings that appear in the pattern description or in

menu items. The GUI configuration describes the layout
of the graphical pattern representation, including the
image that shows the pattern structure. The appropriate
image is selected by concatenating parameter values, and
using the resulting text as the name of a GIF image. This
provides a simple mechanism for updating graphics
without needing to write display code.

Finally, the "Parameters" category describes the
generative pattern parameters. Each parameter can be one
of the parameter types listed earlier in the paper. Each
item in this category fully describes the parameter,
including its type, necessary extensions, and its set of
legal values.

Meta-CO2P2S bundles the parameter information and
GUI attributes together and stores the information in a file
with standard XML format as described in Section 4.

4. Generative pattern representation
This section focuses on the representation of the

different components of our generative design patterns
(parameters and frameworks) and shows that this
representation is not tied to a particular programming
system. We also show how it is turned into a generative
pattern form suitable for use in programming tools, of
which CO2P2S is just one example.

The exact requirements of this representation depend on
the particulars of the programming system. However, one
of the goals of this representation is to be system-
independent so that patterns for any number of tools can
be generated from the same pattern description.

4.1 Pattern parameter representation
The parameter descriptions must be stored for use in

programming systems. The parameter representation
consists of two parts. The first part is a description of the
parameter, including its type (Section 3.1). This
description uses XML format that has the benefit of tool-
independence. In addition, the format of an XML file can
be verified using a DTD (Document Type Definition) file,
so that a custom verifier is not required. Finally, XML
has a number of system-independent support tools for
parsing and manipulating files.

The second part of the parameter description is an
XML description of the graphical elements needed to
enter the parameter values. Text-based tools can ignore
this part of the parameter description. This XML is not
intended for humans. It should be generated by any
pattern design meta-tool and read by any pattern
adaptation tool.

4.2 Automating parameter value entry
The descriptions of the parameters for a generative

design pattern must be stored so that they can be
incorporated into a pattern adaptation tool. However,
during adaptation, pattern users must have some
mechanism for assigning parameter values. The
mechanism for parameter value entry is actually a property

of each parameter and that mechanism should be generated
from the pattern description.

A String parameter can be entered in a standard dialog
box with a single text field. A specialized String
parameter, like an Identifier or Class Name can be
verified before the typed text is accepted. An Enumeration
parameter is entered by a set of labels or graphical images
and associated radio buttons. A List parameter uses a list
pane, and buttons for adding and removing elements. Of
course when an add button is pressed, a dialog that is
appropriate for the element type is launched.

Other parameter types may require more work because
their structure is more ad-hoc. Although it is possible for
an Extended parameter to be completely arbitrary, this is
unusual. Rather, an extended parameter tends to be text
that contains logically related information that cannot be
easily captured as a set of choices. As a result, simply
providing a text field for these parameters may not be the
ideal choice. Instead, the pattern designer may find it
better to create a customized dialog that allows users to
easily enter the parameter value and that allows the data to
be verified more easily.

As well as providing additional help for obtaining
parameter values from the pattern user, it is necessary for
a pattern designer to provide code generator extensions for
interpreting the Extended parameter values and generating
the appropriate code based on them. The dialog that
gathers the parameter value can have an effect on how easy
it is to perform this task. Using the method signature
example, consider inserting a call to the method in the
framework structure. With a table, we can easily generate
a call statement by printing out the signature without the
argument types. If the signature was a line of text, the
parser would need to determine the function of each token
in the text and print it out accordingly.

User interface and code generator extensions are
possible because the CO2P2S interface is itself a
framework. The reflective nature of Java allows these
extensions to be instantiated and used when necessary.
Part of the description of the parameters indicates the
necessary extensions for each parameter, for obtaining the
parameter values from the user and processing them for
code generation.

4.3 Framework representation
We need a format for storing this framework code that

facilitates the transformations described earlier. We refer
to this family of frameworks as a source code template. In
general, this template is a set of annotated source code
files, where the annotations indicate how the generative
pattern parameters alter the code. It includes all of the
code for all possible variations of the pattern that can be
specified using the pattern parameter values. A code
generator performs a source code to source code
transformation using the template and the parameter
values. The result is a framework that implements the
adapted pattern structure.

As described in Section 4.3, our current code generator
is based on Javadoc and a Doclet. This means that some
code is actually generated procedurally instead of residing
in a declarative template. Each Extended parameter can be
viewed as a behavioral component. It is possible to create
a library of these reusable behavioral components to
support parameter sharing between patterns.

4.4 From pattern descriptions to generative
patterns to frameworks to programs

The relationships among all of the parts of the
generative pattern description are shown in Figure 2. The
pattern description, created using Meta-CO2P2S and stored
using the format described earlier, holds all of the
information needed by a programming tool to incorporate
the generative pattern.

A pattern generator processes the parameter descriptions
and (optionally) the graphical representation and outputs a
generative pattern, in an analogous manner to the way
frameworks are constructed from a source code template
and pattern parameters. An adaptation tool incorporates
the new generative pattern (discussed later) and makes it
available to programmers. When a programmer selects the
generative pattern, the tool obtains values for the
parameter values based on their descriptions. The code
generator described in the previous section takes these
parameter values and the source code template and
produces a customized framework implementing the
selected pattern structure. The framework consists of
structural code and hook methods. The user creates an
application by supplying application-specific bodies for
the hook methods exported by the framework.

Our pattern generator is implemented using XML and
XSL (Extensible Stylesheet Language). An XSLT
processor processes the parameter descriptions, written in
XML, using the XSL stylesheet. The output is a tool
configuration and associated graphical components for the
user interface. The programming system incorporates the
new generative pattern by including the configuration
information, and can then provide the pattern to its users.
If the tool has a graphical user interface, then the graphical
components can also be used. These components consist
of images and labels that are displayed in the interface so
the user can visualize the state of the generative pattern
during application development.

In CO2P2S, the tool configuration generated by the
pattern generator is a set of Java classes that augment the
user interface. The classes generated by the pattern
generator use this framework to provide user interface and
code generator support for the new generative pattern.
These classes are compiled and are subsequently included
in the tool using dynamic class loading in Java.

Other tools may require different configuration
information from the pattern generator to include new
generative patterns. For example, a tool may use a
specification language to write programs, and not have a
graphical user interface. Generating configuration

information is a matter of providing a tool-specific XSL
stylesheet for the pattern description. However, the
description does not need to be changed. Once created,
this description can be used in any tool that provides a
stylesheet for the pattern generator (the XSLT processor).

Unfortunately, extensions to the user interface,
specification language, and code generator will be system-
specific until the parameter type system is completed. In
addition, interface support for combining these types into
parameters will be necessary for each system that wants to
use our generative design pattern description.

4.5 Evolving generative design patterns
We have shown an example use of the generative

Composite pattern. This pattern can support a variety of
traversal operations for common cases. However, there are
some problems that this pattern does not address.

For example, the traversal methods always visit the
complete structure of the composite. For some problems,
this may be inefficient. To support applications where
partial traversals are necessary, the Composite pattern can
be extended to include guard and continuation methods
that control the traversal. These two methods are similar
to the prefix and suffix methods except that rather than
being part of the traversal, they dictate the flow of control
through the composite structure.

The guard method determines if the children of a
composite object should be traversed. It has the same
arguments as the original method. If the guard evaluates
to true, then the composite object executes its optional
prefix method, traverses its children and then executes its
optional suffix method. If the guard evaluates to false, the
traversal method returns immediately. If the traversal
operation has a return value, the default value is returned.

The continuation method is evaluated before each child
object is visited. Like the guard method, it takes the same
arguments as the traversal method. If this method returns
false after traversing any child, the remaining children are
not traversed. Regardless, the prefix and suffix methods
for the composite object are always executed if they are
present.

To provide this functionality, the pattern designer has a
choice. The original generative Composite pattern can be
extended, adding new parameters and augmenting the
generated framework code, or a new pattern based on it
can be created. Pattern flexibility must be balanced
against ease-of-use. The more parameters that a generative
pattern presents, the more flexible it will be. However,
with too many parameters, the pattern becomes difficult
to specify and use. Since we have no general solution to
this problem, we have considered this balance on a
pattern-by-pattern basis.

To provide guard and continuation methods, we created
a new generative pattern, the GuardedComposite. We
copied the original Composite description and then used
Meta-CO2P2S to make the changes. We added two new
Boolean sub-parameters to each traversal method,

indicating the presence of the guard and continuation
methods. We also added two more Method Name sub-
parameters to record the names of the guard and
continuation methods, if they exist. This approach is
similar to using prefix and suffix methods. Recall that the
description of a generative pattern consists of an XML file
for parameter descriptions, graphical images, and possibly
some tool extensions. Once copied, the parameter
descriptions were edited using Meta-CO2P2S to add the
new parameters. The copied source code template for the
framework was modified as well. Finally, the interface
and code generator extensions were augmented. The user
interface needed to obtain values for the new parameters
for the generative GuardedComposite pattern, and the
code generator needed to be altered to generate correct
code for the guard and continuation methods in the
traversal methods of the composite classes.

A more sophisticated approach would be to derive a
new generative pattern from an existing pattern, using an
inheritance mechanism. This would support reuse of parts
of a pattern description and source code template.

5. Summary
We have presented an approach to generative design

patterns that incorporates three new ideas:
1. Generative design patterns are defined by a set of typed
parameters with specific legal values and a code template
that generates frameworks whose structure depends on
combinations of values for these parameters.
2. Design pattern adaptation is a three-phase process
where the first phase involves parameter value selection,
the second phase involves framework code generation and
the third phase involves framework specialization.
3. A two part tool-independent representation of
generative design patterns consists of an XML-based
representation of pattern parameter values and a code
template with simple parameter-based annotations.

We have described two tools, CO2P2S and Meta-
CO2P2S that support our process and that have be used to
adapt and generate design patterns. In addition, our
generated code does not suffer from the performance
penalties that plague many "automatic programming"
approaches. In fact, our generated code has been successful
in the performance-conscious domain of parallel
programming [1][14]. For example, CO2P2S has been
used to generate efficient solution code [2] for all
problems in the Cowichan problem set. This problem set
is used to evaluate problem coverage and performance in
parallel programming systems [18].

CO2P2S currently supports six design patterns for
parallel computing: mesh, wavefront, pipeline, search-
tree, distributor and phases. It also supports sequential
patterns: composite, decorator, abstract factory, chain
(tree) of responsibility and observer. However, Meta-
CO2P2S can be used to quickly add new design patterns.

Any programmer who wants to use a generative design
pattern to write an application, follows four steps:

1. Pick an appropriate set of design patterns. One
approach is to use a pattern language [15].
2. Use a tool like CO2P2S to adapt design patterns to an
application by selecting values for the pattern parameters.
3. Press a button to generate frameworks for each design
pattern that has been customized for your application.
4. Use framework specialization to finish the application.
We have also described a new approach to generative
design pattern construction. To create a new generative
design pattern, a pattern designer follows four steps:
1. Find an existing descriptive design pattern that applies
or create a new descriptive design pattern.
2. Analyze the descriptive design pattern with emphasis
on the: participants, implementation issues and sample
code, to identify pattern parameters that could affect the
structure of the framework code you will need. Study
existing generative design patterns for similar issues and
parameterization requirements. If possible, find an
existing generative design pattern that is similar and edit
it, instead of creating a new one.
3. For each parameter that was identified in 2), determine
the legal parameter values by considering the necessary
parameter values for your application (you may need
multiple adapted copies with different values) and the
known uses section of the pattern documentation. Also
consider legal parameter values of similar parameters in
other generative design patterns and use existing
parameter types as a guide.
4. Construct a code template that spans the legal
parameter values defined in 3). Use other generative
design patterns to guide you, or if possible, edit an
existing generative design pattern to take advantage of the
code template that has already been written. Use the
parameter types to guide the construction of your code
template. If possible, use a tool like Meta-CO2P2S to
simplify the construction of behavioral components.

Writing parameterized design pattern code can be hard.
We need strong tool support and in this paper we have
described some support that we do provide. However, we
need more tools. For example, we need tools to check for
coverage. In other words, did the pattern designer provide
code for all legal parameter value combinations? We need
support for testing. For example, we need a tool to
generate test application code that exercises all
combinations of legal parameter settings. Creating new
programming languages that support higher levels of
abstraction is a useful goal. However, tools have become
the new programming languages of modern software
development. We believe that the future of mastering
generative design patterns lies in open representations and
tools that support them.

6. References
[1] J. Anvik, et.al. Generating parallel programs from the

wavefront design pattern. In High-Level Parallel

Programming Models and Supportive Environments, Ft.
Lauderdale FL., CD-ROM April 2002.

[2] J. Anvik. Asserting the utility of CO2P3S using the
Cowichan problem set, Master's thesis, Department of
Computing Science, University of Alberta, 2002. In
preparation.

[3] K. Beck and R. Johnson. Patterns generate architecture.
ECOOP, Vol. 821 of LNCS, pp. 139-149. Springer, 1994.

[4] J. Bosch. Design patterns as language constructs. JOOP,
11(2), pp. 18-32, 1998.

[5] S. Bromling. Meta-programming with parallel design
patterns. Master's thesis, Department of Computing
Science, University of Alberta, 2002.

[6] F. Budinsky, M. Finnie, J. Vlissides, and P. Yu.
Automatic code generation from design patterns. IBM
Systems Journal, 35(2), pp. 151-171, 1996.

[7] TogetherSoft Corporation. TogetherSoft ControlCenter
tutorials: Using design patterns.
www.togethersoft.com/services/tutorials/index.jsp.

[8] A. Eden, Y. Hirshfeld, and A. Yehudai. Towards a
mathematical foundation for design patterns. Technical
Reprort 1999-04, Department of Information
Technology, University of Uppsala, 1999.

[9] G. Florijn, M. Meijers, and P. van Winsen. Tool support
for object-oriented patterns. In ECOOP, Vol. 1241 of
LNCS, pp. 472-495. Springer, 1997.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

[11] R. Johnson and B. Foote. Designing reusable classes.
JOOP, 1(2), pp. 22-35, 1988.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An overview of AspectJ. In ECOOP,
volume 2072 of LNCS, pp. 327-353. Springer, 2001.

[13] S. MacDonald. From Patterns to Frameworks to Parallel
Programs. Ph.D. thesis, Department of Computing
Science, University of Alberta, 2002.

[14] S. MacDonald, D. Szafron, J. Schaeffer, and S. Bromling.
Generating parallel program frameworks from parallel
design patterns. In Euro-Par, Vol. 1900 of LNCS, pp. 95-
104. Springer, 2000.

[15] M. Massingill, T. Mattson, and B. Sanders. A pattern
language for parallel application programs. Technical
Report CISE TR 99-022, University of Florida, 1999.

[16] M. Pollack. Code generation using javadoc.
www.javaworld.com/javaworld/jw-08-2000/jw-818-
javadoc_p.html, August 2000.

[17] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Vol 2. Wiley, 2000.

[18] G. Wilson. Using the Cowichan problems to assess the
usability of Orca. IFIP Working Conference on
Programming Environments for Massively Parallel
Distributed Systemsy, 183-193, 1994.

[19] ModelMaker Tools. Design patterns in ModelMaker.
www.modelmakertools.com/mm_design_patterns.htm.

