
On Type Systems for Object-Oriented Database
Programming Languages

YURI LEONTIEV

Intuit Canada Limited

M. TAMER ÖZSU

University of Waterloo

AND

DUANE SZAFRON

University of Alberta

The concept of an object-oriented database programming language (OODBPL) is
appealing because it has the potential of combining the advantages of object orientation
and database programming to yield a powerful and universal programming language
design. A uniform and consistent combination of object orientation and database
programming, however, is not straightforward. Since one of the main components of an
object-oriented programming language is its type system, one of the first problems that
arises during an OODBPL design is related to the development of a uniform, consistent,
and theoretically sound type system that is sufficiently expressive to satisfy the
combined needs of object orientation and database programming.

The purpose of this article is to answer two questions: “What are the requirements
that a modern type system for an object-oriented database programming language
should satisfy?” and “Are there any type systems developed to-date that satisfy these
requirements?”. In order to answer the first question, we compile the set of
requirements that an OODBPL type system should satisfy. We then use this set of
requirements to evaluate more than 30 existing type systems. The result of this
extensive analysis shows that while each of the requirements is satisfied by at least one
type system, no type system satisfies all of them. It also enables identification of the
mechanisms that lie behind the strengths and weaknesses of the current type systems.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language
Classifications; D.3.3 [Programming Languages]: Language Constructs and
Features; F.3.3 [Logics and Meanings of Programs]: Studies of Program Constructs;
H.2.3 [Database Management]: Languages

General Terms: Design, Languages, Theory

Additional Key Words and Phrases: OODB, OODBPL, object-oriented database
programming language, type checking, typing

Authors’ addresses: Y. Leontiev, Intuit Canada Limited, 7008 Roper Road, Edmonton, Alberta T6B 3H2,
Canada; email: yuri@cs.ualberta.ca; M. T. Özsu, University of Waterloo, School of Computer Science, Waterloo,
Ontario N2L 3G1, Canada; email: tozsu@uwaterloo.ca; D. Szafron, University of Alberta, Department of
Computing Science, Edmonton, Alberta T6G 2H1, Canada; email: duane@cs.ualberta.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212)
869-0481, or permissions@acm.org.
c©2002 ACM 0360-0300/02/1200-0409 $5.00

ACM Computing Surveys, Vol. 34, No. 4, December 2002, pp. 409–449.

410 Y. Leontiev et al.

1. INTRODUCTION

From its early days, object orientation
(OO) was considered to be one of the
most influential and useful programming
paradigms. Its impact on research in vir-
tually all areas of computing science can
only be compared to that of relational alge-
bra, or that of the functional and logic pro-
gramming paradigms. Much of the power
of object orientation lies in the fact that
it provides conceptual and modeling capa-
bilities that allow it to express real-world
entities with relative simplicity. Another
source of the appeal of object orientation is
its support for incremental software con-
struction, provided in the form of code
reuse.

Object-oriented database programming
languages (OODBPLs) have the potential
to combine, in a single uniform frame-
work, the modeling and software con-
struction power of the object-oriented
paradigm, extensive and efficient data
storage and retrieval techniques of mod-
ern database systems, and the effi-
ciency and power of today’s programming
languages.

Both the modeling and software con-
struction powers of object-oriented lan-
guages are rooted in their type and inher-
itance systems. A properly designed, rich,
and theoretically sound type system can
greatly increase the power of a language,
while a poor, inflexible type system can
render almost all power inherent in the
object-oriented paradigm useless.

While the type system of an object-
oriented language greatly affects its char-
acteristics, the type system of an OODBPL
affects its characteristics even more.
The reason is the presence of differ-
ent and sometimes contradictory require-
ments that are imposed on the type system
by an OODBPL’s database and program-
ming language components.

The purpose of this article is to an-
swer two key questions: “What are the re-
quirements that a modern type system for
an object-oriented database programming
language should satisfy?” and “Are there
any type systems developed to-date that
satisfy these requirements?”

In order to answer the first question,
the set of requirements put forth in the
literature for type systems (Section 2.2),
modern object-oriented programming lan-
guages (Section 2.3), database program-
ming languages (Section 2.4), and object-
oriented database systems (Section 2.5)
is considered to yield a set of required
type system features. The resulting com-
bination of requirements is presented in
Section 2.6. Section 2.7 presents the test
suite that is used to evaluate the existing
type systems reviewed in this article.

Section 3 presents an extensive review
of more than 30 languages and type sys-
tems. These type systems are evaluated
with respect to the requirements and the
test suite presented in Section 2.6. The re-
sult of this extensive analysis (presented
in Section 4) shows that while each of the
requirements is satisfied by at least one
type system, no type system satisfies all
of them. Section 4 also identifies the mech-
anisms that lie behind the strengths and
weaknesses of the current type systems.
The knowledge obtained this way can be
used to aid in the design and develop-
ment of a type system that satisfies all
of the above requirements (e.g., Leontiev
[1999]), even though a new language de-
sign is not the focus of this article.

2. TYPE SYSTEM REQUIREMENTS

2.1. Terminology

We start by establishing some terminol-
ogy to be used throughout the rest of this
article. This is necessary as many of the
terms used in the object-oriented language
research area have no clear definition and
are used differently by different authors.
We note that this is not a tutorial on object-
oriented concepts, but only a consistent
set of definitions (even if they are not uni-
versally accepted) that we use throughout
this article. Most of the terminology below
comes from Cardelli [1989] and Black and
Palsberg [1994].

Object. A primitive term for a data
item used to model a concept or a real-
world entity.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 411

Method. A procedure to be executed
when an object is sent an appropriate
message.

Message. A part f of an invocation
x. f , where x is an object; an identification
for a related set of methods.

Function Name. A part f of invoca-
tion f (x); also can be termed as a message
not associated with any type. Sometimes
called a free-floating function.

Function. A procedure to be executed
when a function invocation is requested.
Function relates to a function name the
same way a method relates to a message.

Interface Type. A description of mes-
sages applicable to an object.

Implementation (Representation) Type.
A description of an object’s structure.

Type. A shorthand for interface or im-
plementation type or both, depending on
the context.

Mutable Object Type. A type of an ob-
ject that is capable of changing its state at
run-time. For example, variables and ar-
rays are mutable objects. These types are
sometimes called imperative types.

Parametric (Parameterized) Type (Mes-
sage, Function). A type (message, func-
tion) that describes a family of types (mes-
sages, functions) by using (an) explicit pa-
rameter(s). For example,

type T_List(X) {

getAt(T_Integer): X;

};

Constrained Type. A parametric type
that places a constraint on its parame-
ter(s). The mechanism that allows a pro-
grammer to specify such a type is called
bounded quantification. For example:

type T_PersonList(X)

where X subtype of T_Person;

specifies a constrained parametric type
T PersonList.

Intersection (Greatest Lower Bound)
Types. An intersection of a set of types is
a type that represents the greatest lower

bound of the set in the type lattice. Inter-
section types are useful for typing of set-
theoretic operations and queries.

Union (Lowest Upper Bound) Types. A
union of a set of types is a type that repre-
sents the lowest upper bound of the set in
the type lattice. Union types are useful for
typing of set-theoretic operations, queries,
and conditionals.

Inheritance. A mechanism for making
one (interface or implementation) type
from another. A single inheritance re-
quires that a type has at most one im-
mediate ancestor (parent) in the inheri-
tance chain; multiple inheritance lifts this
restriction.

Interface Subtyping. A partial order on
interface types. An interface type A is a
subtype of another interface type B when
an object of the interface type B can be
thought of as an object of the interface
type A (e.g., a type T Student is a sub-
type of T Person since every student can
be thought of as a person).

Implementation Subtyping (Code
Reuse). A partial order on implemen-
tation types. An implementation type A
is a subtype of another implementation
type B if it is possible to use code written
for B to manipulate objects that have the
implementation type A.

Structural Subtyping. Subtyping
automatically determined by object
structure. Sometimes termed as implicit
subtyping. Its opposite, explicit or user-
definable subtyping, relies on user-
supplied subtyping clauses to determine
the subtyping relationship between types.

First-Class Object. An object that is ca-
pable of receiving messages.

Non-First-Class Object (Value). An im-
mutable object that lacks the ability to
receive messages. Traditionally, it is as-
sumed that values have no interface, just
a set of operations defined on them. In this
article, such a set of operations will be con-
sidered an interface of a value.

Primitive (Atomic) Type. A primitive
type is a type of basic (primitive)

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

412 Y. Leontiev et al.

system-defined objects or values (such as
integers, reals, characters, etc.). Primitive
types usually have a special status in non-
uniform systems and languages.

Soundness of a Type System. Inability
of a successfully typechecked program to
produce run-time type errors. Sometimes
divided into static and dynamic sound-
ness. Dynamic soundness is weaker than
static soundness. It makes sense for lan-
guages with dynamic type checking and
assures that run-time type errors will be
caught.

Verifiability of a Type System (Decid-
able Typechecking). The ability to verify
that a program does not contain type er-
rors with respect to a particular type sys-
tem; equivalently, the presence of a de-
cidable typechecking algorithm. Note that
verifiability does not imply soundness.
For example, the language Eiffel [Meyer
1988] has a decidable typechecking al-
gorithm, but a successfully typechecked
program can produce run-time type
errors.

Substitutability. A property of a type
system (language) that guarantees that an
object of a subtype can be used everywhere
the object of its supertype can (e.g., if a
type T Person is a supertype of T Student,
then a student can be legally used wher-
ever a person can be).

Dispatch. A process of finding out at
run-time which method of a particular
message to execute. Single dispatch bases
its decision on the type of the first argu-
ment (receiver) only, while multiple dis-
patch. takes into account types of other ar-
guments as well. The term static dispatch
will be used to refer to a compile-time pro-
cess of method determination.

Static/Dynamic Typing (Typechecking).
Static typechecking is done at compile-
time, while dynamic typechecking is done
at run-time.

Implicit/Explicit Typing. Languages
with explicit typing require the program-
mer to insert type annotations in the
program. Languages with implicit typing
infer the types of expressions without any

help from the programmer. Intermediate
approaches are also possible.

Inclusion Polymorphism. This term
refers to a combination of subtyping and
substitutability. Inclusion polymorphism
allows an object to be viewed as belong-
ing to many different types that need not
be disjoint; that is, there may be inclusion
of types.

Parametric Polymorphism. Paramet-
ric polymorphism is present when para-
metric specifications (e.g., parametric
types) are supported. This kind of poly-
morphism allows for specifications that
take types as parameters.

Covariance (Contravariance, Novari-
ance). Covariance means that changes in
a particular type are parallel to the di-
rection of the type hierarchy. In the fol-
lowing example the result type of the
method getAt changes covariantly, as it is
T Person in Definition 1 (which occurs in
the type T PersonList) and T Student (a
subtype of T Person) in Definition 2 (which
occurs in the type T StudentList, a sub-
type of T PersonList).

type T_Student subtype of T_Person;

type T_PersonList {

getAt(T_Integer): T_Person; // 1

};

type T_StudentList subtype

of T_PersonList {

getAt(T_Integer): T_Student; // 2

};

The reverse direction is termed as con-
travariant. Novariance forbids any type
changes along the type hierarchy. In this
example, the argument type T Integer
changes novariantly, that is, does not
change at all.

The terms class and subclassing are
deliberately avoided in this paper as they
are too overloaded. In object-oriented lit-
erature, the term class is used to denote
a mechanism for object construction, an
equivalent of an implementation type, an
equivalent of an interface type, a set of

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 413

objects satisfying a particular condition,
or some combination of the above four
notions. The definition of subclassing is
equally overloaded.

Also, the term type is qualified as be-
ing either interface type or implementa-
tion type. This will prove useful when con-
sidering type systems where the two type
notions are distinct.

2.2. Essential Features of a Type System

The major goals of a type system in today’s
programming languages and database
systems include [Cardelli 1989, 1997,
Black and Palsberg 1994]:

(1) Provide a programmer with an effi-
cient way of catching programming er-
rors before a program (or a part of it) is
actually executed. This is often consid-
ered to be the major objective of a type
system in the programming language
community.

(2) Serve as a data structuring tool for de-
sign and modeling purposes. Many de-
sign technologies that have emerged
through the past decade rely partially
or fully on type systems to provide
a convenient design and documenta-
tion framework for a system develop-
ment process. This is especially true
of object-oriented design technologies.
This property is often considered to be
the major goal of a type system in the
database community.

(3) Provide a convenient framework for
program maintenance. This includes
documentation at the production stage
of program evolution as well as the
ability of a programmer to understand
the functionality and interfaces of a
completed product.

(4) Provide sufficient information for op-
timization purposes. The information
provided by the type system can be
used by an optimizing compiler, inter-
preter, or a query optimizer (in persis-
tent systems) to improve the efficiency
of a program.

In order for a compiler (or interpreter) to
be able to typecheck a program (or a part

of it), there must exist a typechecking algo-
rithm. Existence of such an algorithm for
a given type system is termed as verifia-
bility of the type system [Cardelli 1997].
Thus, a type system should be verifiable.
It is preferable that a type system should
be decidably verifiable; however, one may
have to put up with an undecidable type
system just as one puts up with un-
decidable programs if enough expressive
power is desired [Black and Palsberg
1994]. The verifiability property also im-
plies that a type system should be prov-
ably sound, i.e. there should exist a formal
proof that a successfully type-checked pro-
gram does not generate any type errors at
run-time.

If a compiler finds a type error and re-
ports it to a programmer, the latter should
have sufficient information to be able to
understand the reason for the type error
in order to correct it. Thus, the type sys-
tem should be transparent.

A type system should also be enforceable
in order to prevent an execution of type-
incorrect programs. This implies that pro-
grams have to be written with as much
type information as possible to prevent
“false alarms.”

Finally, a type system should be exten-
sible. This requirement stems from the
fact that none of the existing type systems
were found to be satisfactory for all pos-
sible applications. Therefore, the chance
that any new type system will satisfy all
application domains is remote. If a type
system can not be extended, it will sooner
or later be abandoned for a type system
that can adapt to new application require-
ments. Switching from one type system to
another is extremely costly both in terms
of people resources (that have to be reed-
ucated) and in terms of data conversion
costs.

2.3. Object-Oriented Programming
Language Requirements

Pure object-oriented programming lan-
guages pose some specific requirements
on their type systems. These require-
ments will be constructed by considering
features essential for pure object-oriented

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

414 Y. Leontiev et al.

languages and reformulating them in
terms of type system features.

For a language to be called a pure
object-oriented language, it should pos-
sess at least the following properties, some
of which are often claimed as absolutely
necessary for future object-oriented lan-
guages [Tsichritzis et al. 1992]:

(1) Encapsulation. This property is usu-
ally considered as one of the char-
acteristic features of object-oriented
languages and greatly facilitates code
reuse. It refers to the ability of a
language to shield internals of an
object implementation from outside
access.

(2) Inheritance. This is a characteristic
property of object-oriented languages
as well. The inheritance mechanism
promotes and facilitates well-structu-
red software design and reusability
of the code. Multiple inheritance is
highly desirable, as its absence leads
to clumsy or limited type specification
in some important cases.

(3) Uniformity. Primitive values (inte-
gers etc.), types, and messages (meth-
ods) should be first-class objects. If
this requirement is not satisfied, the
language will have to handle the
non-object entities in some non-object-
oriented way, and will therefore not
be purely object-oriented. Note that
the existence of methods that are
able to operate on types and other
methods is a consequence of this
property. This is also advocated in
Hauck [1993].

(4) Object access and manipulation uni-
formity. An object can only be ma-
nipulated by methods defined for it.
Together with uniformity, this prop-
erty provides for purely object-oriented
programming.

(5) Method uniformity. This refers to the
absence of distinction between stored
and computed methods or, equiva-
lently, the absence of public instance
variables. This requirement is impor-
tant as its violation breaks encapsu-
lation and may effectively hinder the

usefulness of the code reusability pro-
vided by inheritance.

(6) Separation between interface and im-
plementation inheritance (sometimes
termed as separation between type
and class hierarchies). This is ac-
tually a consequence of encapsula-
tion, inheritance, and object manipula-
tion uniformity. Additional arguments
in favor of such separation can be
found in LaLonde and Pugh [1991],
Castagna [1996], Taivalsaari [1996],
Baumgartner et al. [1996], Leontiev
et al. [1998].

(7) Multi-methods (multiple dispatch).
This refers to the ability of a language
to use types of all arguments during
dispatch. Traditionally, only the type
of the first argument (the receiver) is
used. This property of the language is
essential to adequately model binary
methods [Bruce et al. 1996a; Castagna
1996; Leavens and Millstein 1998;
Fisher and Mitchell 1996] and cer-
tain object-oriented design patterns
[Baumgartner et al. 1996].

Using these requirements for pure object-
oriented languages, it is now possible to
formulate desirable features of type sys-
tems for such languages. These require-
ments are:

(1) Inheritance mechanisms for both in-
terface and implementation inheri-
tance. This requirement is a direct
consequence of the language require-
ments 2 and 6 above.

(2) Type system reflexivity. This is nec-
essary to ensure uniformity of the
language (requirement 3), since types
(classes) have to be objects.1 Since ev-
ery object has a type, types and classes
need to have types as well. Thus, the
type system needs to be reflexive.

(3) Method types. This is also a con-
sequence of uniformity. Indeed, since
methods have to be objects to ensure
uniformity, they will have types. More-
over, when methods are manipulated

1 The term “type system closure” is sometimes used
to denote this property.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 415

as objects (e.g., passed as arguments
to other methods), their types should
be descriptive enough to ensure the va-
lidity of type-checking.

(4) Method uniformity at the type level
(no distinction between types of stored
and computed methods). This is a di-
rect consequence of the language re-
quirement 5.

(5) Support for multi-methods (multiple
dispatch). This is a consequence of
the language requirement 7.

(6) Substitutability (at least for interface
inheritance). This property is essen-
tial to support extensibility and inclu-
sion polymorphism. The latter is used
to achieve one of the primary goals
of the object-oriented paradigm: code
reuse.

2.4. Database Programming Language
Requirements

Database programming languages
(DBPLs) possess their own set of distin-
guishing features that poses additional
requirements on type systems. The ap-
proach of the previous section will be used
to derive the type system features from
the following list of necessary features
of a persistent language that is taken2

from Atkinson and Buneman [1987] and
Atkinson and Morrison [1995].

(1) Persistence independence (the form of
the program is independent of the
longevity of data the program op-
erates upon). This is necessary to
provide seamless integration between
the database and the language and
to significantly reduce the amount of
code necessary to deal with persistent
data.

(2) Orthogonality of type and persistence
(data of all types can be persistent
as well as transient). This is an aid
to data modeling as it ensures that
the model can be independent of the
longevity of data. It also eliminates the

2 Features not related to type system are dropped
from the list.

need of explicit persistent-to-transient
data conversions.

(3) User-defined type constructors. This
requirement is due to the necessity
of modeling new, potentially complex
data structures in a uniform and con-
sistent manner.

(4) Information hiding (also known as
encapsulation). Encapsulation al-
lows for data modeling at a higher
(more abstract) level as it hides the
implementation details and gives
the programmer an ability to deal
with abstract interfaces rather than
concrete data structures. It greatly
facilitates modeling, code reuse, and
component integration.

(5) Polymorphism (parametric, inclusion,
or both). Parametric and inclusion
polymorphisms make the specifica-
tions more succinct and precise. They
also allow for a significant reduction
in the amount of code that needs to be
written to specify and implement a par-
ticular data model, as a significant por-
tion of the specifications are reused via
genericity achieved by the use of poly-
morphic constructs.

(6) Static and strong typing with pro-
visions for partial-type specification
(which necessitates the presence of a
type mechanism similar to one formed
by type constructor dynamic and oper-
ator typecase). This is necessary in or-
der to deal with data that come from
a persistent store whose structure is
only partially known at the time the
program is written. An example of a
program that requires such capabili-
ties is a generic database browser that
is supposed to work on any database
independently of its structure.

(7) Incremental program construction and
modularity. This principle ensures
that most of the program modifications
can be done locally, without affecting
the rest of the code. While this prop-
erty is very important for program-
ming languages in general, it is even
more important for database program-
ming, since databases tend to exist and
evolve for extensive periods of time. As

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

416 Y. Leontiev et al.

a database evolves, the programs de-
signed to operate on it have to evolve
as well. Modularity is one of the major
features that significantly reduce the
overhead of such an evolution.

(8) Query facilities. One of the main rea-
sons behind the success of the rela-
tional data model was its ability to
support declarative, simple, yet pow-
erful data access/query languages. In
order for object systems to be success-
ful, they must provide querying capa-
bilities equal or exceeding those of the
relational systems.

(9) Ability of a program to deal with state
change. This requirement is neces-
sary as persistent data outlive the pro-
gram and if a program is not able to
change data, the state of persistent
data will never change.

From this list of requirements, the fol-
lowing properties of the type system can
be derived:

(1) Types (classes) in the type system
should not be specified as either per-
sistent or transient. This is the DBPL
requirement 2 reformulated in terms
of type system terminology.

(2) User-defined type constructors. This
is the same as the DBPL require-
ment 3.

(3) Encapsulation. This follows from the
DBPL requirement 4.

(4) The presence of parametric types.
This follows from the DBPL require-
ments 5 (parametric polymorphism)
and 3. It is also desirable to han-
dle bounded (constrained) paramet-
ric types as it increases the modeling
power of the type system.

(5) Possibility of partial type specification
and dynamic type checking. This fol-
lows from the DBPL requirement 6.

(6) Verifiable and sound type system (as
a consequence of the DBPL require-
ment 6).

(7) Incremental type checking (as a con-
sequence of the DBPL modularity re-
quirement).

(8) The ability of the type system to cor-
rectly type declarative queries. This
stems from the DBPL requirement 8.
According to Buneman and Pierce
[1999], this requires that the type sys-
tem can support union (least upper
bound) types.

(9) The ability of the type system to deal
with types of mutable objects (later re-
ferred to as mutable object types) and
assignment. This is a direct conse-
quence of the DBPL requirement 9.

In addition to the above, Kirby et al.
[1996] advocates the use of reflection in
persistent object systems.

The combination of object-orientedness
and persistence poses some additional re-
quirements described in the next section.

2.5. Object-Oriented Database System
Requirements

A list of features needed or desirable
in object-oriented database management
systems (OODBMS) and the rationale be-
hind it are given in Atkinson et al. [1992].
This is the most comprehensive of such
lists published so far. The following list3

is the part of it that is related to type sys-
tem issues. It contains additional require-
ments to those already listed in the previ-
ous sections.

(1) Complex objects (orthogonal type con-
structors should include at least sets,
tuples, and lists). This is necessary to
ensure that the modeling power of the
system is sufficient to deal with mod-
ern applications, such as CAD/CAM,
medical and geographical information
systems.

(2) Extensibility. User-defined and sys-
tem types should have the same sta-
tus and the user should be able to add
new “primitive” types to the system.

3 Some issues often considered as deficiencies of
object-oriented systems (for example, in Kim [1993])
but deemed optional in Atkinson et al. [1992] are
listed here as mandatory. The reason for that is the
understanding that if object-oriented databases are
to be the next step in the database development, they
should utilize the advances already made in rela-
tional databases.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 417

This is also due to the necessity of deal-
ing with new demanding application
areas. It is impossible to anticipate all
the data types that will be required
to model the data structures in those
areas since some of them are yet to
emerge. By providing the same status
to system and user-defined types, the
system guarantees that its capabilities
are not decreased when it is applied to
a new application domain. Extensibil-
ity is also advocated in Matthes and
Schmidt [1991].

(3) Views. A view is, in a sense, an abil-
ity to transparently change the ap-
pearance of data for different users
(clients). The importance of this con-
cept as well as its usefulness and power
have been convincingly demonstrated
by years of experience with relational
databases.

(4) Dynamic schema evolution. This re-
quirement is based on the necessity
to maintain (and change) the database
structure over extensive periods of
time. While it is sometimes possible to
create a completely new database with
a new schema and migrate data to it,
this approach is usually quite expen-
sive and results in a substantial down
time, which may not be acceptable in
large distributed applications such as
hospital or banking systems. Dynamic
schema evolution makes it possible to
change a database structure transpar-
ently to its users.

These additional requirements have to
be taken into account when designing a
type system for a pure object-oriented
database programming language. Next,
the requirement summary will be pre-
sented and a short overview will be given.

2.6. Summary of Requirements

The following is the compilation of all type
system requirements presented so far. The
categorization of the requirements pre-
sented here is subjective, but it does pro-
vide a useful structure to the extensive set
of requirements compiled so far. Each re-

quirement listed below contains a refer-
ence to the section where it has been in-
troduced and explained.

(1) Theoretical requirements
(a) Verifiability (preferably decidable)

and provable soundness of the type
system. These features are neces-
sary for the type system to be use-
ful for program verification (see
Section 2.2 and Section 2.4).

(2) Inheritance requirements

(a) Inheritance mechanisms for both
interface and implementation in-
heritance (Section 2.3).

(b) Substitutability property (at
least for interface inheritance)
(Section 2.3).

(3) Expressibility requirements

(a) Method types (Section 2.3).
(b) Parametric types (Section 2.4).
(c) Orthogonal type constructors

(at least sets, tuples, and lists)
(Section 2.4).

(d) Encapsulation (Section 2.3 and
Section 2.4).

(e) The ability of the type system to
deal with mutable object types and
assignment (Section 2.4).

(f) The ability of the type system
to correctly type multi-methods
(Section 2.3).

(g) The ability of the type system
to correctly type SQL-like queries
(Section 2.4).

(4) Uniformity requirements
(a) Extensibility (user-defined and sys-

tem types should have the same
status) (Section 2.5).

(b) Types (classes) in the type sys-
tem should not be specified as ei-
ther persistent or transient (Sec-
tion 2.4).

(c) Method uniformity at the type
level (no distinction between types
of stored and computed methods)
(Section 2.3).

(5) Reflexivity requirements
(a) Type system reflexivity (Sec-

tion 2.3).

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

418 Y. Leontiev et al.

(6) Dynamic requirements

(a) Possibility of partial type specifi-
cation and dynamic type checking
(Section 2.4).

(b) Provisions for schema evolution
(Section 2.5).

(7) Other requirements

(a) Transparency of the type system for
a programmer (Section 2.2).

(b) Incremental type checking
(Section 2.4).

(c) The ability to define views in a type-
safe fashion (Section 2.5).

Some of the above requirements are
complementary, while others are contra-
dictory. Most notably, decidable verifica-
tion conflicts with reflection (as shown,
for example, in Cardelli [1986]). Also, en-
forceability conflicts (to a degree) with par-
tial type specification. Another conflict is
that the complexity of the type system
that satisfies the expressibility require-
ments will most probably make the result-
ing type system much less transparent for
a programmer than one would like it to
be. Connor et al. [1991] also identified a
conflict between substitutability, mutable
types, and static type safety. The presence
of such contradictory requirements makes
the task of designing a type system that
satisfies them particularly difficult.

2.7. Test Programs

The following is a set of test programs
that a type system should be able to type
correctly.4 These tests are primarily de-
signed to test type systems for their ex-
pressibility as this is the most difficult set
of requirements to check; however, the last
test is the test for reflexivity and unifor-
mity. The example programs are written
in an object-oriented pseudo-language and
are used to illustrate the tests rather than
to suggest specific language constructs.

These programs are designed to test
known problem areas of object-oriented

4 Note that the terms “test” and “test program” are
not used here in the traditional software engineer-
ing sense. Our tests are actually benchmarks that
validate expressive power.

type systems. They are also used to ver-
ify the ability of the type system to con-
sistently and orthogonally combine para-
metric and inclusion polymorphism with
mutable types and assignment. This has
to be done because soundness, verifiability,
parametricity, substitutability, and muta-
ble types are all among the requirements
for an OODBPL type system.

Many of the expressibility tests are
adapted from Black and Palsberg [1994],
which presented a benchmark for test-
ing type system expressibility. However,
their benchmark was designed to mea-
sure the expressibility of a type system for
an object-oriented programming language
and not for an object-oriented database
programming language. Thus, some tests
related to the additional expressibil-
ity requirements presented above were
added.

The requirement related to mutable ob-
ject types and assignment is probed by
each of the tests below. This is done in or-
der to verify that a type system can deal
with mutable types in combination with
parametric and inclusion polymorphisms–
a well-known problem area in object-
oriented type systems [Connor et al. 1991].

(1) Types T Person and T Child
with method getAge that returns
T Integer when applied to a person
and T SmallInteger when applied to
a child. (PERSON)

type T_Integer;

type T_SmallInteger subtype of

T_Integer;

type T_Person {

getAge(): T_Integer;

};

type T_Child subtype of T_Person {

getAge(): T_SmallInteger;

};

T_Person p := new T_Person (...);

T_Child c := new T_Child (...);

T_Integer i;

T_SmallInteger si;

i := p.getAge(); // should be Ok

i := c.getAge(); // should be Ok

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 419

si := p.getAge(); // should cause

// compile-time error

si := c.getAge(); // should be Ok

This test is designed to verify that
subtyping does not necessitate the
absence of changes. Surprisingly,
there are a considerable number of
languages that do not allow any
changes while inheriting, only ad-
ditions. This significantly limits the
power of the type system and forces
the designer to use less specific type
information.

(2) Types T Point and T ColorPoint,
with equality on both. The equal-
ity between color points should take
color into account, while the equal-
ity between two points or between
a point and a color point should
ignore it. (POINT)
type T_Point {

equal(T_Point p):T_Bool

implementation ... ;

// equal1

};

type T_ColorPoint subtype of

T_Point {

equal(T_ColorPoint p):T_Bool

implementation ... ;

// equal2

};

T_Point p1 := new T_Point (...);

T_ColorPoint p2 := new

T_ColorPoint (...);

p1.equal(p1); // should call equal1

p1.equal(p2); // should call equal1

p2.equal(p2); // should call equal2

p2.equal(p1); // should call equal1

p1 := new T_ColorPoint (...);

p1.equal(p1); // should call equal2

p1.equal(p2); // should call equal2

p2.equal(p2); // should call equal2

p2.equal(p1); // should call equal2

This test is adapted from Black and
Palsberg [1994]. It tests the type sys-
tem’s ability to deal with binary meth-
ods, a well-known problem area in
object-oriented type systems [Bruce

et al. 1996a; Fisher and Mitchell
1996].

(3) Types T Number (with unrelated sub-
types T Real and T Radix) and T Date
with comparison methods such that
comparing two numbers or two dates
is legal, while their cross-comparison
is not. All method code below, ex-
cept for the code for the method less,
should be reused. (COMPARABLE)

interface I_Comparable {

less(selftype c):T_Bool;

greater(selftype c):T_Bool

implementation { return

c.less(this); };

};

type T_Number implements

I_Comparable {less(T_Number n):

T_Bool implementation ... ;

// less1

};

type T_Real subtype of

T_Number { ... };

type T_Radix subtype of

T_Number { ... };

type T_Date implements I_Comparable

{ less(T_Date d):T_Bool

implementation ... ; // less2

};

T_Date d1, d2;

T_Number n1, n2;

T_Radix radixVar := 0xF;

T_Real realVar := 1.0;

d1 := ’2/3/99’; d2 := ’3/4/78’;

n1 := realVar;

n2 := radixVar;

n1.less(n2); // should call

// less1
n2.greater(n1); // should

// eventually call less1

n1.less(realVar); // should call

// less1

n2.greater(radixVar); // should

// eventually call less1

d1.less(d2); // should call

// less2

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

420 Y. Leontiev et al.

d1.greater(d2); // should

// eventually call less2

d1.less(n1); // should cause

// compile-time error

n1.less(d1); // should cause

// compile-time error

This is an additional test for binary
method handling. It tests whether the
subsumption property can be main-
tained in the presence of binary meth-
ods. This test is necessary due to the
fact that some approaches to the bi-
nary method problem (most notably,
matching [Bruce et al. 1995, 1996b]
abandon substitutability, which is
one of the requirements for an
OODBPL type system.

(4) A parametric input/output/IOstream
type hierarchy such that the three
types are parameterized by the type
of objects readable/writable to/from
a particular stream, with T IOstream
being a subtype of both input and out-
put stream types. (STREAMS)

type T_InputStream(covar X) {

get():X;

isEmpty():T_Bool;

};

type T_OutputStream(contravar X) {

put(X arg);

};

type T_IOStream(novar X)

subtype of T_InputStream(X),

T_OutputStream(X);

type T_Point { ... };

type T_ColorPoint subtype of

T_Point { ... };

T_Point p := new T_Point (...);

T_ColorPoint cp := new

T_ColorPoint (...);

T_InputStream(T_Point) isp;

T_OutputStream(T_Point) osp;

T_IOStream(T_Point) iosp;

T_InputStream(T_ColorPoint) iscp;

T_OutputStream(T_ColorPoint) oscp;

T_IOStream(T_ColorPoint) ioscp;

... // Initialization of the

// above streams

p := isp.get(); // should be Ok

p := iscp.get(); // should be Ok

cp := isp.get(); // should cause

// compile-time error

cp := iscp.get(); // should be Ok

osp.put(p); // should be Ok

oscp.put(p); // should cause

// compile-time error

osp.put(cp); // should be Ok

oscp.put(cp); // should be Ok

isp := iosp; // should be Ok

isp := ioscp; // should be Ok

iscp := iosp; // should cause

// compile-time error

iscp := ioscp; // should be Ok

osp := iosp; // should be Ok

osp := ioscp; // should cause

// compile-time error

oscp := iosp; // should be Ok

oscp := ioscp; // should be Ok

This test is designed to verify that
a combination of parametric and in-
clusion polymorphism in the type
system does not adversely affect ei-
ther of them. In other words, it tests
the orthogonality of the two poly-
morphisms. The presence of both
parametricity and inclusion polymor-
phism (subtyping + substitutability)
in the type system is among the
requirements compiled earlier. The
unrestricted combination of the two
polymorphisms is known to be diffi-
cult [Day et al. 1995; Bracha et al.
1998c].

(5) Sorting of arbitrary objects under the
constraint that all the objects have a
comparison method. (SORT)

interface I_Comparable {

less(selftype c):T_Bool;

};

type T_Number implements

I_Comparable { ... };

type T_Person { ... };

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 421

type T_List(novar X) { ... };

sort(T_List(X) list): T_List(X)

where (X implements I_Comparable)

implementation ... ;

T_List(T_Number) ln;

T_List(T_Person) lp;

... // Initialization of list

// variables

ln := sort(ln); // should be Ok

lp := sort(lp); // should cause

// compile-time error

lp := sort(ln); // should cause

// compile-time error

ln := sort(lp); // should cause

// compile-time error

This test is due to Black and
Palsberg [1994]. It is designed to ver-
ify the ability of the type system to
deal with bounded quantification of
the form “for all types satisfying a
given condition”. This is yet another
aspect of the binary method problem.
It also tests the ability of the type sys-
tem to provide a link between para-
metricity and subtyping.

(6) Generic sort with a comparison
method (<) as a parameter. The
generic sort can be applied to a set
of any objects provided that an ap-
propriate comparison method is sup-
plied. (GENSORT)

type T_List(X) { ... };

type T_Number {

less(T_Number arg):T_Bool;

};

type T_Date {

compare(T_Date arg):T_Bool;

};

sort(T_List(X) list, (X,X):

T_Bool comparison): T_List(X)

implementation ... ;

T_List(Number) ln;

T_List(Date) ld;

... // Initialization of list

// variables

ln := sort(ln,less); // should

// be Ok

ld := sort(ld,compare); // should

// be Ok

ln := sort(ld,compare); // should

// cause compile-time error

ln := sort(ln,compare); // should

// cause compile-time error

This test is also from Black and
Palsberg [1994]. It is designed to ver-
ify that the type system is capable
of combining parametricity, method
typing, and substitutability.

(7) A single-linked list node type and a
double-linked list node type, where
the second type inherits from the first
one. A single-linked list node type
is a recursively defined type with
a mutable attribute that repre-
sents the list node linked to the
given one. A double-linked list node
type has an additional mutable at-
tribute to represent the second link.
The type system should not al-
low links between different node
types.

Note that, in this example, the
double-linked node type is not a sub-
type of a single-linked node type;
however, the type system should be
flexible enough to allow code reuse
between them. The code sample uses
the keyword extends in order to
describe this relationship between
types. (LIST)

type T_LinkedListNode {

selftype next;

getNext():selftype

implementation { return next; };

attach(T_LinkedListNode node)

implementation ... ;

// attach1

};

type T_DoubleLinkedListNode extends

T_LinkedListNode {

selftype prev;

getPrev():selftype

implementation { return prev; };

attach(T_DoubleLinkedListNode

node) implementation ... ;

// attach2

};

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

422 Y. Leontiev et al.

T_LinkedListNode lln1, lln2;

T_DoubleLinkedListNode dlln1, dlln2;

... // Initialization of list node

// variables

lln1 := dlln1; // should cause

// compile-time error

lln1 := lln2; // should be Ok

lln1.attach(lln2); // should call

// attach1

dlln1.attach(dlln2); // should call

// attach2

lln1.attach(dlln1); // should cause

// compile-time error

dlln1.attach(lln1); // should cause

// compile-time error

This test is also adopted from
Black and Palsberg [1994]. It checks
whether the type system supports
code reuse beyond that provided by
subtyping. In other words, it checks if
code reuse is possible between types
that are not in a subtyping relation-
ship with each other. Situations anal-
ogous to the one described in this test
occur frequently when dealing with
mutable types.

(8) Set union and intersection for im-
mutable sets. (SET)

type T_Set(X) {

union(T_Set(Y) summand):

T_Set(lub(X,Y));

intersection(T_Set(Y) summand):

T_Set(glb(X,Y));

};

type T_Person { ... };

type T_Student subtype of

T_Person { ... };

T_Set(T_Person) sp1, sp2;

T_Set(T_Student) ss1, ss2;

... // Initialization of

// set variables

sp1 := sp1.union(sp2);

// should be Ok

sp1 := sp1.union(ss1);

// should be Ok

sp1 := ss1.union(sp1);

// should be Ok

sp1 := ss1.union(ss2);

// should be Ok

ss1 := sp1.union(sp2); // should

// cause compile-time error

ss1 := sp1.union(ss1); // should

// cause compile-time error

ss1 := ss1.union(sp1); // should

// cause compile-time error

ss1 := ss1.union(ss2);

// should be Ok

sp1 := sp1.intersection(sp2);

// should be Ok

sp1 := sp1.intersection(ss1);

// should be Ok

sp1 := ss1.intersection(sp1);

// should be Ok

sp1 := ss1.intersection(ss2);

// should be Ok

ss1 := sp1.intersection(sp2);

// should cause compile-time error

ss1 := sp1.intersection(ss1);

// should be Ok

ss1 := ss1.intersection(sp1);

// should be Ok

ss1 := ss1.intersection(ss2);

// should be Ok

This test is designed to verify that set
operations used in SQL-like declara-
tive queries can be successfully and
precisely typed. This is necessary to
ensure seamless integration of such
queries into the language.

(9) Function apply. (APPLY)

apply((X):Y msg, X obj):

Y implementation ... ;

type T_Integer { ... };

type T_SmallInteger subtype of

T_Integer { ... };

type T_Person {

getAge():T_Integer;

};

type T_Child subtype of T_Person {

getAge():T_SmallInteger;

};

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 423

T_Person p := new T_Person (...);

T_Child c := new T_Child (...);

T_Integer i := 1000;

T_SmallInteger si := 5;

i := apply(getAge,p);

// should be Ok

i := apply(getAge,c);

// should be Ok

si := apply(getAge,p); // should

// cause compile-time error

si := apply(getAge,c);

// should be Ok

This test is analogous to the “λ-
calculus” test presented in Black and
Palsberg [1994] (it differs in that
this test also includes assignment).
It is designed to verify the ability of
the type system to deal with method
types and uniformly treat methods as
objects in the system.

(10) General database browser. The
browser should be able to deal with
databases that have an unknown
schema.5 (BROWSER)

printNumber(T_Number num)

implementation ... ;

type T_Person {

getAge():T_Integer;

};

T_Object root;

T_Database db;

db.open();

root := db.getRoot();

typecase root.typeOf() {

subtype of T_Number: {

printNumber(root); ... };

// should be Ok

subtype of T_Person: {

printNumber(root.getAge());

... };

// should be Ok

5 The given code only tests the ability of the type
system to deal with dynamic type information in a
type-safe manner. A complete browser would also re-
quire the ability to examine the type structure of pre-
viously unknown types.

otherwise: {

print("Something else"); };

};

root.getAge();

// should cause compile-time error

printNumber(root.getAge());

// should cause compile-time error

This test checks the ability of a type
system to handle partial type speci-
fications and dynamic type checking.
Both are on the list of requirements
for an OODBPL type system.

This set of requirements and tests will
be used in the next section to evaluate ex-
isting languages and type systems.

3. TYPE SYSTEMS REVIEW

In this section, type systems of many cur-
rent languages6 as well as theoretical de-
velopments in the area will be reviewed.
These type systems and languages are
listed in Table I. The table gives references
and sections in this article where a given
system is reviewed.

3.1. C++

C++ [Stroustrup 1991] is currently one of
the most widely used object-oriented pro-
gramming languages. C++ types combine
the characteristics of interface and imple-
mentation types in that they define both
the interface and the structure of their ob-
jects. Classes in C++ are special cases of
types: classes specify properties of first-
class objects, while types specify proper-
ties of non-first-class objects. C++ inher-
itance rules are novariant; however, C++
allows polymorphic function and method
specifications by using a method (func-
tion) signature instead of a name for

6 Due to the enormous number of languages con-
stantly being developed by the scientific community,
this review has to be incomplete. However, every ef-
fort has been made to include known languages with
interesting type system features (or their analogs).
Thus, we hope that none of the essential type sys-
tems are left out.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

424 Y. Leontiev et al.

Table I. Type System Index

References Reviewed in Section
C++ [Stroustrup 1991] 3.1
E [Richardson et al. 1993] 3.2
O++ [Agrawal and Gehani 1989] 3.3
O2 [Lécluse et al. 1992] 3.4
Java 1.1 [Arnold and Gosling 1996], 3.5

[Drossopoulou and Eisenbach 1997], [Saraswat 1977]
Generic Java (GJ) [Bracha et al. 1998c, 1998a, 1998b] 3.5
Java parametric extension (JPE) [Myers et al. 1997] 3.5
Pizza [Odersky and Wadler 1997; Agesen et al. 1997] 3.5
Virtual types in Java (JVT) [Thorup 1997; Bruce et al. 1998] 3.5
ODMG/OQL 2.0 [Cattell et al. 1997, Alagić 1997, 1999] 3.6
SQL-99 [SQL 1999] 3.7
XQuery 1.0 [W3C 2002] 3.8
Modula-2 [Wirth 1983] 3.9
DBPL [Schmidt and Matthes 1994] 3.10
Modula-90 [Lutiy et al. 1994] 3.11
Modula-3 [Harbison 1992] 3.12
Oberon-2 [Mössenbök and Wirth 1993; Roe and Szyperski 1997] 3.13
Lagoona [Franz 1997] 3.14
Theta [Day et al. 1995] 3.15
Ada 95 [Kempe Software Capital Enterprises 1995] 3.16
Eiffel [Meyer 1988] 3.17
Sather [Stoutamire and Omohundro 1996] 3.17
Emerald [Raj et al. 1991] 3.18
BETA [Madsen et al. 1993] 3.19
VML [Klas and Turau 1992] 3.20
Napier88 [Morrison et al. 1996] 3.21
Smalltalk [Goldberg and Robson 1989] 3.22
Strongtalk [Bracha and Griswold 1993] 3.22
Cecil [Chambers 1993, 1992] 3.23
BeCecil [Chambers and Leavens 1996, 1997] 3.23
Mini-Cecil [Litvinov 1998] 3.23
Transframe [Shang 1997] 3.24
CLOS [Bobrow et al. 1988] 3.25
Dylan [Apple Computer, Inc. 1994] 3.26
TM [Bal et al. 1993] 3.27
ML [Miller et al. 1990; Wright 1993] 3.28
Machiavelli [Ohori et al. 1989; Buneman and Ohori 1996] 3.29
Fibonacci [Albano et al. 1995] 3.30
ML≤ [Bourdoncle and Merz 1996a, 1996b] 3.31
Constrained types in ML [Aiken et al. 1994; Aiken and Wimmers 1993; 3.31

Pottier 1998; Rehof 1998]
Constrained types in Erlang [Marlow and Wadler 1997] 3.31
λ&-calculus [Castagna et al. 1995] 3.31
PolyTOIL [Bruce et al. 1995, 1994] 3.32
Loop [Eifrig et al. 1995a, 1995b, 1995c] 3.33
TL [Matthes and Schmidt 1992; Matthes et al. 1994] 3.34
TooL [Gawecki and Matthes 1996] 3.35
TOFL [Qian and Krieg-Brueckner 1996] 3.36

identification purposes. In the presence of
static type checking, this is equivalent to
a restricted form of static multiple dis-
patch. Non-first-class objects in C++ are
operated upon by free functions; only ob-
jects (instances of classes) have methods.
C++ also provides parametric types (tem-
plates) that can take an arbitrary num-
ber of parameters; parametric types can
be subtyped.

The C++ type system is not verifiable
in general due mostly to its unrestricted
use of pointer conversions; however, par-

tial verification is possible and is per-
formed at compilation time. The C++
type system combines interface and im-
plementation inheritance and thus vio-
lates the first inheritance requirement.
It is not completely uniform as it distin-
guishes between “data” and “objects” and
treats attributes in a special way. C++ pro-
vides alimited substitutability for object
pointers (not for objects). In terms of ex-
pressibility, the C++ type system is quite
powerful as it has function types, paramet-
ric types, orthogonal type constructors,

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 425

and deals with mutable object types. How-
ever, when used on the test suite, the
C++ type system fails all tests except
for GENSORT. Other tests can be pro-
grammed, but only with significant type-
checking lapses. The reason for this is the
fact that C++ does not handle the typ-
ing of binary methods since it lacks mul-
tiple dispatch. Parametric types in C++
can only be used when fully instantiated,
thus limiting a programmer’s ability to
define polymorphic functions (methods).
Type parameters are always unrestricted
and novariant. The variant of C++ that in-
cludes run-time type information (RTTI)
allows for dynamic type checking (allow-
ing it to tentatively pass the BROWSER
test). Intersection and union types can
not be represented by the C++ type sys-
tem. The C++ type system is also quite
complicated.

3.2. E

E [Richardson et al. 1993] is derived from
C++ and borrows much of the type and
class system from it. Differences between
E and C++ lie in the specification of para-
metric types and in the fact that E is a per-
sistent language. In E (as opposed to C++)
parametric types (called generic classes)
can be specified using a general type pa-
rameter restriction mechanism; however,
subtyping for parametric classes can not
be defined in E. This mechanism allows
a programmer to specify restrictions on
methods of a parameter type. For exam-
ple, it is possible to require a certain func-
tion (method) parameter type to have a
compare method with a given specifica-
tion, thus making the test SORT succeed.
As a persistent language, E is not com-
pletely uniform as its persistence is type-
dependent. E also fails the BROWSER
test.

3.3. O++

O++ [Agrawal and Gehani 1989] is an-
other persistent language derived from
C++. It is similar to C++ in all respects ex-
cept for provisions for persistence, queries,

and a limited form of type-reflection. Per-
sistence in O++ is not type-based, thus its
type system is uniform in this respect.7
Type reflection in O++ is provided by
the means of the is operator that checks
whether a given object has a given type.
However, the BROWSER test in O++ still
fails with respect to type checking even
though it can potentially be programmed.
The SETS test also fails as O++ queries
do not provide the full power of SQL even
though the typing for forall and suchthat
is present in O++ at the operator (non-
user-definable) level.

3.4. O2

O2 [Lécluse et al. 1992] provides a fam-
ily of languages, but its type system is
the same in all of them, so our discus-
sion is based upon the CO2 language,
which is based on C. The type system of
O2 makes a distinction between first-class
and non-first-class objects (called values in
O2; however, values in O2 are mutable). O2
uses the term type to refer to implemen-
tation types of non-first-class objects, and
the term class to refer to types of first-class
objects, which combine properties of inter-
face and implementation types. Thus, the
type system of O2 is not completely uni-
form in that only first-class objects are ma-
nipulated by methods, much like in C++.
Inheritance in O2 is based on implemen-
tation subtyping, with an additional abil-
ity to add or modify methods. O2 adopts a
covariant signature refinement rule, thus
providing for more natural data modeling.
However, in the absence of multiple dis-
patch, this covariant rule results in the
loss of static type safety, and thus the type
system of O2 is unsound. O2 does not pro-
vide any kind of parametricity; methods,
messages, and types are not objects in O2.
O2 is uniform in terms of persistence (it
is orthogonal to the type). O2 also makes
provisions for dynamic schema evolution;
however, this evolution is not type-safe.

7 O++ still does not have orthogonal persistence,
as its persistence is declaration-based; also, persis-
tent object creation is different from transient object
creation.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

426 Y. Leontiev et al.

O2’s type system essentially fails all tests
for type system expressiveness, since even
the tests that could be programmed would
pass type checking and fail at run-time.
In Boyland and Castagna [1995], multi-
methods are used to provide type safety
for covariant specifications in the O2 pro-
gramming language. With the addition of
the mechanisms described in the article,
test POINT would succeed, while the oth-
ers would still fail.

3.5. Java

Java [Arnold and Gosling 1996] has re-
cently become a popular language in both
academic and industrial communities. Its
type system shares many features with
that of C++; therefore, the discussion will
focus primarily on its differences from
the latter. The advantages of the Java
type system include separation between
interface and implementation, better han-
dling of run-time type information, and
simplification of the overall type system
design resulting in a much more trans-
parent type system. A nonreflexive Java
fragment has been shown to be type-safe
[Drossopoulou and Eisenbach 1997], while
the full language has certain type deficien-
cies [Saraswat 1997]. On the other hand,
the Java type system lacks method types
(all methods when considered as objects
have the same type in Java 1.1), paramet-
ric types (except for statically unsafe para-
metric arrays, which are built-in), and in-
herits some of the problematic features of
the C++ type system discussed above. Java
fails all tests except for SORT, the latter
being successful due to the presence of in-
terfaces. Java fails the GENSORT test as
its method types are not sufficiently ex-
pressive for this test.

Recently, several parametric extensions
to the Java type system have been pro-
posed. Generic Java (GJ) [Bracha et al.
1998c, 1998a, 1998b] adds parametric
types to the static type system, while us-
ing the same run-time model (type pa-
rameters are erased and do not exist at
run-time). Parametric types in GJ are no-
variant and parameters can only be of ref-
erence (class) types. There are also several

restrictions on the usage of parametric
types and methods, related to the par-
ticular type inferencing algorithm used
in GJ. GJ passes the test COMPARA-
BLE and the union part of the SET test
in addition to the SORT test passed by
Java 1.1.

Another parametric type extension of
Java is proposed in Myers et al. [1997]
(JPE). It allows usage of nonreference
types as type parameters and also uses
where-clauses to express requirements on
parameter types. In this extension, para-
metric types are also novariant. The type-
checking algorithm is not presented in
Myers et al. [1997]. This extension has
test suite performance identical to that of
Generic Java, but provides a more uniform
system. These two approaches are infor-
mal in that they do not have a theoretical
proof of their soundness.

Yet another Java extension is Pizza
[Odersky and Wadler 1997], which ex-
tends Java with parametric and function
types. The approach taken in Odersky and
Wadler [1997] is similar to that of Myers
et al. [1997], but is much better formal-
ized. In fact, Pizza would have been stat-
ically type-safe if not for covariant arrays
that were left in Pizza for Java compatibil-
ity. It is shown that the resulting type sys-
tem does not have the subsumption prop-
erty. However, the same is true of all Java
extensions considered so far as well as of
Java itself. Pizza passes tests GENSORT
and APPLY in addition to COMPARABLE
and SORT due to the presence of method
types. A similar set of extensions is pro-
posed in Agesen et al. [1997], but without
method types and a supporting theory. The
latter approach, however, does lift several
restrictions placed on the usage of type pa-
rameters in Pizza.

A different approach is taken by Thorup
[1997], where Java is extended with vir-
tual types (JVT). Here the choice is made
in favor of convenience, and both static
typing and (dynamic) substitutability are
sacrificed. Because of this, tests PER-
SON, COMPARABLE, and LIST could
be programmed, but would give run-time
rather than compile-time errors in incor-
rect cases. A modification of this approach

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 427

is presented in Bruce et al. [1998], which
also compares parametric and virtual type
approaches.

Boyland and Castagna [1997] extends
Java with multi-methods that are intro-
duced via so-called parasitic methods. The
goal of this extension is to add support
for multi-methods to the existing lan-
guage providing full compatibility with
Java. Boyland and Castagna [1997] con-
tains a proof of soundness for the resulting
system.

3.6. ODMG Object Model

The Object Database Management Group
has developed a set of standards for object
database management systems [Cattell
et al. 1997]. Two of these standards specify
an object model (ODMG Object Model) and
an object query language (OQL). The ob-
ject model includes types that specify ab-
stract properties and abstract behavior of
their objects. Types are categorized as in-
terfaces (abstract behavior only), classes,
and literals (abstract state only). Types
are implemented by language-specific rep-
resentations; a single type can have sev-
eral representations, but only one of them
can be used in a single program. Inter-
faces support multiple inheritance, while
classes only support single inheritance
(class extension). Thus, the ODMG Ob-
ject Model provides separation between
interface and implementation. Interfaces
in this model can not be instantiated.
Abstract properties in the ODMG Object
Model include abstract state and abstract
relationships (two-way mappings). Rela-
tionships can only be defined between
classes. Abstract behavior is specified as
a set of operations. Behavior specifica-
tions are novariant in both their ar-
gument and return types. The ODMG
Object Model supports single dispatch.
Several system-defined parametric con-
tainer classes are present in the object
model, but the user is not allowed to de-
fine new ones. Type parameters can only
be used in property specifications; oper-
ation specifications can not be parame-
terized. OQL is a strongly typed query
language that provides a possibility of ex-

plicit dynamically checked type conver-
sions. Set operations in OQL can only be
performed on “compatible types” (types
that have the least upper bound). Since
the notion of the greatest lower bound is
not available in OQL, all set operations
use the least upper bound for typing pur-
poses. For example, intersecting a set of
students with a set of persons would re-
turn a result of type “set of persons” even
in the case when the type of students is
a subtype of the person type. ODMG/OQL
fails all tests except for BROWSER and
the union part of the SET test. It should
be noted, however, that ODMG/OQL is
not a general-purpose database program-
ming language, and therefore its perfor-
mance on the test suite is not fully in-
dicative of the merits of the ODMG Object
Model.

The ODMG object model has also been
analyzed in Alagić [1997] from the point
of view of type checking. It has been
shown that sound and verifiable type-
checking of OQL queries is impossible to
achieve. In Alagić [1999], it has also been
shown that OQL queries could be verifi-
ably typechecked if both the ODMG type
system and the ODMG language bindings
supported parametric polymorphism and
constrained types. This extension to the
ODMG model does not change its perfor-
mance on the test suite.

3.7. SQL-99

The SQL-99 language standard [SQL
1999] extends the industry standard
database query language SQL with a sig-
nificant number of new features, includ-
ing computationally complete semipro-
cedural language and object-oriented
extensions such as user-defined data types
and dynamically dispatched methods.

The type system of SQL-99 consists
of predefined (built-in), constructed, and
user-defined types. Constructed types in-
clude array types, reference types, and row
types. Constructed types are parameter-
ized: an array type specifies the type of
its elements and maximum allowed cardi-
nality, a reference type specifies its refer-
enced type, and a row type specifies a set of

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

428 Y. Leontiev et al.

type-value pairs (row types are primar-
ily used for table specifications). The con-
structed types are special: the user is not
allowed to change their behavior or define
new constructors. Data (objects) of differ-
ent types do not have the same status in
the language.

In addition to types, there is also the
notion of domain. Domain is essentially a
data type plus a set of predicates restrict-
ing the possible values of that type. Do-
main usage, however, is restricted: for ex-
ample, domain can not be used to specify
the type of a procedural parameter.

User-defined types can be either struc-
tured or distinct. Distinct types are dis-
tinct synonyms of predefined types. User-
defined subtyping can not be specified for
distinct types. Structured types have sin-
gle inheritance. There is an additional re-
quirement that every subtype family must
have exactly one common supertype. It
is also possible to specify that a user-
defined type is abtract (noninstantiable)
or final (nonsubtypable). SQL-99 has the
subsumption property.

User-defined types can define methods.
For structured types, methods can be no-
variantly overridden and dynamically dis-
patched according to the receiver type. It
is also possible to define CONSTRUCTOR and
STATIC methods. Each data type attribute
automatically defines accessor and muta-
tor methods; however, these methods can
not be overridden.

In SQL-99, the user can specify func-
tions and routines that are not methods
(i.e., they are not attached to any type).
These routines can be overloaded; the rou-
tine to execute is determined statically, ac-
cording to the type specificity of all the
parameters. It is required that such de-
termination be unambiguous. Routine pa-
rameters can be specified as input, out-
put, or input-output. A limited form of type
parametricity is allowed: a function (or
a method) can be type-preserving. In this
case, one of the input parameters can be
specified as a RETURN parameter that will
give its type to the result of function appli-
cation. However, the validity of this asser-
tion is not statically guaranteed. There-
fore, a run-time type check is performed

when the value is returned to ensure that
its run-time type is the same as (or a sub-
type of) the run-time type of the specified
parameter.

A mechanism is provided for user-
defined sorting and comparison that al-
lows the user to define comparison proce-
dures for all user-defined types. However,
this mechanism is special, and can not
be applied to binary methods other than
comparison.

SQL-99 routines, types, methods, and
functions can be persistent, either as parts
of a schema or as parts of a persistent
module.

SQL-99 has an extensive declarative
query mechanism based on a significantly
extended version of the standard SQL
SELECT statement. The query mechanism
is integrated with array indexing, refer-
ence processing, and path expressions that
allow direct access to object attributes
and methods. Procedural capabilities, in-
cluding assignment, are also supported;
however, there is no concept of instance-
update methods. In other words, apply-
ing a “mutator” method always “creates”
a new instance that must in turn be as-
signed to the old instance. All system-
generated mutator methods are therefore
type-preserving.

SQL-99 is statically and strongly typed.
It is also fully reflexive, allowing full dy-
namic schema modification and manipu-
lation. Run-time type inspection is also
supported.

Overall, the SQL-99 type system is ver-
ifiable and fully reflexive, while being
non-uniform and lacking most of the ad-
vanced expressibility features. As a re-
sult, it fails all the tests except for the
BROWSER test and the union part of the
SET test. The SORT test can also be pro-
grammed, but only using the special mech-
anism designed specifically for sorting and
comparison.

However, just as in the case of the
ODMG object model, it should be noted
that the main focus of SQL-99 is not a
general-purpose object-oriented database
programming language, and therefore its
performance on the test suite is not fully
indicative of the merits of the SQL-99

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 429

standard. For example, useful notions
such as triggers, access rights, transaction
atomicity, while being extremely impor-
tant, are beyond the scope of this survey
since they do not affect the type system.

3.8. XQuery

XQuery 1.0 [W3C 2002] is a query lan-
guage for retrieving and interpreting in-
formation stored in XML format. An
XQuery program is a set of XQuery func-
tions; there is no notion of method dis-
patch, since data are considered to be pas-
sive elements of processing. In XQuery,
data types are regular grammars. For
example, data of the type denoted as
((A|B)∗, C+, A∗) consist of a sequence of
one or more data items of type A or B,
followed by one or more data items of
type C, followed by zero or more data
items of type A. Since XQuery is a purely
functional language, it does not need typ-
ing rules for assignment or mutable data.
XQuery has subsumption, and its (struc-
tural) subtyping is based on grammar in-
clusion (type t1 is a subtype of t2 if and
only if the language generated by t1 gram-
mar is a subset of the language gener-
ated by t2). XQuery supports static type-
checking. The XQuery type system also
supports statically typed typecase state-
ment that allows type-safe queries over
data with a structure that is not known at
compile time. On the other hand, there is
currently no support for overloaded func-
tions, user-defined higher-order functions,
or user-defined parametric types. Thus,
this type system lacks most of advanced
expressibility features.

At the time of writing, XQuery is
still being developed, and many of its
type system features have not been fi-
nalized. For example, it has not been
decided whether user-defined subtyping
will be added; whether user-defined poly-
morphic functions will be allowed; how
metadata queries should be constructed
and typed; or whether static typechecking
will be mandatory or merely suggestive.
Many theoretical aspects of the proposed
type system also need further develop-
ment, such as semantics and handling

of intersection types (interleaved types in
XQuery). This makes it impossible to re-
liably apply the tests to the XQuery type
system at this time.

3.9. Modula-2

The following group of languages is based,
directly or indirectly, on Modula-2 [Wirth
1983]. Modula-2 is neither an object-
oriented nor a persistent language. Its
type checking is verifiable. Modula-2 has
a construct for separating interface and
implementation in the form of interface
and implementation modules, and the lan-
guages based on Modula-2 also use this
approach. This mechanism has proven
to be very convenient and robust for
procedural languages. However, its ad-
vantages and disadvantages for object-
oriented languages with their primarily
type-based approach to both interface and
implementation specification are yet to be
evaluated.

3.10. DBPL

DBPL [Schmidt and Matthes 1994] is
one of the persistent languages based
on Modula-2. In DBPL, modularity is
achieved by using the native language
(Modula-2) modularization mechanisms
with a special DATABASE MODULE construct.
In the absence of module persistence, it
does not cause problems with orthogonal-
ity. Transactions are supported as special
procedures. Partial SQL compatibility is
provided by the use of a RELATION OF type
constructor with the appropriate set of
operations and first-order constructs ALL
IN, SOME IN, and FOR EACH. DBPL also al-
lows updatable and nonupdatable views
(via SELECTOR and CONSTRUCTOR procedu-
ral specifications). DBPL is not object-
oriented; however, it does offer implemen-
tation types (with no methods). The DBPL
type system is static and nonreflexive.
The tests described in Section 4 are not
applicable to DBPL directly as it is not
object-oriented. DBPL would tentatively
pass only the test GENSORT. The DBPL
type system is uniform in that system and
user-defined types have the same rights.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

430 Y. Leontiev et al.

3.11. Modula-90

Another persistent language based on
Modula-2 is Modula-90 [Lutiy et al. 1994].
Modula-90 has some rudimentary object-
oriented capabilities (single inheritance)
and is similar to C++ in that method sig-
natures are novariant, object types are dif-
ferent from other types, implementation
and interface hierarchies coincide, and
there is only a limited support for func-
tion types. Thus, the Modula-90 type sys-
tem is not uniform. An interesting prop-
erty of Modula-90 is the presence of type
DYNAMIC. Data of this type are pairs of
values and their types expressed as val-
ues of a compound type DATATYPE. Type
DATATYPE is the type of the representa-
tions of all data types in the system; it
can be used independently of the DYNAMIC
type to store, retrieve, and operate upon
various data types. Any value can be co-
erced to the type DYNAMIC. Modula-90 pro-
vides a special operator TYPECASE that
provides a type-safe interface to the val-
ues of type DYNAMIC. The language also
provides a set of predefined type opera-
tors that can be used to operate on values
of type DATATYPE. Thus, Modula-90 pro-
vides type-safe immutable type reflection.
The Modula-90 type system is static and
non-parametric; however, it does provide
orthogonal persistence. The only express-
ibility tests that succeed in Modula-90 are
GENSORT and BROWSER. Modula-90
provides incremental type checking, in-
cluding its dynamic variety.

3.12. Modula-3

Modula-3 [Harbison 1992] is another
language with object-oriented extensions
based on Modula-2. Modula-3 is not a
persistent programming language and its
object extensions are similar to those of
Modula-90; it also has TYPECASE state-
ment that gives a programmer the abil-
ity to request dynamic type checking in
a type-safe manner. Modula-3 has param-
eterized modules; however, parameterized
types are not allowed. Modula-3 passes the
tests COMPARABLE, SORT, GENSORT,
and BROWSER.

3.13. Oberon-2

Another descendant of Modula-2 is
Oberon-2 [Mössenbök and Wirth 1993].
Subtyping in Oberon-2 is based on record
extension, also known as structural
subtyping. The subtyping relation-
ship is predefined for atomic types.
Thus, Oberon-2 has multiple subtyping.
Oberon-2 supports single dispatch. Sub-
typing of procedure (method) types is
based on novariance of argument and
result types; only the receiver type is co-
variant. Parametricity is not supported by
Oberon-2. Separation between interface
and implementation is supported at the
level of modules in the same manner as in
all Modula-2 based languages. Oberon-2
also has an extended WITH statement
that allows a programmer to dynamically
inspect the type of an object and act
according to it. This statement is similar
to the TYPECASE statement in Modula-3
and Modula-90 discussed earlier. The
type system of Oberon-2 would pass the
tests SORT, GENSORT, and BROWSER.

There has been a proposal for adding
parametric types and methods to Oberon
[Roe and Szyperski 1997]. In this pro-
posal, parametric types are novariant, and
the type checker ensures that a param-
eter type substitution exists that satis-
fies the rules for matching arguments
of a particular call. Unfortunately, nei-
ther the typechecking algorithm nor the
proof of its soundness are present in
Roe and Szyperski [1997].

3.14. Lagoona

Lagoona [Franz 1997] is another descen-
dant of Oberon. It focuses on messages,
objects, and message passing. In contrast
to most object-oriented languages, a mes-
sage in Lagoona is an independent en-
tity. An interface (category in Lagoona)
is a set of messages. Each message has
a type specification. There can be sev-
eral methods implementing a message,
each for a different receiver type. Imple-
mentation in Lagoona is specified by a
class (usually a record type); when a cate-
gory meets a class, a type (combination of

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 431

interface and implementation) is born. No
code inheritance is possible in Lagoona,
only structure inheritance is possible.
Variables in Lagoona can be specified
using either category or class. Lagoona
thus provides a complete separation be-
tween interface, implementation (repre-
sentation), and code (methods). When a
message is sent to an object, an object
can forward (resend) it to another object.
Other features of the Lagoona type system
include single dispatch and single inher-
itance. Unfortunately, the article [Franz
1997] provides insufficient information to
test the performance of Lagoona on the
test suite.

3.15. Theta

The language Theta [Day et al. 1995] com-
bines the expressive power of parametric
and inclusion polymorphisms. It also pro-
vides where-clauses that give its type sys-
tem a flexibility similar to that provided
by matching. Theta has single dispatch,
multiple inheritance for types (interfaces),
and single inheritance for classes (imple-
mentations). Theta only allows novariant
parametric types. Method types can be
specified in Theta and methods (functions)
can be used as first-class values. Theta
also has reflexive capabilities in the form
of the typecase operator. Theta’s type sys-
tem is verifiable, uniform, and static. It is
also quite expressive. However, its sound-
ness has not been proven. Theta passes the
tests COMPARABLE, SORT, GENSORT,
LIST, and BROWSER.

3.16. Ada 95

The language Ada 95 [Kempe Software
Capital Enterprises 1995] is a procedural
language with some object-oriented fea-
tures. Ada 95 has a remarkably strong
support for parametricity: generic pack-
ages (parametric modules) and generic
subprograms (parametric functions) can
not only be instantiated, but also used as
parameters of other generic entities, thus
providing for great flexibility. Parameter
types can be constrained by a with clause
requiring the type to have a method with a

particular signature, which can also be pa-
rameterized. However, Ada generics have
to be fully and explicitly instantiated be-
fore they can be used. Another interesting
and powerful feature of Ada is the notion of
an access type which generalizes such no-
tions as “pointer” and “reference”, allow-
ing also for user-defined access types. Ada
also has function types, and function argu-
ments can be specified as in, out, or inout
according to the role they play. Ada uses its
package mechanism (similar to the module
mechanism of Modula-2) to provide sep-
aration between interface and implemen-
tation. On the other hand, object-oriented
Ada 95 features appear to be relatively
weak: in order to be used for dynamic
dispatch, a type has to be explicitly de-
clared as tagged. In order to be able to
use subtyping (inclusion) polymorphism,
a programmer has to use a special form of
parameter specification. Ada provides sin-
gle dispatch and single inheritance with
novariant methods. Subclassing in Ada is
limited to record extension. In Ada, types
can be examined dynamically; data of a
type can be converted to any other type,
and such a conversion is dynamically type-
checked. The Ada type system is very com-
plicated and it places emphasis on static
rather than dynamic polymorphism. Ada
will pass the tests COMPARABLE, SORT,
GENSORT, LIST, and BROWSER, pro-
vided generic packages rather than types
are used.

3.17. Sather

Next, the object-oriented language Sather
[Stoutamire and Omohundro 1996] will be
considered. Sather is based on the much
better known Eiffel [Meyer 1988]; how-
ever, Eiffel is not discussed here as one
of the primary goals behind the design
of Sather was to remedy typing problems
present in Eiffel.

Sather has multiple interface and
implementation inheritance hierarchies
almost independent of each other (con-
crete implementation types called classes
in Sather must have leaf interface types).
Implementation subtyping in Sather
corresponds to textual inclusion with

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

432 Y. Leontiev et al.

replacements. Sather uses single dispatch
and is strongly and statically typed.
Therefore, its methods are covariant on
the receiver and contravariant on other
arguments. Sather also provides partial
closures of its methods and iterators as
first-class values. It has parametric im-
plementation types that can use a form of
bounded polymorphism to constrain type
parameters. These parametric types are
novariant and they can not be used until
fully instantiated. Method arguments
in Sather can be specified as in, out, or
inout, according to the role they play. The
Sather type system correctly handles all
these cases. Argument types and local
variables can be specified by using either
Sather types or Sather classes. In the
former case, the parameter class has to be
a subtype of the given type; in the latter
case, the parameter class has to match the
specification exactly. The language also
provides a novel notion of iters (iterators)
that are an object-oriented generalization
of loop control structures. Sather also
provides a special compound type TYPE
and operators typeof and typecase. Thus,
it has type-safe immutable type reflec-
tion. The type system of Sather therefore
possesses verifiability (even though it has
not been formally proven) and satisfies
inheritance and (partially) uniformity
and expressibility requirements. It passes
tests PERSON, COMPARABLE, SORT,
GENSORT, LIST, and BROWSER and
fails on tests POINT, STREAMS, SET,
and APPLY. Note that APPLY fails be-
cause parametric types in Sather require
full instantiation before they can be used.

3.18. Emerald

Emerald [Raj et al. 1991] is a nontra-
ditional object-oriented language that
combines features of class-based and
delegation-based object-oriented lan-
guages. Objects are created in Emerald
by a special syntactic form called an
object constructor. The object constructor
plays a triple role: first, it defines the
object’s implementation; second, it de-
fines a publicly visible object interface
(type in Emerald); third, it denotes the

process of object creation itself. Subtyping
in Emerald is structural, as a type is
understood as a set of signatures. Types
are also objects that can be created by
object constructors; thus, a user can
define new types, including parametric
ones. The type checker uses user-defined
types along with system-supplied ones
to typecheck a program statically. Since
types are objects, dynamic type checking
is also possible. The Emerald type system
is therefore verifiable, uniform, reflexive,
satisfies inheritance requirements, and
is quite expressive. However, its sound-
ness is unknown. Emerald passes the
tests PERSON, STREAMS, SORT, and
BROWSER.

3.19. BETA

BETA [Madsen et al. 1993] is a unique
object-oriented language that unifies the
notions of class, object, and procedure
(method) via its notion of a pattern.
Patterns can contain other patterns
(such as member objects, code fragments,
and types). BETA also has fragments that
play the role of modules and can also be
used to separate interface from implemen-
tation. BETA fragments can be regarded
as high-level restricted patterns since they
operate on the same basic principles. Pat-
terns can be virtual; a virtual pattern
can be extended by adding code fragments
in places specified by the inner place-
holder (also known as method extension
as in Simula-67 [Birtwistle et al. 1979]),
by extending a virtual pattern with ad-
ditional members (also known as record
extension), or by supplying a class pat-
tern in place of a virtual one (also known
as parametric instantiation). Virtual pat-
terns have to be explicitly declared as
such. Unification of all language concepts
using the notion of pattern makes it pos-
sible to design a very powerful language
based on only a couple of orthogonal prin-
ciples. While the language design simplic-
ity is very impressive, the resulting lan-
guage is quite unconventional. Structural
subtyping in conjunction with a class sub-
stitution mechanism makes the type sys-
tem of BETA statically unsound; dynamic

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 433

type checks are inserted to ensure type
safety. Due to the uniformity of BETA, all
tests except for POINT can be coded in
it, but only SORT and GENSORT have
static type safety. Illegal usage in other
tests would cause run-time type errors.

3.20. VML

In the persistent object-oriented language
VML [Klas and Turau 1992], all objects
that are instances of object types (called
classes) are persistent while all (non-first-
class) objects of nonobject types (called
data types) are transient. However, a value
of a non-object type can become persistent
if it is referenced from a persistent object.
Thus, VML does not have orthogonal per-
sistence. VML object types are first-class
objects and as such belong to their respec-
tive metaclasses. Metaclasses define some
of the essential class methods, for example
the methods for the inheritanceBehavior
message that is used when a method for a
message is not found in the receiver class.
Thus, VML allows user-defined method in-
heritance due to its “classes are objects”
concept. However, VML data types are not
first-class objects and thus VML only par-
tially satisfies the type reflexivity require-
ment. Inheritance in VML can be tailored
to specific application needs by using the
user-definable inheritanceBehavior mes-
sage found in an appropriate metaclass.
VML does not have a verifiable type sys-
tem, therefore the tests are not applicable
to it.

3.21. Napier88

The persistent programming language
Napier88 (version 2) [Morrison et al. 1996]
is not an object-oriented programming
language; however, its type system is
quite powerful. In Napier88, parametric
types can be built freely from the basic
types, type constructors, and type vari-
ables. Parametric procedures (procedures
with parametric types) can also be de-
fined and are first-class objects. Napier88
types are purely implementation types;
however, Napier88 provides the type con-
structor abstract that may be considered

as an interface type as it provides exis-
tential quantification over witness type(s).
Thus, the type system of Napier88 satis-
fies all expressibility requirements not re-
lated to the notions of subtyping and in-
heritance. However, since Napier88 does
not have the notions of subtyping and in-
heritance, it fails the requirements related
to those notions. In Napier88, paramet-
ric types can not be used until fully in-
stantiated. Napier88 provides support for
a limited form of linguistic reflection via
dynamic environments. Environments are
dynamically typed structures that provide
bindings of names to Napier88 entities.
Environments can be dynamically modi-
fied, inspected and used in expressions.
Environments can be persistent.

Napier88 has a special type any that is a
union type of all types in the system. A spe-
cial project operator can be used to deal
with values of type any in a type-safe man-
ner. This operator is similar to TYPECASE
of Modula-90. Since any value can be in-
jected into type any, the above mechanism
makes run-time data type inspection pos-
sible. Thus, the type system of Napier88
has type-safe type reflexive capabilities.

The persistent store of Napier88 is an
object of type any that holds a typed col-
lection of objects. The objects from the per-
sistent store can be projected from any
and operated upon transparently after
that. Napier88 uses a persistence model
based on reachability from the root (per-
sistent store) object. Thus, the persistence
in Napier88 is orthogonal to type.

In spite of the power of its type system,
Napier88 only unconditionally passes
the test LIST. However, it tentatively
passes the tests COMPARABLE, SORT,
GENSORT, and APPLY if usage of explicit
type parameters in parametric calls is al-
lowed. In other words, the burden of infer-
ring correct parametric instantiation from
the code in Napier88 is placed on a pro-
grammer rather than on the type checker.

3.22. Strongtalk

Strongtalk [Bracha and Griswold 1993]
is a statically typed version of Smalltalk
[Goldberg and Robson 1989]. Smalltalk

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

434 Y. Leontiev et al.

is widely regarded as the first purely
object-oriented language; however, it has
no static type checking.

In Strongtalk, everything (including
types, called classes in Strongtalk, meth-
ods, and messages) is a first-class ob-
ject. Thus, Strongtalk is uniform.8 All
Strongtalk objects can be operated upon
and modified at run-time and therefore
Strongtalk is reflexive (the reflexivity is
type-unsafe). Strongtalk separates inter-
faces (protocols) from implementations
(classes), provides subtyping and match-
ing. It also has parametric (novariant)
types and messages, block types, and
union types. However, the user has to ex-
plicitly specify a mechanism to guide para-
metric type inferencing, resulting in the
loss of substitutability. It is also unclear
from Bracha and Griswold [1993] whether
Strongtalk allows bounded parametric
types. Strongtalk provides single inheri-
tance and single dispatch. Subtyping is
structural, but the user can use brands
to restrict it. Even though Strongtalk was
not designed to be a persistent language,
it does provide uniform persistence of its
objects in a so-called image. Overall, the
Strongtalk type system is quite expres-
sive, uniform, and reflective. It passes the
tests COMPARABLE, LIST, BROWSER,
and, possibly, GENSORT (if parametric
type bounds are allowed). The union part
of the SET test is also passed. Strongtalk
would fail the tests PERSON, POINT,
STREAMS, as well as APPLY and SORT
(the latter two could be programmed, but
only with blocks rather than messages).

3.23. Cecil

Cecil [Chambers 1993, 1992] is a
delegation-based language that has both
implementation and interface types (the
former are called representations while
the latter are called types). Types in Cecil
are used for suggestive type-checking
only as Cecil’s multiple dispatch is done
according to representations. Cecil’s
type checking is suggestive because it

8 Except for a possible uniformity breach in the form
of direct attribute access.

might report false errors or miss real
ones, therefore its type discipline is not
enforceable. Cecil’s does not support
incremental type checking. Cecil uses
multiple dispatch and provides covariant
specification of specialized arguments
together with contravariant specifica-
tion of unspecialized ones. Closures and
methods are first-class objects in Cecil;
they are contravariantly typed. Cecil
also provides novariant parametric types
and methods as well as type parameter
bounds. Parametric types in Cecil can be
instantiated either explicitly or implicitly;
in the latter case, the user has to provide
a hint to the type inferencing algorithm.
This behavior results in loss of substi-
tutability. Cecil has multiple inheritance,
union and intersection types. Overall, the
Cecil type system is quite expressive and
uniform, while being nonreflexive9 and
static. It also satisfies the inheritance
requirements. Since Cecil type checking
is only suggestive, it is difficult to apply
the tests to it. However, tests that Cecil
would tentatively pass include PERSON,
POINT, SORT, GENSORT, LIST, SET,
APPLY, and BROWSER. It would fail
the tests COMPARABLE (due to the
restrictions on parametric type bounds)
and STREAMS (due to the novariance of
parametric types).

There are several extensions/modifica-
tions to the original Cecil language. One
of these extensions is BeCecil [Chambers
and Leavens 1996, 1997]. BeCecil is a stat-
ically typechecked version of Cecil. It sup-
ports block and modular structure, has
extensible objects and an extensible type
system, and its type system has been for-
malized. However, soundness and substi-
tutability properties have yet to be proven.
BeCecil also has a novel notion of accep-
tors which can be considered as an object-
oriented generalization of the assignment
operator. However, BeCecil does not have

9 Being a delegation-based language, Cecil has lan-
guage reflection; however, the type system of Cecil is
not reflexive as Cecil types are not objects and can
not be manipulated by the language. More precisely,
representations of Cecil are reflexive while types are
not.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 435

parametric types while sharing most of
the other features with Cecil. The absence
of parametricity contributes to the de-
creased expressibility of the BeCecil type
system as compared to that of Cecil. Be-
Cecil passes the tests PERSON, POINT,
SORT, GENSORT, and LIST, and fails
the rest.

Another modification (Mini-Cecil) is de-
scribed in Litvinov [1998]. Mini-Cecil
strives to achieve a combination of static
typing and a very general form of para-
metric polymorphism. Mini-Cecil also has
frameworks which are basically interfaces
with what appears to be an analog of
selftype. The frameworks can be used
to separate interface and implementation,
as well as to achieve the effect of match-
ing. Methods in Mini-Cecil are first-class
objects; multi-methods and multiple in-
heritance are supported. Subtype clauses
can have a form of forall α C1 isa C2:
C3 isa C4, where α is a set of free type
variables and Ci are type specifications.
The resulting type system is very expres-
sive; it can even be argued that it is
the most expressive type system possi-
ble. However, the typechecking seems to
be undecidable. The algorithm proposed
is a conservative approximation, and its
soundness is yet to be proven. It is also
unknown if the resulting type system has
substitutability. Mini-Cecil would pass all
tests except for BROWSER as it does not
have reflexive capabilities.

3.24. Transframe

Transframe [Shang 1997] allows the user
to specify whether a parameter of a para-
metric type is to be covariant or novariant
(type-exact) and to constrain it by giving
it an upper bound. Subtyping and sub-
classing (interface and implementation in-
heritance) are different concepts in Trans-
frame. There is a distinct name selfclass
that allows classes to support matching.
The language unifies the notions of class
and function (like BETA). Transframe also
supports multiple dispatch. There are pro-
visions for dynamic type checking and
dynamic schema evolution. Transframe
implicitly instantiates parameter types in

expressions; unfortunately, there is no for-
mal proof of type safety. In fact, it can be
shown that the type system presented in
Shang [1997] is not type-safe. Overall, the
Transframe type system is verifiable, very
expressive, almost uniform, and dynam-
ically reflective. However, it is unsound.
Transframe would pass all expressibility
tests except for the test STREAMS (due to
its inability to represent contravariant
type parameters) and the intersection part
of the test SET (due to the absence of in-
tersection types).

3.25. CLOS

CLOS (Common LISP Object System)
[Bobrow et al. 1988] is a reflexive lan-
guage, with all the power of Common
LISP reflection. CLOS has types and ob-
ject types (called classes), the latter be-
ing a subset of the former. CLOS types
are implementation types; they do not
specify any interface. However, CLOS
classes combine implementation and in-
terface definitions. Since CLOS makes a
distinction between object and non-object
types (where only object types define in-
terfaces and are subject to inheritance),
the CLOS type system is not completely
uniform. CLOS classes are objects that be-
long to metaclasses, which are also objects;
CLOS messages, methods, and functions
are also CLOS objects that can be operated
upon and changed at run-time, so CLOS
is fully reflexive and dynamic. Subclass-
ing in CLOS is slot collection extension
with slot types changed covariantly (a type
of a slot is the intersection of the types
specified for this slot in all of the class’
superclasses). Messages (called generic
functions) are also covariant. CLOS is not
statically typed. A CLOS message can be
dispatched to yield an appropriate method
(or a combination of methods) according to
the class or value of all arguments (mul-
tiple dispatch). Methods are covariant on
all arguments10 since CLOS has multi-
ple dispatch. If more than one method is
appropriate for the given arguments, a

10 More precisely, methods are covariant on those ar-
guments that are constrained by class specifications.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

436 Y. Leontiev et al.

user-definable way of constructing the
function to be executed out of all ap-
propriate methods is employed. In the
body of a method, a special function
call-next-method can be called to invoke
the next applicable method. This capabil-
ity is analogous to the inner construct
of Simula-67 [Birtwistle et al. 1979] and
is much more powerful. Overall, the dis-
patch mechanism of CLOS is the most
powerful of all known mechanisms, if the
consideration is limited to classes and
values. CLOS can not dispatch on types.
Updates in CLOS are invoked on slots
directly or by using an appropriate mes-
sage. CLOS is not statically type checked,
therefore a run-time error is signalled if
a value assigned to a slot does not con-
form to the slot’s type specification. Since
CLOS is not statically typed, the tests are
in general, not applicable to it; however,
CLOS would pass POINT, APPLY, and
BROWSER tests if its type discipline were
enforceable.

3.26. Dylan

Dylan [Apple Computer, Inc. 1994] is an
imperative programming language simi-
lar to CLOS. While there are certain dif-
ferences between the two, they are almost
identical in terms of their type systems.
Dylan has more control over the defined
classes, as Dylan classes can be sealed
(only subclassable by the library where
they belong) or open, primary (there is
only single inheritance of primary classes)
or free, abstract (all superclasses of an
abstract class must be abstract) or con-
crete. There is also support for singleton
types, but not singleton classes. Multiple
dispatch in Dylan is also different from
that in CLOS in that in Dylan all argu-
ments are equal, and the method speci-
ficity is defined by a class precedence list.
Dylan also has modules with import and
export lists and module libraries.

3.27. TM

TM [Bal et al. 1993] is an object-oriented
persistent language with many functional
features. TM has a verifiable type sys-

tem based on Cardelli [1988]. However,
the soundness proof seems to be miss-
ing. TM’s type hierarchy includes user-
definable sorts (atomic, immutable types)
and classes. Sorts and classes have rep-
resentation (implementation) types that
are almost hidden inside of them. Methods
and types are not first-class values in TM.
TM method specification uses selftype
to achieve the effect of matching. Since
this is the only polymorphic mechanism
in TM, specifications are covariant and
substitutability does not hold, as func-
tional updates are present. No method
redefinition mechanisms are provided in
TM. The TM type system extends the type
system of Cardelli [1988] with a power-
set type constructor. Since TM is stateless,
powerset types are covariant. TM allows
enumerated as well as predicative sets
as primitive language expressions. Enu-
merated sets in TM can only be homoge-
neous, while predicative sets can be het-
erogeneous up to subtyping. Predicative
sets in the presence of the record-based
type system of Cardelli [1988] and the ab-
sence of updates play a role of embedded
queries that are highly integrated with the
rest of the language. TM provides several
levels of constraint specification mecha-
nisms which are also set-based and resem-
ble relational constraint systems. TM also
provides first-order set operations. How-
ever, the set operations require special
treatment and are not messages in the
usual object-oriented sense. It is also un-
clear how well different type constraints
for different kinds of sets interact with
each other. TM has modules that define
their persistent components by names,
and everything those objects refer to is
also implicitly persistent. Thus, TM pro-
vides a combination of static name-based
and dynamic reachability-based persis-
tence, completely orthogonal to the type.
Overall, the TM type system is verifi-
able, sound, supports both interface and
implementation inheritance (though they
are not completely independent of each
other), is almost uniform, partially expres-
sive, and provides support for declarative
queries. However, it does not support sub-
stitutability and is nonreflexive and static.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 437

It would unconditionally pass tests SORT
and LIST. Test SET also succeeds be-
cause of built-in support for set operations.
However, it would not be possible to con-
struct user-defined types with the same
functionality.

Most of the following languages bor-
row much of their expressiveness from
ML [Miller et al. 1990]. ML is a language
with both functional and imperative fla-
vors; it also has some object-oriented fea-
tures. This can be said about almost all the
languages discussed below.

3.28. ML

Standard ML [Miller et al. 1990] is a
functional language with some impera-
tive features. It is strongly typed and
provides provably decidable and sound
type checking. In the ML type system,
all type information is inferred by the
type checker. Addition of explicit type
annotations and declarations is consid-
ered in Odersky and Läufer [1996].
Standard ML also provides a very so-
phisticated module system, where each
module (structure) has its type (signa-
ture). However, ML’s structures are more
like abstract (implementation) types than
modules, as they are designed to shield
their internals from the rest of the pro-
gram and not to handle separate compi-
lation or similar tasks. There is no no-
tion of subtyping in Standard ML, except
for signature matching, which can be con-
sidered as restricted structural subtyp-
ing for abstract (interface) types. Highly
parametric types are supported in Stan-
dard ML. They can arbitrarily include
type variables and can be user-defined.
Thus, the type system of Standard ML is
uniform. For interface types (signatures)
there are also functions that map signa-
tures to signatures (functors). Function
types in ML can also be polymorphic.
Polymorphism in Standard ML function
types is expressed via type expressions
that have to be “pattern-matched”. For ex-
ample, the type of the identity function
in Standard ML is ‘a → ‘a, where ‘a
is a type variable. This kind of polymor-
phism is uniform in that it allows user-

defined parametric types. Standard ML,
being in essence functional, allows up-
dates on so-called ref types. These types
are reference types somewhat similar to
pointer types in C or C++. ref types have
a restricted parametricity, as an argument
of a ref type must always be a mono-
type (e.g., see discussion in Wright [1993]).
Types are not objects in Standard ML
even though they can be operated upon
by functions similar to those that oper-
ate on ordinary values. Overall, the type
system of Standard ML is theoretically
sound, very expressive and uniform, while
lacking inheritance and being only par-
tially reflexive. This type system would
tentatively11 pass tests PERSON, SORT,
GENSORT, and APPLY (for the test
SORT use of modules rather than types
is required).

3.29. Machiavelli

Another language from this family is
Machiavelli [Ohori et al. 1989; Buneman
and Ohori 1996] which is a persistent lan-
guage that extends ML by adding more
polymorphism as well as query and view
support. Machiavelli has a verifiable and
provably sound type system. It adds record
inclusion polymorphism to ML by using
type variables of the form (a’’), that cor-
respond to an arbitrary record extension.
Thus Machiavelli allows “more polymor-
phic” types than ML. Machiavelli is also
able to automatically maintain more so-
phisticated (even noncovariant) type con-
straints on description types.12 It is there-
fore possible for Machiavelli’s type checker
to statically infer an error in case a join
of two sets of records whose types do not
have a greatest lower bound is attempted.
Machiavelli’s type system treats descrip-
tion and other types differently. Thus, it
is not completely uniform. In Machiavelli,
a special set type constructor {} is intro-
duced and query operations are defined for
objects of set types. Machiavelli extends

11 Provided that the notion of subtyping is substi-
tuted by the notion of code reuse.
12 Description types are ML types that do not include
→ outside of ref.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

438 Y. Leontiev et al.

the type system of ML to be able to deal
consistently with type inference of gener-
alized relational operations. Machiavelli
also provides views similar to those in re-
lational databases. Namely, a Machiavelli
view is defined as a function that returns
a projection of a given set over some ap-
propriate type. Machiavelli views are not
updatable. Overall, the type system of
Machiavelli is verifiable, sound, very ex-
pressive, reflexive, partially uniform, par-
tially dynamic, and capable of supporting
views. However, it lacks interface inheri-
tance. It passes the same tests as ML with
the addition of the SET test due to the spe-
cial support of sets by the language and
the type system.

3.30. Fibonacci

Fibonacci [Albano et al. 1995] is a per-
sistent object-oriented language that is
a descendant of Galileo [Albano et al.
1985], which is, in turn, based on ML.
It has some functional and imperative
features and possesses a verifiable, prov-
ably sound type system; it also has mul-
tiple inheritance and single dispatch. In
Fibonacci, object types are independent
from each other in terms of subtyping;
however, role types form independent di-
rected acyclic graph (DAG) subhierar-
chies for each object type. For exam-
ple, an object of type PersonObject can
play roles Person, Employee, Student, and
TeachingAssistant (who is both Employee
and Student). Fibonacci roles can be
dynamically created and Fibonacci ob-
jects can dynamically acquire new roles.
Fibonacci types are not objects in the lan-
guage. Method arguments in Fibonacci are
contravariant, while their results are co-
variant. Fibonacci supports a distinction
between methods and functions: meth-
ods are attached to role types and are
not Fibonacci objects, while functions are
independent and are first-class values.
Fibonacci also has nonobject and nonrole
types, such as basic types, class types,
function types, and association types.
These types form a hierarchy independent
of that of object and role types. Fibonacci
defines some built-in parametric types

(Class, Sequence, and Association). How-
ever, it is unclear from Albano et al. [1995]
if the user can create new parametric
types. In Fibonacci, objects of the same
object type can have different implemen-
tations. These implementations are de-
fined at the time of object creation. Thus,
an implementation in Fibonacci is not a
part of an object or role type specifica-
tion. Updates in Fibonacci are allowed on
special novariant Var types. In Fibonacci,
the syntax of message sends determines
the strategy of the method lookup. There
are two strategies: upward lookup, that
corresponds to the standard lookup pro-
cedure in the presence of multiple inheri-
tance, and double lookup, that first tries to
find an appropriate method in the subroles
of the role it has started from. Fibonacci of-
fers declarative query operators on para-
metric Sequence types. These are types
of immutable sequences that are super-
types of their respective mutable Class
and Association types. Thus, the query
facilities of Fibonacci are also applica-
ble to Fibonacci classes and associations.
Fibonacci has a reachability-based orthog-
onal persistence model. Everything acces-
sible from the top-level environment auto-
matically persists between sessions. Thus,
Fibonacci persistence is orthogonal to both
interface and implementation types. Over-
all, the Fibonacci type system is verifiable,
provably sound, provides different inher-
itance for interface and implementation
types, and has inclusion polymorphism
(substitutability). It is also expressive, al-
most uniform, and is capable of supporting
query typing. However, it is non-reflexive
and static. The type system of Fibonacci
would pass the same tests as that of
Machiavelli.

3.31. ML≤ and Other Subtyping Mechanisms
for ML

The language ML≤ [Bourdoncle and Merz
1996a, 1996b] is an extension of ML
with subtyping and higher-order poly-
morphic multi-methods. It has type in-
ference, strong static type checking, and
substitutability. ML-like type constructors
provide parametric polymorphism. Type

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 439

constructors in ML≤ can be specified as co-
variant, novariant, or contravariant. The
formalism used is based on systems of type
constraints. In this theoretical language,
no separation between interface and im-
plementation is provided. Handling of im-
perative (mutable) types is borrowed from
ML and is quite restrictive with respect to
polymorphism. Another restriction placed
on ML≤’s type system is the requirement
that all types that have a subtyping re-
lationship should have the same number
of arguments as well as the same vari-
ance specification for them. Thus, this type
system fails the test STREAMS as it re-
quires a subtyping relationship to be es-
tablished between parametric types of dif-
ferent variances. Overall, the ML≤ type
system is expressive, verifiable, sound,
and static. It passes the tests PERSON,
POINT, SORT, GENSORT, APPLY, and
the union part of the SET test. However,
the inability of the system presented in
Bourdoncle and Merz [1996a] to deal with
recursive constraints makes generaliza-
tion of the system to unrestricted subtyp-
ing of parametric types quite difficult.

There are several other approaches to
adding subtyping to ML, but none of
them deals with multi-methods. Aiken
and Wimmers [Aiken et al. 1994; Aiken
and Wimmers 1993] proposed a system
that finds a solution for a system of
subtyping constraints; this system can
deal with recursive constraints. Pottier
[1998] also proposed a system in which
recursive constraints are allowed; instead
of solving the constraints, his system
proves their consistency (like that of ML≤).
Sequeira [1998] also adds subtyping and
user-defined type constructors, as well as
constrained types, to an ML-style type sys-
tem. The resulting system appears to be
similar to that of ML≤, but lacks its ability
to deal with multi-methods. Complexity
results related to solving subtyping sys-
tems appear in Rehof [1998].

Marlow and Wadler [1997] proposes a
type system for a core subset of the purely
functional language Erlang [Armstrong
et al. 1996]. The type system is simi-
lar to the one proposed by Aiken and
Wimmers [Aiken et al. 1994; Aiken and

Wimmers 1993] and uses constrained type
entailment for type verification. The main
difference is the absence of function types,
general unions, and intersections. The sys-
tem is provably sound and presumably
complete. Addition of function types to
the system makes it incomplete, and the
proof of soundness in this case is absent.
Marlow and Wadler [1997] includes de-
cidable algorithms for type inferenc-
ing, signature verification, and constraint
simplification.

Castagna et al. [1995] proposed an ex-
tension of λ-calculus (λ&-calculus) dealing
specifically with multi-methods. Several
important results (generalized subject re-
duction, Church-Rosser etc.) are proven.
It is also shown how the calculus can be
used to model inheritance, matching, and
multiple dispatch.

Chen and Odersky [1994] presented a
type system where a full-fledged support
for mutable types is added to an ML-
style type system. The approach taken by
the authors separates mutable and im-
mutable types by creating a parallel lan-
guage syntax. In essence, every functional
language construct has its imperative
counterpart. Interaction between mutable
(imperative) and immutable (functional)
language components is restricted by a set
of type validity rules that restrict polymor-
phism of data types for the data passed be-
tween the two language components. The
approach of Chen and Odersky [1994] ap-
pears to be sound, but soundness seems
to be achieved at the expense of language
simplicity and type system transparency.

3.32. PolyTOIL

PolyTOIL [Bruce et al. 1995, 1994] has
a verifiable and sound type system and
single subtyping. PolyTOIL identifies sub-
typing with substitutability, while pro-
viding a concept of matching (subtyping
up to MyType). The latter is introduced
to allow for covariant method specifica-
tion. Subtyping in PolyTOIL is structural,
as is matching. The language allows for
both subtyping and matching constraints.
Matching is used as a mechanism of spec-
ifying constraints that are weaker than

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

440 Y. Leontiev et al.

substitutability and is therefore useful for
updatable types. In Bruce [1996], it is sug-
gested that subtyping should be dropped
altogether as matching is more intuitive
and more flexible. In Bruce et al. [1995],
there are distinct notions of object types
and class types. The former are interface
types, while the latter are implementation
types. Namely, object types specify signa-
tures (type information) for methods ap-
plicable to the objects of this object type,
while class types specify instance vari-
ables and code for methods applicable to
objects that belong to the class. Classes
are used to create new objects. They are
produced by applying functions whose ar-
guments are values used to initialize the
produced objects as well as the argument
types for parametric classes to their argu-
ments. Classes can use inheritance with
redefinitions. Parametric types in Poly-
TOIL are pattern functions of their pa-
rameter types. A notion of a function type
is also present in PolyTOIL. However, it
is only used in specifications and during
type-checking and is inherently different
from either class or object type. Overall,
the type system of PolyTOIL is verifiable,
sound, expressive, almost uniform, and
satisfies inheritance requirements. How-
ever, it is static and nonreflexive. It passes
tests COMPARABLE, SORT, GENSORT,
LIST, and APPLY and fails the rest. The
PERSON test fails, because while record
subtyping allows method type redefini-
tion, record extension does not.

3.33. Loop

Loop [Eifrig et al. 1995c, 1995b, 1995a] is a
theoretical language similar to PolyTOIL.
There are no explicit type annotations
in Loop and the typing is inferred auto-
matically. Loop has a concept of subclass-
ing where one class inherits from several
other classes. Subtyping and subclassing
in Loop are different concepts. Loop en-
joys provably sound type-checking and a
state semantics given by its translation to
Soop. Function types are present in Loop;
however, in the absence of explicit type an-
notations, they are only used internally
for type checking purposes. Loop classes

are mechanisms for creating objects. Sub-
classes do not necessarily correspond to
subtypes and class and type inheritance
hierarchies are different. The type hier-
archy in Loop is implicit, while the class
hierarchy is explicitly specified by the pro-
grammer. Subclassing can be multiple and
both methods and instance variables can
be added, inherited, or modified. Since
Loop is a “theoretical” language, it does
not have any syntactic sugar for subclass-
ing which makes Loop inheritance rather
difficult to use. Updates in Loop are al-
lowed for instance variables only. The se-
mantics of these updates is given by their
translation to Soop. Loop does not have
parametric types. Subtyping in a simi-
lar system has been shown to be decid-
able in Trifonov and Smith [1996]. The
type system of Loop is verifiable, sound,
partially expressive, almost uniform, par-
tially reflexive, static, and satisfies the
inheritance requirements. It passes the
same tests as PolyTOIL. The type check-
ing mechanism uses constrained types.
The system does not attempt to find a
solution to the system of constraints it
generates; rather, it verifies that such a
system is noncontradictory. The theory
guarantees that in this case the system
has a solution and the program is consid-
ered to be type-correct.

3.34. TL

TL (Tycoon Language) [Matthes and
Schmidt 1992; Matthes et al. 1994] is
based on the F<: system [Cardelli et al.
1991; Cardelli 1993]. From F<:, it borrows
constrained (bounded) parametric types
and type operators, as well as polymor-
phic functions and partial type inference.
It is also uniform in its treatment of func-
tions (including higher-order ones) and
atomic values. In addition to these fea-
tures, TL has mutable types, modules,
and a typecase statement. Even though
TL is designed on the basis of a for-
mal system (F<:), its type system features
have not been mathematically proven.
Thus, the questions of soundness and de-
cidability remain open for the TL type
system. TL is an orthogonally persistent

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 441

programming language. Since TL is not an
object-oriented language, the tests are not
applicable to it.

3.35. TooL

In the TooL language [Gawecki and
Matthes 1996], an attempt is made to
combine the notions of subtyping, match-
ing, and bounded universal quantification.
The resulting language is quite powerful
in terms of supporting different kinds of
relationships between types. However, it
has significant complexity and requires
good anticipation by type specifiers to cor-
rectly choose the kind of type relation-
ship that is needed before any subclasses
of the class in question are created. The
theoretical aspects of the language do not
seem to be fully developed, as neither
soundness nor decidability of type check-
ing has been proven. TooL supports single
dispatch. Interface and implementation
subtyping (termed respectively as subtyp-
ing and subclassing) are different in TooL.
Parametric types can be specified, and the
type parameters can be bounded. Informa-
tion presented in Gawecki and Matthes
[1996] is insufficient to judge the unifor-
mity and reflexivity of the type system;
however, it seems to be static and very ex-
pressive. Gawecki and Matthes [1996] also
states that TooL is a persistent language;
however, nothing else is said about its per-
sistence. The performance of this type sys-
tem with respect to the test suite is identi-
cal to that of the type systems of PolyTOIL
and Loop.

3.36. TOFL

The language TOFL [Qian and Krieg-
Brueckner 1996] is a theoretical object-
oriented functional language. It has
multiple dispatch, novariant argument re-
definition, function types, and paramet-
ric types. TOFL allows subtype specifica-
tions of the form “if x is a subtype of Eq,
then list(x) is a subtype of Eq for any type
x”. All parametric types in TOFL are co-
variant, except for functionals which are
novariant in their first argument (func-
tion argument position). This is justified

since TOFL is a functional (stateless) lan-
guage. TOFL has a verifiable and provably
sound type system. The TOFL type sys-
tem is also quite expressive as it passes
the tests PERSON, POINT, SORT, GEN-
SORT, APPLY, and the union part of the
test SET.

4. CONCLUSIONS

The comparison between the type systems
is presented in Tables II, III, and IV. Not
all of the languages and systems listed
in Table I are present in these tables;
those that are superseded by other type
systems reviewed in this paper, languages
that have no static type systems, and in-
complete type systems are excluded from
the review tables.

Table II lists features of the reviewed
type systems that correspond to the re-
quirements listed in Section 2.6. Veri-
fiability is understood as the presence
of a decidable type checking algorithm.
Static soundness means that a success-
fully typechecked program does not pro-
duce errors at run-time, while dynamic
soundness means that the program re-
ports all possible type errors at run-time
in a well-defined and predictable man-
ner. Static soundness is strictly stronger
then dynamic soundness. The column
uniformity/atomics means that objects of
primitive (atomic) types have the same
rights as objects of user-defined types.
The column uniformity/methods refers to
the ability of a language to treat meth-
ods (or messages, or both) as objects.
Reflection/typecase indicates the ability of
a language to deal with dynamic type
checking in a type-safe manner. Finally,
reflection/evolution shows whether a given
language supports incremental type sys-
tem evolution.

Table III compares various aspects of
type system expressibility. The first two
columns indicate whether a given type
system has a notion of subtyping, shows
what kind of subtyping (structural (im-
plicit) or user-defined (explicit)) it sup-
ports, and what kind of inheritance (sin-
gle or multiple) the type system has. The
third column shows whether the type

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

442 Y. Leontiev et al.

Table II. Type System Features

Soundness Separation between interface
Type system Verifiability Static Dynamic and implementation
C++ + – – –
E + – – –
O++ + – – –
O2 + Unknown Unknown –
Java 1.1 + – Core only +
GJ + – Unknown +
JPE + – Unknown +
Pizza + +1 + +
JVT + – Unknown +
ODMG 2.0 + Unknown Unknown +
SQL-99 + Unknown Unknown –
DBPL + Unknown Unknown +2

Modula-90 + Unknown Unknown +2

Modula-3 + Unknown Unknown +2

Oberon-2 + Unknown Unknown +2

Theta + Unknown Unknown +
Ada 95 + Unknown Unknown +2

Sather + + + +
Emerald + Unknown Unknown +
BETA + – Unknown +2

Napier88 + + + +/–
Strongtalk + Unknown Unknown +
Cecil + – Unknown +
BeCecil + Unknown Unknown +
Mini-Cecil Unknown Unknown Unknown +
Transframe + – Unknown +
TM + Unknown n/a –
ML + + n/a +2

Machiavelli + + n/a –
Fibonacci + + n/a +/–
ML≤ + + n/a –
PolyTOIL + + n/a –
Loop + + n/a +
TL + Unknown Unknown –
TooL Unknown Unknown n/a +
TOFL + + n/a –

Uniformity Reflection
Type system Substitutability Atomics Methods Typecase Evolution
C++ +3 – + – –
E +3 – + – –
O++ +3 – + –/+5 –
O2 – – – – +/–7

Java 1.1 +/– – – + –
GJ – – – + –
JPE – – – + –
Pizza – + + + –
JVT – – – + –
ODMG 2.0 – – – + –
SQL-99 +4 – – + +
DBPL n/a n/a + – –
Modula-90 +4 – + + –
Modula-3 + – + + –
Oberon-2 + – + + –
Theta Unknown – + + –
Ada 95 – – + + –
Sather + – + + –
Emerald + + – + +/–7

BETA + + + + +/–7

Napier88 n/a n/a + + +
Strongtalk – + + + +/–7

Cecil – + + +/–6 +
BeCecil Unknown + + – +
Mini-Cecil Unknown + + – –
Transframe Unknown + + + +
TM – + – – –
ML n/a + + – –
Machiavelli + + + – –
Fibonacci + + + – –
ML≤ + + + – –
PolyTOIL + + + – –
Loop + + + – –
TL Unknown + + + –
TooL Unknown + + – –
TOFL + + + – –

1 Except for covariant arrays which have been kept in Pizza only for backward compatibility with Java. 2 These features are based on mod-
ules(packages, fragments) rather than on types. 3 Substitutability works for pointers and references only. 4 For object types only. 5 Even
though a type can be examined dynamically in O++, typechecking does not take this into account. 6 Classes (implementation types) only.
7 Evolution is type-unsafe.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 443

Table III. Type System Expressibility

Subtyping
Type system Inheritance Method types Dispatch
C++ User-defined Multiple + Single5

E User-defined Multiple + Single5

O++ User-defined Multiple + Single5

O2 User-defined ? – Single
Java 1.1 User-defined Multiple3 – Single
GJ User-defined Multiple3 – Single
JPE User-defined Multiple3 – Single
Pizza User-defined Multiple3 + Single
JVT User-defined Multiple3 – Single
ODMG 2.0 User-defined Multiple3 – Single
SQL-99 User-defined Single – Single
DBPL User-defined n/a + n/a
Modula-90 User-defined Single + Single
Modula-3 User-defined Single + Single
Oberon-2 Structural n/a + Single
Theta User-defined Multiple3 + Single
Ada 95 User-defined Single + Single6

Sather User-defined Multiple + Single
Emerald Structural n/a – Single
BETA Structural Single + Single
Napier88 – n/a + n/a
Strongtalk Structural1 Single +4 Single
Cecil User-defined Multiple + Multiple
BeCecil User-defined Multiple + Multiple
Mini-Cecil User-defined Multiple + Multiple
Transframe User-defined Multiple + Multiple
TM Both Multiple – Single
ML Structural n/a + n/a
Machiavelli Structural n/a + n/a
Fibonacci User-defined2 Single Unknown n/a
ML≤ Both Multiple + Multiple
PolyTOIL Structural n/a + Single7

Loop Structural n/a + Single7

TL Structural n/a + n/a
TooL Structural Multiple + Single7

TOFL User-defined2 Multiple3 + Multiple
Parametric types Mutable Intersection

Type system Bounded Intra Inter types types
C++ + – – + + –
E + + – + + –
O++ – n/a n/a n/a + –
O2 – n/a n/a n/a + –
Java 1.1 – n/a n/a n/a + –
GJ + + – + + –
JPE + + – + + –
Pizza + + – + + –
JVT + + –/+11 + + –
ODMG 2.0 –/+8 n/a –/+11 – + –
SQL-99 –/+13 – –/+11 – + –
DBPL – n/a n/a n/a + –
Modula-90 – n/a n/a n/a + –
Modula-3 +9 – n/a n/a + –
Oberon-2 – n/a n/a n/a + –
Theta + – – + + –
Ada 95 + + – + + –
Sather + + – + + –
Emerald + – n/a n/a + Unknown
BETA + + n/a n/a + –
Napier88 + – n/a n/a + –
Strongtalk + ? – + + –
Cecil + + – + + +
BeCecil – n/a n/a n/a + +
Mini-Cecil + + + + + +
Transframe + + +/–12 + + –
TM + – –/+11 + – –
ML + – n/a + +/– –
Machiavelli – n/a n/a n/a +/– +
Fibonacci + – n/a n/a +/– Implicit
ML≤ + – + +/– +/– Implicit
PolyTOIL + + n/a n/a + –
Loop – n/a n/a n/a + Implicit
TL + + –/+11 + + –
TooL + + – + + –
TOFL + ++10 –/+11 + – Implicit

1 Structural subtyping is the default; however, user can explicitly turn it off when needed. 2 User-defined for classes; structural for algebraic
data types. 3 Only for interfaces; classes have single inheritance. 4 Block types only. 5 Only virtual functions are dispatched. 6 Only tagged types
are dispatched. 7 Dispatch modeled as record field extension/execution. 8 Only system-defined; parameters can only be used for specification of
properties. 9 These features are based on modules rather than on types. 10 The language provides mechanism more expressive then bounded
quantification. 11 Always covariant. 12 Only covariant and novariant parameters are allowed. 13 Only system-defined: ARRAY and REF.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

444 Y. Leontiev et al.

Table IV. Type System Tests

Type system PERSON POINT COMPARABLE STREAMS SORT
C++ – – – – –
E – – – – +
O++ – – – – –
O2 – – – – –
Java 1.1 – – – – +
GJ – – + – +
JPE – – + – +
Pizza – – + – +
JVT –/+1 – –/+1 –/+1 +
ODMG 2.0 – – – – –
SQL-99 – – – – –/+9

DBPL – – – – –
Modula-90 – – – – –
Modula-3 – – + – +
Oberon-2 – – – – +
Theta – – + – +
Ada 95 – – + – +
Sather + – + – +
Emerald + – – + +
BETA –/+1 – –/+1 –/+1 +
Napier88 – – +/–4 – +/–4

Strongtalk – – + – –/+5

Cecil +/–2 +/–2 – – +/–2

BeCecil + + – – +
Mini-Cecil + + + + +
Transframe + + + – +
TM – – – – +
ML + – – – +
Machiavelli + – – – +
Fibonacci + – – – +
ML≤ + + – – +
PolyTOIL –/+3 – + – +
Loop –/+3 – + – +
TooL –/+3 – + – +
TOFL + + –/+1 – +
Type system GENSORT LIST SET APPLY BROWSER
C++ + – – – +/–7

E + – – – –
O++ + – –6 – –/+8

O2 – – – – ??
Java 1.1 – – – – +
GJ – – union – +
JPE – – union – +
Pizza + – union + +
JVT – –/+1 –/+1 – +
ODMG 2.0 – – union6 – +
SQL-99 – – union – +
DBPL + – – – –
Modula-90 + – – – +
Modula-3 + – – – +
Oberon-2 + – – – +
Theta + + – – +
Ada 95 + + – + +
Sather + + – – +
Emerald – – – – +
BETA + –/+1 –/+1 –/+1 –/+1

Napier88 +/–4 + – +/–4 +
Strongtalk + + union –/+5 +
Cecil +/–2 +/–2 +/–2 +/–2 +/–2

BeCecil + + – – –
Mini-Cecil + + + + –
Transframe + + union + +
TM – + –6 – –
ML + – – + –
Machiavelli + – +/–6 + –
Fibonacci + – +/–6 + –
ML≤ + – union + –
PolyTOIL + + – + –
Loop + + – + –
TooL + + – + –
TOFL + – union + –

1 Relies on dynamic type checking. 2 Only suggestive type-checking. 3 While the subtyping relationship required by the test holds, one type
can not be derived from the other. 4 If type parameters are explicitly instantiated. 5 This test can be only programmed with blocks rather than
messages. 6 Built-in operators for dealing with sets are provided; however, their typing is special (non-user-definable). 7 If RTTI is present.
8 Even though a type can be examined dynamically, typechecking does not take this into account. 9 Only using a special support for sorting
and comparison in SQL-99.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 445

system supports method (function) types.
The fourth column addresses the issue
of dispatch (single or multiple) in the
given type system. Columns 5 through 8
deal with parametricity and its relation-
ship with subtyping. Column 5 indicates
whether a given type system supports
parametric types. Column 6 shows if a
type system can deal with constrained
parametric types. Positive indication in
column 7 means that a type system makes
it possible for different parametric types
formed using the same type constructor to
have a subtyping relationship with each
other (for example, T Set(T Person) is a
subtype of T Set(T Student). Column 8 in-
dicates whether the type system is capa-
ble of specifying subtyping relationships
between parametric types with different
type constructors (e.g. T List(T Person)
is a subtype of T Set(T Person)). Col-
umn 9 is an indication of the ability of a
type system to deal with mutable types.
This indication is negative for type sys-
tems of purely functional languages. Col-
umn 10 shows whether a type system sup-
ports intersection (greatest lower bound)
types.

Finally, Table IV demonstrates the per-
formance of the reviewed type systems on
the test suite.

From the analysis of the results pre-
sented in Table IV it can be concluded
that languages Mini-Cecil and Trans-
frame rate the best on the test suite. How-
ever, none of them has provably sound
typechecking; in fact, typechecking Mini-
Cecil programs is likely to be undecid-
able [Litvinov 1998]. Of the systems with
sound and verifiable type checking, the
most impressive is Sather; however, its
type system lacks multiple dispatch and
union types. Soundness of the Sather type
system has not been formally proven. Al-
most all “theoretical” type systems show
similar performance on the test suite.

Sound type checking, substitutability,
parametricity, method types, and multi-
methods appear together in only one type
system: that of ML≤. However, ML≤ (as
well as most ML clones) severely restricts
usage of mutable types and does not
deal well with certain aspects of binary

methods and parametricity (failed tests
COMPARABLE and STREAMS).

The test STREAMS proved to be the
most difficult one. This is surprising as
the test outlines the situation that occurs
in almost every language dealing with I/O
operations at a relatively high level. Only
the type systems of Emerald and Mini-
Cecil were able to pass this test; however,
none of these type systems has a proof of
soundness.

Overall, type systems with nice theoret-
ical properties show only moderate per-
formance on the test suite, while type
systems that perform well on tests lack a
theoretical basis.

It can, therefore, be concluded that
none of the languages reviewed completely
satisfies the requirements laid down in
Section 4. None of the provably sound type
systems has passed the majority of the
tests. However, every test was passed by
at least one type system thus showing that
the necessary mechanisms have already
been developed. It is their consistent and
theoretically sound combination that re-
mains elusive so far.

A type system that satisfies the re-
quirements has been developed [Leontiev
1999]. This type system was not reviewed
in the paper since it was developed specifi-
cally to conform to the requirements listed
in Section 2. However, it demonstrates
that these requirements are consistent in
that they can be satisfied together in a
single theoretically sound type system. It
is our belief that this type system will be
an important first step towards the devel-
opment of theoretically sound, reflexive,
uniform, and dynamic persistent object-
oriented programming language.

REFERENCES

AGESEN, O., FREUND, S. N., AND MITCHELL, J. C. 1997.
Adding type parametrization to the Java lan-
guage. In Proceedings of the OOPSLA’97.

AGRAWAL, R. AND GEHANI, N. H. 1989. ODE (ob-
ject database and environment): The language
and the data model. In Proceedings of the
ACM-SIGMOD 1989 International Conference
on Management of Data. 36–45.

AIKEN, A. AND WIMMERS, E. L. 1993. Type inclusion
constraints and type inference. Tech. Rep. RJ
9454 (83075). IBM Research Division. August.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

446 Y. Leontiev et al.

AIKEN, A., WIMMERS, E. L., AND LAKSHMAN, T. K.
1994. Soft typing with conditional types. In
Conference Record of POPL ’94, 21st ACM
SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. ACM Press, 163–
173.

ALAGIĆ, S. 1997. The ODMG object model: Does it
make sense? SIGPLAN Not. 32, 10, 253–270.

ALAGIĆ, S. 1999. Type-checking OQL queries in
the ODMG type systems. ACM Trans. Datab.
Syst. 24, 3 (Sept.), 319–360.

ALBANO, A., CARDELLI, L., AND ORSINI, R. 1985.
Galileo: A strongly-typed, interactive conceptual
language. ACM Trans. Datab. Syst. 10, 2 (June),
230–260.

ALBANO, A., GHELLI, G., AND ORSINI, R. 1995. Fi-
bonacci: A programming language for object
databases. VLDB J. 4, 403–444.

APPLE COMPUTER, INC. 1994. Dylan Interim Refer-
ence Manual. Apple Computer, Inc.

ARMSTRONG, J., VIRDING, R., WIKSTRÖM, C., AND

WILLIAMS, M. 1996. Concurrent Programming
in Erlang, 2nd ed. Prentice Hall.

ARNOLD, K. AND GOSLING, J. 1996. The Java Lan-
guage Specification, 4th ed. Addison-Wesley.

ATKINSON, M., BANCHILON, F., DEWITT, D., DITTRICH,
K., MAIER, D., AND ZDONIK, S. 1992. The
object-oriented database system manifesto. In
Building an Object-Oriented Database System:
The Story of O2, F. Banchilon, C. Delobel, and P.
Kanellakis, Eds.

ATKINSON, M. AND MORRISON, R. 1995. Orthogonally
persistent object systems. VLDB J. 4, 3, 319–401.

ATKINSON, M. P. AND BUNEMAN, O. P. 1987. Types
and persistence in database programming lan-
guages. ACM Comput. Surv. 19, 2 (June), 105–
190.

BAL, R., BALSTERS, H., DE BY, R. A., BOSSCHAART, A.,
FLOKSTRA, J., KEULEN, M. V., SKOWRONEK, J.,
AND TERMORSHUIZEN, B. 1993. The TM Man-
ual. Faculty of Computer Science, University
of Twente. Version 2.0 revision C. Available
electronically. URL: ftp://ftp.cs.utwente.
nl/pub/doc/TM.

BAUMGARTNER, G., LÄUFER, K., AND RUSSO, V. F. 1996.
Interaction of object-oriented design patterns
and programming languages. Tech. Rep. CSD-
TR-96-020, Deptartment of Computer Sciences,
Purdue University.

BIRTWISTLE, G. M., DAHL, O.-J., MYHRHAUG, B., AND NY-
GAARD, K. 1979. Simula Begin. Studentlitter-
atur (Lund, Sweden), Bratt Institute Fuer Neues
Lerned (Goch, FRG), Chartwell-Bratt Ltd (Kent,
England).

BLACK, A. AND PALSBERG, J. 1994. Foundations
of object-oriented languages. ACM SIGPLAN
Not. 29, 3, 3–11. Workshop Report.

BOBROW, D. G., DEMICHIEL, L. G., GABRIEL, R. P.,
KEENE, S. E., KICZALES, G., AND MOON, D. A. 1988.
Common LISP Object System specification. X3J13
Document 88-002R.

BOURDONCLE, F. AND MERZ, S. 1996a. Primitive
subtyping ∨ implicit polymorphism ` object-
orientation. In Foundations of Object-Oriented
Languages 3. Extended abstract.

BOURDONCLE, F. AND MERZ, S. 1996b. Type check-
ing higher-order polymorphic multi-methods.
In Proceedings of the 24th ACM Confer-
ence on Principles of Programming Languages
(POPL’24).

BOYLAND, J. AND CASTAGNA, G. 1995. Type-safe com-
pilation of covariant specialization: A practical
case. Tech. Rep. UCB/CSD-95-890, University of
California, Computer Science Division (EECS),
Berkeley, Calif. Nov.

BOYLAND, J. AND CASTAGNA, G. 1997. Parasitic
methods: An implementation of multi-methods
in Java. SIGPLAN Not. 32, 10, 66–76. (Pro-
ceedings of OOPSLA’97). URL: ftp://ftp.ens.
fr/pub/dmi/users/castagna/oopsla97.ps.gz.

BRACHA, G. AND GRISWOLD, D. 1993. Strongtalk:
Typechecking Smalltalk in a production envi-
ronment. In Proceedings of the ACM Conference
on Object-Oriented Programming: Systems, Lan-
guages, and Applications.

BRACHA, G., ODERSKY, M., STOUTAMIRE, D., AND

WADLER, P. 1998a. GJ: Extending the
Java programming language with type pa-
rameters. Manuscript. Revised August 1998.
URL: http://www.cis.unisa.edu.au/∼pizza/
gi/Documents/.

BRACHA, G., ODERSKY, M., STOUTAMIRE, D., AND WADLER,
P. 1998b. GJ specification. Manuscript
URL: http://www.cis.unisa.edu.au/∼pizza/
gi/documents/.

BRACHA, G., ODERSKY, M., STOUTAMIRE, D., AND WADLER,
P. 1998c. Making the future safe for the past:
Adding genericity to the Java programming lan-
guage. In Proceedings of the 13th Annual ACM
SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applica-
tions (OOPSLA’98). 183–200.

BRUCE, K., CARDELLI, L., CASTAGNA, G., THE

HOPKINS OBJECT GROUP, LEAVENS, G., AND

PIERCE, B. 1996a. On binary methods. Theory
Prac. Obj. Syst. 1, 3, 221–242.

BRUCE, K. B., FIECH, A., AND PETERSEN, L. 1996b.
Subtyping is not a good “match” for object-
oriented languages. In Informal Proceedings of
the 4th Workshop on Foundations of Object-
Oriented Languages (FOOL 4). Contributed talk.

BRUCE, K. B., ODERSKY, M., AND WADLER, P. 1998. A
statically safe alternative to virtual types. In
Proceedings of the 1998 European Conference on
Object-Oriented Programming (ECOOP’98).

BRUCE, K. B., SCHUETT, A., AND GENT, R. V. 1994.
A type-safe polymorphic object-oriented lan-
guage. Accessible by anonymous FTP. URL:
ftp://cs.williams.edu/pub/kim/PolyTOIL.dvi.

BRUCE, K. B., SCHUETT, A., AND GENT, R. V. 1995.
PolyTOIL: A type-safe polymorphic object-
oriented language. In Proceedings of the
9th European Conference on Object-Oriented

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 447

Programming (ECOOP’95), (A
◦
arhus, Denmark).

W. Olthoff, Ed. Lecture Notes in Computer Sci-
ence, vol. 952. Springer-Verlag, New York. Ex-
tended abstract.

BRUCE, K. K. 1996. Typing in object-oriented
languages: Achieving expressibility and
safety. URL: ftp://cs.williams.edu/pub/Kim/
Static.ps.

BUNEMAN, P. AND OHORI, A. 1996. Polymorphism
and type inference in database programming.
ACM Trans. Datab. Syst. 21, 1 (March), 30–76.

BUNEMAN, P. AND PIERCE, B. 1999. Union types for
semistructured data. Tech. Rep. MS-CIS-99-09,
Department of CIS, University of Pennsylvania.

CARDELLI, L. 1986. A polymorphic λ-calculus with
Type:Type. Tech. Rep. 10, DEC SRC, 130
Lytton Avenue, Palo Alto, CA 94301. May. SRC
Research Report.

CARDELLI, L. 1988. A semantics of multiple inher-
itance. Inf. Comput. 76, 138–164.

CARDELLI, L. 1989. Typeful programming. In
Formal Description of Programming Concepts,
E. J. Neuhold and M. Paul, Eds. IFIP State
of the Art Reports Series. Springer-Verlag,
New York. URL: http://www.luca.demon.
co.uk/Bibliography.html.

CARDELLI, L. 1993. An implementation of F<:.
Tech. Rep. 97, DEC Systems Research Center.
February.

CARDELLI, L. 1997. Type systems. In The Com-
puter Science and Engineering Handbook, A. B.
Tucker, Ed. CRC Press, Chapter 103. URL:
http://www.luca.demon.co.uk/Bibliography.
html.

CARDELLI, L., MARTINI, S., MITCHELL, J. C., AND SCEDROV,
A. 1991. An extension of system F with sub-
typing. In Proceedings of the International Con-
ference on Theoretical Aspects of Computer Soft-
ware, T. Ito and A. R. Meyer, Eds. Lecture Notes
in Computer Science, vol. 526. Springer-Verlag,
New York, pp. 756–770.

CASTAGNA, G. 1996. Object-Oriented Program-
ming: A Unified Foundation. In Progress in The-
oretical Computer Science. Birkaüzer, Boston,
Chapter Type Systems for Object-Oriented
Programming.

CASTAGNA, G., GHELLI, G., AND LONGO, G. 1995. A
calculus for overloaded functions with subtyp-
ing. Inf. Comput. 117, 1 (Feb.), 115–135.

CATTELL, R. G. G., BARRY, D., BARTELS, D., BERLER, M.,
EASTMAN, J., GAMERMAN, S., JORDAN, D., SPRINGER,
A., STRICKLAND, H., AND WADE, D. 1997. The
Object Database Standard: ODMG 2.0. Morgan-
Kaufmann, Los Altos, Calif.

CHAMBERS, C. 1992. Object-oriented multi-
methods in Cecil. In ECOOP ’92, European
Conference on Object-Oriented Programming,
(Utrecht, The Netherlands), O. L. Madsen,
Ed. Lecture Notes in Computer Science, vol.
615. Springer-Verlag, New York, pp. 33–
56.

CHAMBERS, C. 1993. The Cecil language: Speci-
fication and rationale. Tech. Rep. TR 93-03-
05. Department of Computer Science and En-
gineering, FR-35, University of Washington.
Mar.

CHAMBERS, C. AND LEAVENS, G. T. 1996. BeCecil, A
core object-oriented language with block struc-
ture and multimethods: Semantics and typing.
Tech. Rep. 96-17. Department of Computer Sci-
ence, Iowa State University. Dec.

CHAMBERS, C. AND LEAVENS, G. T. 1997. BeCecil, A
core object-oriented language with block struc-
ture and multimethods: Semantics and typing.
In FOOL 4. In Proceedings of the 4th Inter-
national Workshop on Foundations of Object-
Oriented Languages (Paris, France).

CHEN, K. AND ODERSKY, M. 1994. A type system for
a lambda calculus with assignment. In Proceed-
ings of the Theoretical Aspects of Computer Sci-
ence (Sendai, Japan). Lecture Notes in Computer
Science. Springer-Verlag, New York.

CONNOR, R. C. H., MCNALLY, D. J., AND MORRISON, R.
1991. Subtyping and assignment in database
programming languages. In Proceedings of the
3rd International Workshop on Database Pro-
gramming Languages (Napfilon, Greece).

DAY, M., GRUBER, R., LISKOV, B., AND MYERS, A. C.
1995. Subtypes vs where clauses: Constrain-
ing parametric polymorphism. SIGPLAN No-
tices 30, 10 (Oct.), 156–168.

DROSSOPOULOU, S. AND EISENBACH, S. 1997. Java is
type safe—probably. In Proceedings of the 11th
European Conference on Object Oriented Pro-
gramming (ECOOP’97).

EIFRIG, J., SMITH, S., AND TRIFONOV, V. 1995a. Sound
polymorphic type inference for objects. SIG-
PLAN Notices 30, 10 (Oct.), 169–184.

EIFRIG, J., SMITH, S., AND TRIFONOV, V. 1995b.
Type inference for recursively constrained
types and its application to OOP. Electronic
Notes in Theoretical Computer Science 1.
URL: http://www.elsevier.nl/locate/entcs/
volume1.html.

EIFRIG, J., SMITH, S., TRIFONOV, V., AND ZWARICO, A.
1995c. An interpretation of typed OOP in a lan-
guage with state. LISP Symb. Comput. 8, 4, 357–
397.

FISHER, K. AND MITCHELL, J. C. 1996. The devel-
opment of type systems for object-oriented lan-
guages. Theory Pract. Obj. Syst. 1, 3, 189–220.
URL: ftp://theory.stanford.edu/pub/jcm/
papers/tapos.ps.

FRANZ, M. 1997. The programming language
Lagoona—A fresh look at object-orientation.
Softw—Concepts and Tools 18, 14–26.

GAWECKI, A. AND MATTHES, F. 1996. Integrating
subtyping, matching and type quantification: A
practical perspective. In Proceedings of the 10th
European Conference on Object-Oriented Pro-
gramming (Linz, Austria). Springer-Verlag, New
York.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

448 Y. Leontiev et al.

GOLDBERG, A. AND ROBSON, D. 1989. ST-80, The
Language. Addison-Wesley, Reading, Mass.

HARBISON, S. P. 1992. Modula-3. Prentice-Hall,
Eglewood Cliffs, N.J.

HAUCK, F. J. 1993. Towards the implementation of
a uniform object model. In Parallel Computer
Architectures: Theory, Hardware, Software, and
Applications—SFB Colloquium SFB 182 and
SFB 342, A. Bode and M. D. Cin, Eds. Lecture
Notes in Computer Science, vol. 732. Springer-
Verlag, New York, pp. 180–189.

KEMPE SOFTWARE CAPITAL ENTERPRISES 1995. Ada
95 Reference Manual. Kempe Software Capi-
tal Enterprises. Available electronically. URL:
http://www.adahome.com/rm95.

KIM, W. 1993. Object-oriented database systems:
Promises, reality, and future. In Proceedings of
the 19th VLDB Conference. 676–687.

KIRBY, G. N. C., CONNOR, R. C. H., MORRISON, R.,
AND STEMPLE, D. 1996. Using reflection to
support type-safe evolution in persistent sys-
tems. Tech. Rep. CS/96/10. University of St.
Andrews.

KLAS, W. AND TURAU, V. 1992. Persistence in
the object-oriented database programming lan-
guage VML. Tech. Rep. TR-92-045, International
Computer Science Institute, 1947 Center St.,
Suite 600, Berkeley, CA 94704-1198. July.

LALONDE, W. R. AND PUGH, J. 1991. Subclassing 6=
subtyping 6= is-a. J. Obj. Orient. Prog. 3, 5 (Jan.),
57–62.

LEAVENS, G. T. AND MILLSTEIN, T. D. 1998. Multiple
dispatch as dispatch on tuples. In Proceedings
of the Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications
(OOPSLA’98). ACM, New York, pp. 374–387.
URL: http://www.cs.washington.edu/homes/
todd/papers/oopsla98.ps.

LÉCLUSE, C., RICHARD, P., AND VÉLEZ, F. 1992. O2,
an object-oriented data model. In Building an
Object-Oriented Database System: The Story of
O2, F. Banchilon, C. Delobel, and P. Kanellakis,
Eds.

LEONTIEV, Y. 1999. Type system for an object-
oriented database programming language.
Ph.D. dissertation. Department of Computing
Science, University of Alberta. Also available as
Tech. Rep. TR 99-02.

LEONTIEV, Y., ÖZSU, M. T., AND SZAFRON, D. 1998. On
separation between interface, implementation,
and representation in object DBMSs. In Proceed-
ings of TOOLS–26’98. Santa Barbara, Calif.

LITVINOV, V. 1998. Constraint-based polymor-
phism in Cecil: Towards a practical and static
type system. In Proceedings of the 1998 Confer-
ence on Object-Oriented Programming: Systems,
Languages, and Applications (OOPSLA’98).

LUTIY, V. G., MERKOV, A. B., LEONTIEV, Y. V., GAWRILOW,
E. J., IVANOVA, N. A., IOFINOVA, M. E., PAKLIN, M. L.,
AND HODATAEV, A. K. 1994. DBMS Modula–
90K. RAN Data Processing Center, Moscow

(In Russian: Sistema Programmirovaniya Baz
Dannyh Modula-90K).

MADSEN, O. L., MøLLER-PEDERSEN, B., AND NYGAARD,
K. 1993. Object-Oriented Programming in
the BETA Programming Language. Addison-
Wesley, Reading, Mass.

MARLOW, S. AND WADLER, P. 1997. A practical sub-
typing system for Erlang. In Proceedings of the
Second International Conference on Functional
Programming (Amsterdam, The Netherlands).

MATTHES, F., MÜSSIG, S., AND SCHMIDT, J. W. 1994.
Persistent polymorphic programming in Tycoon:
An introduction. FIDE Technical Report Series
FIDE/94/106. Department of Computing Sci-
ences, University of Glasgow, Glasgow G128QQ.
August.

MATTHES, F. AND SCHMIDT, J. 1991. Bulk types:
Built-in or add-on? In Proceedings of the 3rd
International Workshop on Database Program-
ming Languages. Morgan-Kaufmann, Los Atlos,
Calif.

MATTHES, F. AND SCHMIDT, J. 1992. Definition of the
Tycoon languages—A preliminary report. Tech.
Rep. FBI-HH-B-160/92, Universität Hamburg.
October.

MEYER, B. 1988. Eiffel—The language. Prentice-
Hall.

MILLER, R., TOFTE, M., AND HARPER, R. 1990. The
Definition of Standard ML. MIT Press.

MORRISON, R., BROWN, F., CONNOR, R., CUTTS, Q.,
DEARLE, A., KIRBY, G., AND MUNRO, D. 1996.
Napier88 Reference Manual. University of St.
Andrews. Release 2.2.1.

MÖSSENBÖK, H. AND WIRTH, N. 1993. The program-
ming language Oberon-2. Manuscript. Institut
für Computersysteme, ETH Zürich.

MYERS, A. C., BANK, J. A., AND LISKOV, B. 1997. Pa-
rameterized types for Java. In Proceedings of the
24th ACM Simposium on Principles of Program-
ming Languages (POPL’97).

ODERSKY, M. AND LÄUFER, K. 1996. Putting type an-
notations to work. In Proceedings of the 23rd
ACM Symposium on Principles of Programming
Languages. 65–67.

ODERSKY, M. AND WADLER, P. 1997. Pizza into Java:
Translating theory into practice. In Proceedings
of the 24th ACM Simposium on Principles of Pro-
gramming Languages (POPL’97).

OHORI, A., BUNEMAN, P., AND BREAZU-TANNEN, V. 1989.
Database programming in Machiavelli—a poly-
morphic language with static type inference.
SIGMOD Record 18, 2, 46–57.

POTTIER, F. 1998. Type inference in the presence of
subtyping: from theory to practice. Ph.D. thesis,
Université Paris VII.

QIAN, Z. AND KRIEG-BRUECKNER, B. 1996. Typed OO
functional programming with late binding. In
Proceedings of the 10th European Conference
on Object-Oriented Programming, P. Cointe, Ed.
Lecture Notes in Computer Science, vol. 1098.
Springer-Verlag, New York, pp. 48–72.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

On Type Systems for Object-Oriented Database Programming Languages 449

RAJ, R. K., TEMPERO, E., LEVY, H. M., BLACK, A. P.,
HUTCHINSON, N. C., AND JUL, E. 1991. Emer-
ald: A general-purpose programming language.
Softw. Pract. Exp. 21, 1 (Jan.), 91–118.

REHOF, J. 1998. The complexity of simple sub-
typing systems. Ph.D. dissertation, DIKU, De-
partment of Computer Science, University of
Copenhagen.

RICHARDSON, J. E., CAREY, M. J., AND SCHUH, D. T.
1993. The design of the E programming lan-
guage. ACM Trans. Prog. Lang. Syst. 15, 3 (July),
494–534.

ROE, P. AND SZYPERSKI, C. 1997. Lightweight para-
metric polymorphism for Oberon. In Proceedings
of the Joint Modular Languages Conference.

SARASWAT, V. 1997. Java is not type-safe. Avail-
able electronically. URL: http://www.research.
att.com/∼vj/bug.html

SCHMIDT, J. W. AND MATTHES, F. 1994. The DBPL
project: Advances in modular database program-
ming. Inf. Syst. 19, 2, 121–140.

SEQUEIRA, D. 1998. Type inference with bounded
quantification. Ph.D. thesis, Department of
Computer Science, University of Edinburgh.
Also Technical Report ECS–LFCS–98–403.

SHANG, D. 1997. Transframe: The Annotated Ref-
erence. Software Systems Research Laboratory,
Motorola, Inc., Schaumburg, Illinois. Draft 1.4.

SQL 1999. Database languages—SQL. American
National Standard for Information Technology.

ANSI/ISO/IEC 9075-1-1999, 9075-2-1999, 9075-
3-1999, 9075-4-1999, 9075-5-1999.

STOUTAMIRE, D. AND OMOHUNDRO, S. 1996. The
Sather 1.1 specification. Tech. Rep. TR-96-012,
International Computer Science Institute at
Berkeley. August.

STROUSTRUP, B. 1991. The C++ Programming Lan-
guage. Addison-Wesley.

TAIVALSAARI, A. 1996. On the notion of inheritance.
ACM Comput. Surv. 28, 3 (Sept.), 439–479.

THORUP, K. K. 1997. Genericity in Java with
virtual types. In Proceedings of the 1997
European Conference on Object-Oriented Pro-
gramming (ECOOP’97).

TRIFONOV, V. AND SMITH, S. 1996. Subtyping con-
strained types. In Proceedings of the 3rd Inter-
national Static Analysis Symposium. 349–365.
Lecture Notes in Computer Science 1145.

TSICHRITZIS, D., NIERSTRASZ, O., AND GIBBS, S. 1992.
Beyond objects: Objects. Int. J. Intel. Coop. Info.
Syst. 1, 1 (Mar.), 43–60.

W3C 2002. XQuery 1.0 Formal Semantics. W3C.
Working Draft 26. URL: http://www.w3.org/
TR/2002/WD-query-semantics-20020326/.

WIRTH, N. 1983. Programming in Modula-2, 2nd
ed. Springer-Verlag.

WRIGHT, A. K. 1993. Polymorphism for imperative
languages without imperative types. Tech. Rep.
TR93-200, Department of Computer Science,
Rice University. February.

Received June 2000; revised December 2001; accepted May 2002

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

