
Multi-Dispatch in the Java Virtual Machine:

Design and Implementation

Christopher Dutchyn� Paul Lu Duane Szafron Steve Bromling Wade Holsty

July 27, 2000

Abstract

Mainstream object-oriented languages, such as
C++ and Java1, provide only a restricted form of
polymorphic methods, namely single-receiver dis-
patch. In common programming situations, pro-
grammers must work-around this limitation. We
describe how to extend the Java Virtual Machine to
support multiple-dispatch and examine the compli-
cations that Java imposes on multiple-dispatch in
practice. Our technique avoids changes to the Java
programming language itself, maintains source-code
and library compatibility, and isolates the perfor-
mance penalty and semantic changes of multiple-
dispatch to the program sections which use it. We
have micro-benchmark and application-level perfor-
mance results for a dynamic Most Speci�c Appli-

cable (MSA) dispatcher, a framework-based Single

Receiver Projections (SRP) and a tuned SRP dis-
patcher. Our general-purpose technique provides
smaller dispatch latency than programmer-written
double-dispatch code with equivalent functionality.

1 Introduction

Object-oriented (OO) languages provide powerful
tools for expressing computations. One key ab-
straction is the concept of a type hierarchy which
describes the relationships among types. Objects
represent instances of these di�erent types. Most
existing object-oriented languages require each ob-
ject variable to have a programmer-assigned static

type. The compiler uses this information to recog-
nize some coding errors. The principle of substi-

tutability mandates that in any location where type
T is expected, any sub-type of T is acceptable. But,
substitutability allows that object variable to have
a di�erent (but related) dynamic type at runtime.

�fdutchyn,paullu,duane,bromlinggcs.ualberta.ca,
Dept. of Computing Science, University of Alberta

ywade@csd.uwo.ca, Dept. of Computer Science, Univer-
sity of Western Ontario

1Java is a trademark of Sun Microsystems Inc.

class Point f
int x, y;

void draw(Canvas c)

f // Point specific code g
void translate(int t) fx+=t; y+=t;g
void translate(int tX,int tY)

fx+=tX; y+=tY;g
g

class ColorPoint extends Point f
Color c;

void draw(Canvas C)

f // ColorPoint code g
g

// same static, different dynamic types

Point Pp = new Point();

Point Pc = new ColorPoint();

// static multi-dispatch

Pp.translate(5); // single int version

Pp.translate(1,2); // two int version

// dynamic uni-dispatch

Pp.draw(aCanvas); // Point::draw()

Pc.draw(aCanvas); // ColorPoint::draw()

Figure 1: Dispatch Techniques in Java

Another key facility found in OO languages is
method selection based upon the types of the argu-
ments. This method selection process is known as
dispatch. It can occur at compile-time or at run-
time. In the former case, where only the static
type information is available, we have static dispatch
(method overloading). The latter case is known
as dynamic dispatch (method overriding or virtual
functions), and object-oriented languages leverage
it to provide polymorphism|the execution of type-
speci�c program code.

We can divide OO languages into two broad cat-
egories based upon how many arguments are con-
sidered during dispatch. Single-dispatch languages
select a method based upon the type of one dis-
tinguished argument; multi-dispatch languages con-
sider more than one, and potentially all of the argu-

1

Duane Szafron
To appear in 6th Usenix Cnference of Object-Oriented Technoologies and Systems (COOTS 2001)

Duane Szafron

ments at dispatch time. For example, Smalltalk [13]
is a single-dispatch language. CLOS [24] and Ce-
cil [6] are multi-dispatch languages. For unifor-
mity, in the rest of this paper, we use the term
uni-dispatch to denote single-receiver dispatch and
multi-dispatch to denote multi-method dispatch.
This is especially important because we will also dis-
cuss double dispatch which consists of a sequence of
two uni-dispatches and we want to avoid confusing
double dispatch with multi-dispatch.

C++ [25] and Java [14, 15] are dynamic uni-
dispatch languages. However, for both languages,
the compiler considers the static types of all argu-
ments when compiling method invocations. For this
reason, we can regard these languages as support-
ing static multi-dispatch. Figure 1 illustrates both
dynamic uni-dispatch and static multi-dispatch in
Java.

Uni-dispatch limits the method selection process to
consider only a single argument. This is a substan-
tial limitation, and standard programming idioms
exist to overcome this restriction. As a motivation
for multi-dispatch, we will describe one program-
ming idiom that signals the need for multi-dispatch,
describe how it can be replaced by multi-dispatch,
list the advantages of using multi-dispatch to replace
the idiomatic code, and provide the timing cost of
using multi-dispatch with one of our current multi-
dispatch algorithms.

1.1 Double Dispatch

Double dispatch occurs when a method checks an
argument type and executes di�erent code as a re-
sult of this check. Double dispatch is illustrated
in Figure 2(a) (from Sun's AWT classes) where
the processEvent(AWTEvent) method must pro-
cess events that are instances of di�erent classes in
di�erent ways. Since all of the events were placed
in a queue whose static element type is AWTEvent,
the compiler lost the more speci�c dynamic type in-
formation. When an element is removed from the
queue for processing, its dynamic type must be ex-
plicitly checked to pick the appropriate action. This
is an example of the well-known container prob-
lem [5].

Double dispatch su�ers from a number of disadvan-
tages. First, double dispatch has the overhead of
invoking a second method. In this example, the
penalty is reduced because only one argument and
no return values are involved. Second, the double
dispatch program is longer and more complex; this
provides more opportunity for coding errors. Third,
the double dispatch program is more diÆcult to

maintain since adding a new event type requires not
only the code to handle the new event, but another
cascaded else if statement.

The need for double dispatch develops naturally
in several common situations. First, consider bi-
nary operations [4], such as the compareTo(Object)
method de�ned in interface Comparable. The pro-
grammer must ascertain the type of the Object ar-
gument before continuing to perform a type-speci�c
comparison. Another common place for double dis-
patch is in drag-and-drop applications, where the
result of a user action depends on both the data
object dragged, and on the application catching
the dropped information. A generic drag-and-drop
schema must force the programmer to test data
types, and re-dispatch to a more speci�c method.
A third location is in event-driven programming.
As we saw in Figure 2, applications are written
using base classes such as Component and Event,
but we need to take action based upon the speci�c
type of Component and Event. Indeed, the need for
multiple-dispatch is ubiquitous enough that two of
the original design patterns, Visitor and Strategy,
are workarounds to supply multiple-dispatch within
single-dispatch languages.

Consider the AWT example, if dynamic multi-
dispatch was available in Java. The same pro-
gram text might resemble Figure 2(b). For clar-
ity, we maintain the case statement to select among
MouseEvent categories, but a more complete fac-
toring of MouseEvent into MouseButtonEvent and
MouseMotionEvent would eliminate the remaining
double dispatch. Our Full Multi-Dispatch timing is
for this more elegant factoring. We no longer need
to double-dispatch on any events. Instead, we can
use that method name for each of the more pre-
cise methods, and rely upon the dynamic multi-
dispatcher to select the correct method at run-
time based upon the dispatchable arguments in ad-
dition to the receiver argument (the instance of
Component). Individual component types can still
override the methods that accept speci�c event
types (eg. KeyEvent, FocusEvent), and will do so
without invoking the double dispatcher.

The multi-dispatch version is shorter and clearer.
However, it requires the Java Virtual Machine
(JVM) to directly dispatch an Event to the correct
processEvent(AWTEvent) method. Our modi�ed
JVM provides this facility, and correctly executes
the multi-dispatch code above. Furthermore, Ta-
ble 1, a subset of Table 4. shows that multi-dispatch
is as fast as double-dispatch.

package java.awt;

class Component f

// double dispatch events to subComponent

void processEvent(AWTEvent e) f
if (e instanceof FocusEvent) f
processFocusEvent((FocusEvent)e);

g else if (e instanceof MouseEvent) f
switch (e.getID()) f
case MouseEvent.MOUSE PRESSED:

...

case MouseEvent.MOUSE EXITED:

processMouseEvent((MouseEvent)e);

break;

case MouseEvent.MOUSE MOVED:

case MouseEvent.MOUSE DRAGGED:

processMouseMotionEvent((MouseEvent)e);

break;

g
g else if (e instanceof KeyEvent) f
processKeyEvent((KeyEvent)e);

g else if (e instanceof ComponentEvent) f
processComponentEvent((ComponentEvent)e);

g else if (e instanceof InputMethodEvent) f
processInputMethodEvent((InputMethodEvent)e);

g
// other events ignored by Component

g

void processFocusEvent(FocusEvent e) f...g

void processMouseEvent(MouseEvent e) f...g

void processMouseMotionEvent(MouseEvent e) f...g

void processKeyEvent(KeyEvent e) f...g

void processComponentEvent(ComponentEvent e) f...g

void processInputMethodEvent(InputMethodEvent e) f...g
g

(a) Double Dispatch in Java

package java.awt;

class Component f

void processEvent(AWTEvent e) f...g

void processEvent(MouseEvent e) f
switch (e.getID()) f
case MouseEvent.MOUSE PRESSED:

...

case MouseEvent.MOUSE EXITED:

processMouseEvent((MouseEvent)e);

break;

case MouseEvent.MOUSE MOVED:

case MouseEvent.MOUSE DRAGGED:

processMouseMotionEvent((MouseEvent)e);

break;

g
g

void processEvent(FocusEvent e) f...g

void processMouseEvent(MouseEvent e) f...g

void processMouseMotionEvent(MouseEvent e) f...g

void processEvent(KeyEvent e) f...g

void processEvent(ComponentEvent e) f...g

void processEvent(InputMethodEvent e) f...g
g

(b) Equivalent Code in Multi-Dispatch Java

Figure 2: Double vs. Multi-Dispatch in Java

Our experience with Swing reinforces our belief that
double dispatch in AWT is a signi�cant factor.
First, Swing does not operate without AWT; in-
stead AWTEvent is accepted by a Swing JComponent.
Therefore, every mouse click and keyboard press is
double-dispatched through AWT into Swing. Next,
Swing type-checks, and double-dispatches again! In-
ternally, Swing avoids further double-dispatch by
coding the AWTEvent type into the selector (e.g.
fireInternalEvent()). Despite the limitations
this imposes on the programmer, it is clear that
double-dispatch is still the standard technique in
Swing as well.

A multi-dispatch Java Virtual Machine o�ers new

Dispatch Time in �s. (�) Normalized

Double 0.91 (0.00) 1.00
Multi- 1.13 (0.03) 1.25
Full Multi- 0.90 (0.01) 1.00

Table 1: AWT Event Dispatch Comparison
(Call-Site Dispatch Time in microseconds)

potential to other languages as well. For example,
Standard ML, Scheme, and Ei�el have implementa-
tions which generate JVM compatible binary �les.
With a multi-dispatch VM underlying these lan-
guages, extending them with multi-dispatch seman-
tics becomes straight-forward. In contrast to Java

source-language based multi-dispatch, our JVM-
based multi-dispatch o�ers this same multi-dispatch
potential to these other languages as well.

The research contributions of this paper are:

1. The design and implementation of an extended
Java Virtual Machine that supports arbitrary-
arity multi-dispatch with the properties:

(a) The Java syntax is not modi�ed.

(b) The Java compiler is not modi�ed.

(c) The programmer can select which classes
should use multi-dispatch.

(d) The performance and semantics of uni-
dispatched methods are not a�ected.

(e) The existing class libraries are not af-
fected.

2. The introduction of a dynamic version of Java's
static multi-dispatch algorithm.

3. The �rst performance results of table-based
multi-dispatch techniques in a mainstream lan-
guage.

We begin by reviewing some important details
about Java and the implementation of the uni-
dispatch Java Virtual Machine. This is followed by
a description of the way we re-designed portions
of the JVM to support multi-dispatch. Next we
present experimental results for our implementation
of several di�erent multi-dispatch techniques. This
is followed by a discussion of several complex and
diÆcult issues that must be addressed, and a de-
scription of some of the details of our implementa-
tion. Finally, we close with a short review of related
approaches to multi-dispatch and a description of
unresolved issues.

2 Background

The Java Programming Language [14, 15] is a
static multi-dispatch, dynamic uni-dispatch, dy-
namic loading object-oriented language. Our pri-
mary design goal is to extend the dynamic method
selection to optionally and eÆciently consider all ar-
guments, without a�ecting the syntax of the lan-
guage or any other semantics. Secondary goals are
to retain the dynamic and re
ective properties of
Java.

In order to meet these goals, we chose to modify
the Java Virtual Machine [20, 21](JVM) implemen-
tation, rather than modifying the programming lan-
guage itself. Java programs are compiled by javac2

2or other compiler

into bytecodes representing primitive operations of
a simple stack-based computer. These bytecodes are
interpreted by a Java Virtual Machine written for
each hardware platform. Our JVM is the \classic"
VM (now known as the Research Virtual Machine3

) written in C and distributed by Sun Microsystems
Inc. Other JVM implementations exist, and many
include Just In Time (JIT) compiler technology to
enhance the interpretation speed at runtime by re-
placing the bytecodes with equivalent native ma-
chine instructions. At present, we do not support
JIT in our techniques.

Before we look at how to implement multi-dispatch
in the virtual machine, we �rst need to understand
the binary representation that the virtual machine
executes, how method invocations are translated
into the virtual machine code, and how the JVM
actually dispatches the call-sites.

2.1 Java Class�le format

The JVM reads the bytecodes, along with some nec-
essary symbolic information from a binary repre-
sentation, known as a .class �le. Each .class

�le contains a symbol table for one class includ-
ing a description of its superclasses, and a series
of method descriptions containing the actual byte-
codes to interpret. We need to leverage the sym-
bolic information, called the constant pool, to e�ect
multi-dispatch.

Figure 3 shows the layout of the constant pool for
the ColorPoint class shown in Figure 1.

CLASS

CLASS
TEXT

METHOD

METHOD
NAME&TYPE

NAME&TYPE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

#7
#1

#4

#2

#1
#11 #12

#10
"()V"
"<init>"

#8
#6

"(LCanvas;)V"

"Point"

"ColoredPoint

"draw"

Point

Point::draw:(LCanvas;)V

NAME&TYPE #14 #15
"c"
"Color"

Point::<init>:()V

used for our field

ColoredPoint

 and for our method

 and for our initializer

TEXT

TEXT
TEXT

TEXT
TEXT

TEXT
TEXT

Figure 3: A Simple Constant Pool

Conceptually, the constant pool consists of an array

3The Research Virtual machine was initially released as
the \classic" reference VM. Sun later renamed it the Exact

VM. With the advent of the HotSpot VM, the classic VM
was released as the Research VM.

containing text strings and tagged references to text
strings. In Figure 3, class Point is represented by
a tag entry at location 1 that indicates that it is a
class tag and that we should look at constant pool
location 2 for the name text. Then, the constant
pool contains the text string \Point" at location 2.
Therefore, a class symbol requires two constant pool
entries. Method references are similar, except they
require �ve constant pool entries: the method (line
9), the class entry (line 1), the name-and-type
entry (line 10), the text entry containing the selec-
tor name (line 11), and the text entry containing
the descriptor(line 12).

In our example, constant pool location 9 contains
the tag declaring that it contains a method. It ref-
erences the class tag at location 1, to de�ne the
static type of the class containing the method to be
invoked. In this case, the class happens to be Point
itself; but, most often, this is not the case. The
method entry also references the name-and-type
entry at location 10. This name-and-type entry
contains pointers to text entries at locations 11 and
12. The �rst location, 11, contains the method
name, \draw". The second location, 12, contains a
specially encoded signature \(LCanvas;)V" describ-
ing the number of arguments to the method, their
types, and the return type from the method. In
our example, we see one class argument with name
\Canvas" and that the return type is void.

2.2 Static Multi-Dispatch in Javac

The Java compiler converts source code into a bi-
nary representation. When it encounters a method
invocation, javac must emit a constant pool entry
that describes the method to be invoked. It must
provide an exact description, so that, for instance,
the two translate(...) methods in Point can be
distinguished at runtime. Therefore, it must exam-
ine the types of the arguments at a call-site, and
select between them. This selection process which
considers the static types of all arguments can be
viewed as a static multi-dispatch.

The Java Language Speci�cation, 2nd Edition [15]
(JLS) provides an explicit algorithm for static multi-
dispatch called Most Speci�c Applicable (MSA). At
a callsite, the compiler begins with a list of all meth-
ods implemented and inherited by the (static) re-
ceiver type. Through a series of culling operations,
the compiler reduces the set of methods down to a
single most speci�c method. The �rst operation re-
moves methods with the wrong name, methods that
accept an incorrect number of arguments and meth-
ods that are not accessible from the callsite. This

latter group includes private methods when the call-
site is in another class, or protected methods from
outside of the package.

Next, any methods which are not compatible with
the static type of the arguments are also removed.
This test relies upon testing widening conversions,
where one type Tsub can be widened to another
Tsuper if and only if Tsub is the same type as Tsuper

or a subtype of Tsuper. For example, a FocusEvent

can be widened to an AWTEvent, because the lat-
ter is a super-type of the former4. The opposite
is not valid: an AWTEvent cannot be widened to a
FocusEvent; indeed a type-cast from AWTEvent to
FocusEvent would need to be a type-checked nar-

rowing conversion.

Finally, javac attempts to locate the single
most speci�c method among the remaining sub-
set of statically applicable methods. One method
M(T1;1; : : : ; T1;n) is considered more speci�c than
M(T2;1; : : : ; T2;n) if and only if each argument type
T1;i can be widened to T2;i for each (i = 1; : : : ; n),
and for some j, T2;j cannot be widened to T1;j . In
e�ect, this means that any set of arguments ac-
ceptable to M(T2;1; : : : ; T2;n) is also acceptable to
M(T1;1; : : : ; T1;n), but not vice versa.

Given the subset of applicable methods, javac se-
lects one Mt as its tentatively most speci�c. It then
checks each other candidate method Mc by testing
whether its arguments can be widened to the cor-
responding argument in Mt. If this is successful,
then Mc is at least as speci�c as Mt; and, the com-
piler adopts Mc as the new tentatively most speci�c
method - the method Mt is discarded from the can-
didate list. If the �rst test, whether Mc be widened
to Mt, is unsuccessful, then the compiler checks the
other direction: can Mt be widened to Mc. If so,
then the compiler discards Mc from the candidate
list.

Unfortunately, both tests can fail. To illustrate this,
consider the �rst two methods in �gure 4. The �rst
argument of the �rst method (ColorPoint) can be
widened to the type of the �rst argument of the
second method (Point). But the opposite is true
for the second argument of each method. If we
invoke colorBox with two ColorPoint arguments,
both methods apply. If the third method was not
present, we would have an ambiguous method er-
ror. The third method, taking two ColorPoints,
removes the ambiguity because it is more speci�c

4The JLS separately recognizes identity conversions (a
FocusEvent can be converted into a FocusEvent). Javac does
not distinguish them, so we do the same for our exposition.

than both of the other methods. It allows both of
the others to be discarded, giving a single most spe-
ci�c method.

colorBox(ColorPoint p1, Point p2) f...g
colorBox(Point p1, ColorPoint p2) f...g

// conflict method removes ambiguity

colorBox(ColorPoint p1, ColorPoint p2) f...g

Figure 4: Ambiguous and Con
ict Methods

Primitive types5, when used as arguments, are
tested at the same time, and in the same way. Prim-
itive widening conversions are de�ned which e�ec-
tively impose a standard type hierarchy on the prim-
itive types. The compiler inserts widening casts as
needed.

2.3 Dynamic Uni-Dispatch in the JVM

Now we turn our attention to dispatching polymor-
phic call-sites at runtime. Methods are stored in the
.class �le as sequences of virtual machine instruc-
tions. Within a stream of bytecodes, method invo-
cations are represented by invoke bytecodes that
occupies 3 bytes6. The �rst byte contains the op-
code (0xb6 for invoke-virtual). The remaining
two bytes form an index into the constant pool. The
constant pool must contain a method entry at the
given index. This entry contains the static type of
the receiver argument (as the class linked entry),
and the method name and signature (through the
name&type entry). Figure 5 shows the pseudo-
bytecode7 for invoking the method Component.-

processEvent(AWTEvent) twice.

From the opcode, invokevirtual, the JVM knows
that the next two bytes contain the constant pool in-
dex of a method descriptor. From that descriptor,
the JVM can locate the method name and signature.
The JVM parses the signature to discover that the
method to be invoked requires a receiver argument
and one other argument. Therefore, the JVM peeks
into the operand stack and locates the receiver argu-
ment. At this point, the JVM has the information it
needs to begin searching for the method to invoke.
It has the name, the signature, and the receiver of
the message.

The JVM Speci�cation (section 5.4.3.3) provides a
recursive algorithm for resolving a method reference
and locating the correct method. Beginning with

5Java provides non-object types byte, char, short, int,
long, float, and double. These are called primitive types.

6Invokeinterface occupies 5 bytes.
7Rather than show constant pool indices, we show their

values directly.

aComponent.processEvent(aFocusEvent);

FocusEvent aFocusEvent = new FocusEvent(...);

aComponent.processEvent(anEvent);

Component aComponent = new SubComponent(...);

AWTEvent anEvent = new FocusEvent(...);

apush

aComponent

anEvent

invokevirtual

apush aComponent

apush aFocusEvent

invokevirtual

...

...

apush

Component::processEvent:(LAWTEvent;)V

Component::processEvent:(LAWTEvent;)V

(a) Polymorphic call sites in source.

(b) Polymorphic call sites in bytecodes.

Figure 5: Polymorphic Call-Sites - two views

the methods de�ned for the precise receiver argu-
ment type, scan for an exact match for the name
and signature. If one is not found, search the su-
perclass8 of the receiver argument, continuing up
the superclass chain until Object, the root of the
type hierarchy, is searched. If an exact match is not
found, throw an AbstractMethodError. This look-
up process applies to each of the invoke bytecodes.

This look-up process is a time-intensive operation.
To reduce the overhead of method look-up, the
resolved method is cached into the constant pool
alongside the original method reference. The next
time this method reference is applied by another
invoke bytecode, the cached method is used di-
rectly.

Once a method is resolved, a method-speci�c in-

voker is executed to begin the interpretation of the
new method. This invoker performs method-speci�c
operations, such as acquiring a lock in the case of
synchronized methods, constructing a JVM ac-
tivation record in the case of bytecode methods,
or preparing a machine-level activation record for
native methods.

The Research JVM recognizes a special case in in-
voking methods: any private methods, �nal meth-
ods, or constructors can be handled in a nonvirtual

mode. Clearly, each of these situations do not re-
quire dynamic dispatch. But, multi-dispatch will
need to handle these cases specially.

8Java provides only single inheritance.

3 Design

We now have suÆcient information to describe the
general design for extending the JVM to support
multi-dispatch. In short, we mark classes which are
to use multi-dispatch, and replace their method in-
vokers with one that selects a more speci�c method
based on the actual arguments. Hence, existing uni-
dispatch method invocations are unchanged in any
way.

Marking the .class �les without changing the lan-
guage syntax is straightforward. We created an
empty interface MultiDispatchable and any class
which will provide multi-dispatch methods must im-
plement that interface. The .class �le retains that
interface name, and the virtual machine can easily
check for this at class loading time. Our implemen-
tation does not change the syntax of the Java pro-
gramming language or the binary .class �le format
in any way.

This allows us to retain compatibility with exist-
ing programs, compilers, and libraries. Certainly,
any class that does implement our marker inter-
face has di�erent semantics for dispatch. But, that
does not change the semantics of existing single-
dispatch programs or libraries. The programmer re-
tains complete responsibility for designating multi-
dispatchable classes. This allows the developer to
consciously target the multi-dispatch technique to
known programming situations, such as double dis-
patch.

At multimethod invocation, our multimethod in-
voker executes instead of the original JVM invoker.
Our invoker locates a more-precise method based on
the types of the invocation arguments, and executes
it in place of the original method.

The non-virtual mode invocations need to be han-
dled specially. Constructors are never multi-
dispatched. We found that constructor chaining
within a class could cause in�nite loops. Private
and �nal multimethods are still multi-dispatched.

We implemented two di�erent dispatch techniques.
The �rst one,MSA implements a dynamic version of
Java Most Speci�c Applicable algorithm used by the
javac compiler. The other technique, SRP [17], is
a high performance table-based technique developed
in our research group at the University of Alberta.
We examine a framework-based system and a tuned
implementation. We defer a detailed look at the
implementations, in order to present the results of
our experiments. For implementation details, please
refer to section 6.

4 Experimental Results

So far, we have performed four di�erent micro-
benchmarks, and tested against a multi-dispatch
implementation of Swing/AWT.

The �rst benchmark experiment demonstrates back-
ward compatibility and minimal overhead for uni-
dispatch applications, by running the javac com-
piler on the multi-dispatch virtual machine, and us-
ing it to recompile itself. The other three tests exer-
cise multi-dispatch, and demonstrate multi-dispatch
correctness, comparison to double dispatch, and
multi-dispatch performance as arity increases. None
of the benchmarks use more than one thread.

For our application-level tests, we modi�ed Swing
to use multiple-dispatch. We also converted AWT,
because Swing depends heavily on AWT to dispatch
the events into top-level Swing components.

All experiments were executed on a dedicated intel-
architecture PC equipped with two 550MHz Celeron
processors, a 100MHz front-side bus, and 256 MB
of memory. The operating system is Linux 2.2.16
with glibc version 2.1. The Sun Linux JDK 1.2.2
code was compiled using Gnu C version 2.95.2,
with optimization
ags as supplied by Sun's make-
�les.9. The table-based multi-dispatch code [23]
was compiled using Gnu G++ version 2.92.2,
with options -ansi -fno-implicit-templates

-fkeep-inline-functions -O2. The Sun JDK
only supports the green threading model, con-
structed on the Linux implementation of pthreads.

We report average and standard deviations for 10
runs of each benchmark.

We tested three di�erent virtual machines. The
�rst JVM, jdk is the standard JDK 1.2.2 Linux
runtime, running without the JIT compiler. This
VM serves as a baseline for comparing the remain-
ing four multi-dispatch systems. The three multi-
dispatch virtual machines jdk-MSA, and jdk-SRP,
and jdk-NSRP, di�er only in the dispatch technique.
None of the four multi-dispatch virtual machines use
a JIT compiler. For the �rst two experiments (Ta-
bles 2 and 3) we report user+system time in sec-
onds, along with normalized values against the jdk

runtime. For the third and fourth experiments (Ta-
ble 4 and Figure 7), we describe individual dispatch
times in microseconds, ignoring other costs. In the
�nal benchmark, Swing, we report execution times
for a synthetic application that creates a number
of components and inserts 200,000 events into the
event queue.

9Typical
ags are -O2

4.1 Javac - Compatibility Test

The �rst experiment requires the runtime to load
and execute the javac compiler to translate the en-
tire sun.tools hierarchy of Java source �les into
.class �les. This hierarchy includes 234 source �les
encompassing 49,798 lines of code (excluding com-
ments). Each compilation was veri�ed by compar-
ing the error messages10 and by checksumming the
generated binaries. Each virtual machine passed the
test; the timing results are shown in Table 2. These
times came from the Unix time user command, and
provide an average and standard deviation from 10
runs.

JVM Time in sec. (�) Norm.

jdk 65.41 + 0.25 (0.39) 1.00
jdk-MSA 67.38 + 0.31 (0.14) 1.03
jdk-SRP 68.22 + 0.45 (0.25) 1.05
jdk-NSRP 67.13 + 0.51 (0.35) 1.03

Table 2: Compatibility Testing and Performance
(User+System Time to Recompile sun.tools in

seconds)

The negligible di�erences between the uni-dispatch
and multi-dispatch execution times clearly demon-
strate that the overhead introduced by adding the
simple check for multi-dispatch is essentially zero.
Please note that in our implementation, table-based
JVMs do not construct a dispatch table until the
�rst multi-dispatchable method is inserted.

4.2 Simple Multi-Dispatch

In this example, we show that multi-dispatch is oc-
curring, and roughly measure its overhead. The
testing code is short, and is shown in Figure 6. The
compiler uses static dispatch to code all four calls
to MMDriver.m(X,X) to execute the method for two
arguments of type A, because that is the static type
of both anA and aB. Multi-dispatch actually selects
among the four methods based upon the dynamic
types of the arguments. Therefore, correct output
consists of 100,000 repetitions of four consecutive
lines: AA, AB, BA, and BB. For timing purposes, all
output was redirected to /dev/null to reduce the
impact of input/output. Our results are summa-
rized in Table 3.

The table-based techniques su�ers from a substan-
tial startup time, whereas the MSA technique pri-
marily uses existing data structures found in the
Java Virtual Machine, and lazily computes any ad-

10One warning, noting that 8 �les used deprecated APIs.

class A f g
class B extends A f g

class MMDriver implements MultiDispatchable f
String m(A a1, A a2) f return ``AA''; g
String m(A a1, B b2) f return ``AB''; g
String m(B b1, A a2) f return ``BA''; g
String m(B b1, B b2) f return ``BB''; g

static public void main(String args[]) f
final int LOOPSIZE = 100000;

A anA = new A();

A aB = new B();

MMDriver d = new MMDriver();

for(int i=0; i<LOOPSIZE; i++) f
System.out.println(d.m(anA, anA));

System.out.println(d.m(anA, aB));

System.out.println(d.m(aB, anA));

System.out.println(d.m(aB, aB));

g
g

g

Figure 6: Simple Multi-Dispatch Testing Code

ditional values. This reduces the cost of program
startup.

JVM Time in sec. (�) Norm. Correct

jdk 26.40 + 0.68 (0.07) 1.00 No

jdk-MSA 28.88 + 0.83 (0.22) 1.10 Yes

jdk-SRP 31.53 + 0.91 (0.11) 1.20 Yes

jdk-NSRP 29.48 + 0.84 (0.17) 1.12 Yes

Table 3: Simple Multi-Dispatch
(User+System Execution Time in seconds)

4.3 Double Dispatch

Our third experiment involves computing the per-
formance di�erences between double dispatch, and
the two multi-dispatch implementations of the ex-
ample given in Figure 2. We constructed a type
hierarchy of AWTEvent classes, to match those in
Figure 2.

We also constructed three di�erent component
types:

1. DD uses double dispatch to implement
processEvent(AWTEvent) as shown in
Figure 2.

2. MD uses Multi-Dispatch to implement
processEvent(AWTEvent) as shown in
Figure 2(b).

3. FMD uses Full Multi-Dispatch to implement
processEvent(AWTEvent) as in Section 1.1.

It separates MouseEvent into two di�erent
classes: MouseButtonEvent and MouseMotion-

Event. FMD avoids the switch statement en-
tirely.

To avoid inlining e�ects, we added code for up-
dating an instance variable to the body of each
processEvent(AWTEvent). This test consists of
dispatching a total of one million events through
processEvent(AWTEvent). Each event type ap-
pears equally often, as we iterate over an array con-
taining one of each event. We compute the loop
overhead using an empty loop, and subtract it, and
then divide the total elapsed time by the number of
events dispatched. The timing results are shown in
Table 4.

Dispatch DD MD FMD
JVM Time (�) Time (�) Time (�)

jdk 0.91 (0.00) | |
jdk-MSA 0.95 (0.00) 3.26 (0.03) 2.90 (0.02)
jdk-SRP 0.96 (0.01) 3.12 (0.08) 2.52 (0.05)
jdk-NSRP 0.95 (0.00) 1.13 (0.02) 0.90 (0.01)
nolock 0.95 (0.00) 0.85 (0.01) 0.60 (0.00)

Table 4: Event Dispatch Comparison
(Call-Site Dispatch Times in microseconds)

Also, we give an additional timing value for our cus-
tom SRP implementation, where we disabled mu-
tual exclusion in the dispatcher. Currently our im-
plementation uses a costly monitor to ensure that
no other thread is updating the dispatch tables dur-
ing a multi-dispatch. High-performance concurrent-
reader exclusive-writer protocols can eliminate this
overhead; the nolock value approximates multi-
dispatch in this highest-performance case.

As DD does not declare itself multi-dispatchable, the
similarity of the results in column 2 of Table 4 again
shows that our multi-dispatchable virtual machines
do not penalize uni-dispatch code. Further, we see
that the cost of interpreting numerous JVM byte-
codes followed by another invokevirtual (which
is DD's strategy) is almost as costly as our multi-
dispatch techniques. The full multi-dispatch im-
plementation (FMD) is faster than the partial multi-
dispatch (MD) and is just as fast as double-dispatch
(DD). This is reasonable, because MD ends up double
dispatching two of every six events.

Again, we see that the framework-based SRP tech-
nique su�ers from considerable initial overhead. We
hypothesize that it is a result of the object-oriented
nature of our implementation of the table-based
techniques. In each dispatch, several C++ objects

are created and destroyed. Our native SRP imple-
mentation removes this overhead, and provides dis-
patch performance equal to programmer-coded dou-
ble dispatch.

4.4 Arity E�ects

Our �nal micro-benchmark explores the time penal-
ties as the number of dispatchable arguments and
applicable methods grow. To do this, we built a
simple hierarchy of �ve classes (one root class A,
with three subclasses B, C, and D, and �nally class
E as a subclass of C) and constructed methods of
di�erent arities against that hierarchy. We de�ned
the following methods:

� classes A, B, C, D, and E contain unary methods
R.m() (where R represents the receiver argu-
ment class).

� classes A, B, C, D, and E also implement �ve
binary methods, R.m(X) where X can be any
of A, B, C, D, or E.

� classes A, B, C, D, and E implement 25 ternary
methods, R.m(X,Y) where X and Y can be any
of A, B, C, D, or E.

� classes A, B, C, D, and E implement 125 quater-
nary methods, R.m(X,Y,Z) where X, Y, and Z

can be any of A, B, C, D, or E.

MSA looks at one fewer dispatchable arguments
than the table-based techniques. This is because
the receiver argument has already been dispatched
by the JVM. For instance, given a unary method,
MSA makes no widening conversions for dispatch-
able arguments. A binary method requires MSA
to check only one widening conversion. The table-
based techniques dispatch on all arguments, and
gain no bene�t from the dispatch done by the JVM.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4

Di
sp

at
ch

 L
at

en
cy

 (m
icr

os
ec

on
ds

)

Arity (including single receiver)

Arity Effects on Multi-Dispatch

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4

Di
sp

at
ch

 L
at

en
cy

 (m
icr

os
ec

on
ds

)

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4

Di
sp

at
ch

 L
at

en
cy

 (m
icr

os
ec

on
ds

)

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4

Di
sp

at
ch

 L
at

en
cy

 (m
icr

os
ec

on
ds

)

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk
jdk-MSA

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4

Di
sp

at
ch

 L
at

en
cy

 (m
icr

os
ec

on
ds

)

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk
jdk-MSA

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4

Di
sp

at
ch

 L
at

en
cy

 (m
icr

os
ec

on
ds

)

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk
jdk-MSA
jdk-SRP

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4

Di
sp

at
ch

 L
at

en
cy

 (m
icr

os
ec

on
ds

)

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk
jdk-MSA
jdk-SRP

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4

Di
sp

at
ch

 L
at

en
cy

 (m
icr

os
ec

on
ds

)

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk
jdk-MSA
jdk-SRP

jdk-NSRP

Figure 7: Impact of Arity on Dispatch Latency

Uni-Swing Multi-Swing
Stage Methods Uni-Methods Multi-methods

warm-up 901,938 901,795 160 (0.02%)
event loop 32,543,684 27,807,327 2,350,172 (7.7%)

Table 5: Swing Application Method Invocations

We invoke one million methods for each arity. This
means that each of the unary methods is exe-
cuted 200,000 times, However each of the quater-
nary methods is executed only 1,600 times. After
computing the loop overhead via an empty loop, we
determine the elapsed time to millisecond accuracy,
and determine the time taken for each dispatch. Our
results are shown in Figure 7.

We simulate the arity e�ects in the uni-dispatch
case by coding a third level of double-dispatch. Al-
ready the overhead of constructing a third activa-
tion record exceeds the dispatch time of our native
SRP implementation. Also, our SRP implementa-
tions su�er only linear growth in time-penalties as
arity increases, whereas MSA su�ers quadratic ef-
fects.

4.5 Swing and AWT

Our �nal test is to apply multi-dispatch to AWT
and Swing applications. To do this, we needed to
rewrite AWT and Swing to take advantage of multi-
dispatch. We modi�ed 11% (92 out of 846) of the
classes in the AWT and Swing hierarchies. We elim-
inated 171 decision points, but needed to duplicate
123 into the specialized methods. Within the modi-
�ed classes, we removed 5% of the conditionals, and
reduced the average number of choice points per
method from 3.8 to 2.0 per method. This reduction
illustrates the value of multi-dispatch in reducing
code complexity.

In all, 57 classes were added, all of them new event
types to replace those previously recognized only
by a special type id (as in the AWT examples de-
scribed previously). Our multiple-dispatch libraries
are a drop-in replacement that executes a total of
7.7% fewer method invocations, and gives virtu-
ally identical performance with applications such as
SwingSet. In our sample application, we found that
the number of multi-dispatches executed almost ex-
actly equaled the total reduction in method invoca-
tions. This suggests that every multi-dispatch re-
placed a double-dispatch in the original Swing and
AWT libraries.

We veri�ed operation of the entire unmodi�ed
SwingSet application with our replacement li-

braries. Finally to measure performance, we timed
a simple Swing application that handles 200,000
AWTEvents of di�erent types. The timing results are
given in Table 6. (jdk-SRP values are not given be-
cause the framework-based system does not support
all of the dispatch features listed above).

The Swing and AWT conversion also demonstrates
the robustness of our approach. We needed to sup-
port multi-dispatch on instance and static meth-
ods. Swing and AWT expect to dispatch di�er-
ently on Object and array types. In modifying
the libraries, we found numerous situations to ap-
ply multi-dispatch to private, protected, and su-
per method invocations. In addition, several mul-
timethods required the JVM to accept co-variant
return types from multimethods. All of these fea-
tures are required for a mainstream programming
language.

Dispatch Uni-Swing Multi-Swing
JVM Time (�) Time (�)

jdk 28.03 (0.35) |
jdk-MSA 28.69 (0.31) 70.09 (0.15)
jdk-NSRP 29.33 (0.42) 28.30 (0.36)

Table 6: Swing Application Execution Time
(Event loop times in seconds)

5 Multi-Dispatch Issues

Besides performance and correctness, multi-
dispatch must contend with a number of serious
diÆculties which the javac compiler cannot rec-
ognize. They are: ambiguous method invocations
caused by inheritance con
icts, incompatible return
type changes, masking of methods by primitive
widening operations, and null arguments. Each of
these is illustrated in Figure 8. We have developed a
tool called MDLint that can identify these problems
and warn the programmer.

The �rst diÆculty is that multi-dispatch, even in
a single-inheritance language, can su�er from am-
biguous methods. The two examples using the m1

methods illustrate this. For the �rst method invoca-
tion, the compiler knows that A.m1(B) and B.m1(A)

are candidates. Neither one is more speci�c than
the other, so the compiler aborts with an error. We

can �x that by statically typing the receiver argu-
ment to A, but multi-dispatch sees exactly the same
con
ict at runtime. Our MDLint program warns
about the problem. If the programmer disregards
the warning, our JVM detects the error and throws
an AmbiguousMethodException.

The second diÆculty centers around the fact that
javac considers methods with di�erent argument
types as distinct. This means that they can have
di�erent return types. Multi-dispatch forges ad-
ditional connections based on the additional dis-
patchable arguments. This means that methods
which javac considered distinct are now overrid-
ing each other. In the example, we see that the
two m2(...) methods override each other for
multi-dispatch. Our multi-dispatch implementa-
tions throw an IllegalReturnTypeChange excep-
tion, unless the more speci�c method returns a sub-
type of the original returned value..

Throwing a runtime exception may not appear as an
elegant, nor acceptable solution. But, one of the key
attributes of Java is to maintain security. A mali-
cious programmer can separately compile each class
so that the errors are not evident until execution.
The Java virtual machine must protect itself from
these unruly possibilities, and throwing an excep-
tion remains as the only option. As we noted, our
MDLint tool can recognize and report potential am-
biguities and return type con
icts at compile time.

The third diÆculty involves the use of literal null as
an argument. If null is typed, as in the �rst exam-
ple, then javac performs its static multi-dispatch
with that type. This restricts its set of applicable
methods. In our example, ordinary Java can avoid
loading class C. Multi-dispatch Java loads class C

and dispatches to the m3(C) method.

The null argument problem is an example of a more
general problem in Java. Inconsistent invocations
can occur when expressions are substituted in place
of variables. This is because javac can obtain and
use more precise type information. As an example,
compare the execution of the second and third invo-
cations of m3(...). By replacing Ab with its value,
we have altered the execution of a program.

The last diÆculty is more complex; and, at this
time, unsolved. The compiler selects a method
based upon widening operations, and may change
the type of primitive arguments. In the example,
the compiler inserts instructions to convert b from a
byte to an int. At runtime, we have lost all traces
that b was originally speci�ed as a byte. Indeed,

class A f
void m1(B b1) f...g
void m4(int i) f...gg

class B extends A f
void m1(A a1) f...g
void m4(byte b) f...gg

class C extends B f g

class Driver f
int m2(A a1, A a2) f...g
String m2(B b1, B b2) f...g
void m3(A a1) f...g
void m3(B b1) f...g
void m3(C c1) f...g

public static void main(String args[]) f
A Ab = newB(); // static: A, dynamic: B

B Bb = newB(): // static: B, dynamic: B

// multi-dispatch difficulties

Bb.m1(Bb); // javac: ambiguous method

Ab.m1(Bb); // javac: OK, MDJ: ambiguous

// incompatible return type change

int i = m2(Bb, Bb); // javac: bad return type

int i = m2(Ab, Ab); // javac: no error

int i = m2(Ab, Ab); // javac: OK, MDJ: runtime error

// null arguments are more consistent

A a = null;

m3.(a); // regular Java executes m3(A)

// MDJ loads C, executes m3(C)

m3.(null); // both execute m3(C)

m3(Ab); // executes m3(A)

m3(new B()); //replace variable with value

// primitive widening hides correct method

byte b = 7;

Ab.m4(b); // javac: widens, calls A.m4(int)

// MDJ: ignores B.m4(byte)

Ab.m4(int(b)); // programmer widening g

Figure 8: Examples of Multi-Dispatch Issues

the programmer might have wanted to force that
exact conversion; the bytecodes would be identical
to compiler-generated conversions.

6 Implementation

In this section, we describe how the Java Virtual
Machine was extended to support dynamic multi-
dispatch. We begin by examining how to indicate
which classes are multi-dispatchable by the JVM.
We then examine where multi-dispatch must oc-
cur, and �nally we review the three di�erent multi-
dispatch implementations.

6.1 Marking Classes as Multi-
Dispatchable

Before we begin examining an actual multi-
dispatch, we need to tell the system that multi-

dispatch is required. We do this on a class-by-
class basis, by implementing an empty interface,
MultiDispatchable in each class that is multi-
dispatchable. The Java programming language has
already leveraged this idea for marking class capa-
bilities with the Cloneable interface. We use the
MultiDispatchable interface to denote that any
method sent to a multi-dispatch receiver should be
handled by the multi-dispatcher. For eÆciency, we
add a
ag to the internal class representation to in-
dicate that a class is multi-dispatchable, rather than
searching its list of interfaces at each method invo-
cation. The value of this
ag is set once, at class
load time.

Our selection of MultiDispatchable as the marker
clearly requires us to support multi-dispatch on a
class-by-class basis, not on a method-by-method
or argument-by-argument basis. That is, every
method invocation where the uni-dispatch receiver
is a member of a multi-dispatchable class goes
through our multi-dispatcher. Furthermore, be-
cause interfaces are inherited, this approach re-
quires any subclass of a multi-dispatchable class to
also be multi-dispatchable. Most importantly, any
method invocation where the receiver argument is
not marked for multi-dispatch continues unchanged
through the uni-dispatcher. The syntax of Java pro-
grams is unchanged, and the performance and se-
mantics of uni-dispatch remains intact.

6.2 Adding Multi-Dispatch

Uni-dispatch of an invoke bytecode provides us
with a method pointer from the array of methods
in the receiver argument class. At this point, the
interpreter loop is about to build a new frame to ex-
ecute the found method. The interpreter loop (and
classic VM JIT compilers) proceed to call a special
function, called the invoker that handles the de-
tails of building the new frame and starting the new
method. The Research JVM uses di�erent invokers
for native, bytecode, synchronized, JIT-compiled,
and other method types. Similar to the OpenJIT
system[22], we replace this invoker function with our
own custom one that computes the correct multi-
dispatch method. Once the more precise method is
known, we simply invoke it directly.

The multi-invoker is installed at class-load time.
The interpreter loop and invoker for uni-dispatch
are unchanged. This supports our claim that single-
dispatch programs and libraries su�er no execution
time penalties.

We have experimented with three di�erent multi-
dispatch techniques; they are examined in the suc-

ceeding sections. For each technique, we also de-
scribe our solution for the implementation issues de-
scribed in section 5.

6.3 Reference Implementation: MSA

Our reference implementation is an extension of the
Most Speci�c Applicable algorithm described in sec-
tion 15.11 of The Java Language Speci�cation and
in section 2.2 of this paper. In particular, we re-
examine the steps described in section 2.2 in light
of the dynamic types being available.

When the multi-invoker is called, we already have
a methodblock that the compiler speci�ed and the
uni-dispatch resolution mechanism has found. We
also have the top of the operand stack, so we can
peek at each of the arguments as well. Last, we
have the actual receiver, which can provide the list
of methods (including inherited ones) that it imple-
ments.

Every method is represented by a methodblock con-
taining many useful pieces of information. First, it
holds the name of the method. Next, it contains
a handle to the class that contains this method11.
Third, it contains the signature which we can parse
to get the arity and types of the dispatchable ar-
guments. For performance, we parse the signature
only once. We add two �elds to the methodblock:
int arity to cache the arity, and ClassClass

**argClass to hold the class handles for the dis-
patchable arguments.

With these three pieces of information, we imple-
ment a dynamic version of the MSA algorithm di-
rectly. Wherever the original algorithm would use
the static type of an argument, we apply the known
dynamic type instead. In step 2(b) from section 2.2,
the compiler would compare the static type of each
argument with the corresponding declared type for
the candidate method. In the dynamic case, we have
the arguments on the stack, so we can �nd their dy-
namic types. We compare each argument's dynamic
type against the declared type of the corresponding
argument of the method. We discard any method
whose declared types do not match the arguments
on the stack. The remaining methods are dynami-

cally applicable.

The issue of null-valued arguments becomes signif-
icant at this point. JLS chapter 4 recognizes the
need for a null type to represent (untyped) null val-
ues. It further declares in section 4.1 that the null
type can be coerced to any non-primitive type. Fur-

11Recall that methods might be inherited; this class handle
is the original implementing class.

ther, section 5.1.4 allows null types to be widened
to any object, array or interface type. Statically,
this means that an (untyped) null argument can be
widened to any class. In the dynamic case, we want
to do the same. Therefore, whenever we encounter
a null argument we accept the conversion of that
null to a method argument of type class, array, or
interface.

Unfortunately, if we have a null argument, we may
retain a method which accepts arguments of classes
that are not yet loaded. We need to force these
classes to be loaded to ensure that the next step
operates correctly.

Given the list of applicable methods, step 2(d) �nds
the unique most speci�c method. Again the opera-
tion is identical to the process the javac compiler
executes. One applicable method is selected as ten-
tatively the most speci�c. Each other applicable
method is tested by comparing argument by argu-
ment (including the receiver argument) against the
tentatively most speci�c. At each step, we discard
any methods that are less speci�c. We continue this
process until only one candidate method remains, or
two or more equally speci�c methods remain. In the
latter case, we have an ambiguous method invoca-
tion, and we throw an AmbiguousMethodException

to advertise this fact.

Next, we verify that the return type for our more
speci�c method is compatible with the compiler-
selected method. This check relaxes JLS 8.4.6.3,
where we must reject any invocation that has a dif-
ferent return type, yet ensures type-safety. If the re-
turn type is di�erent, we throw an IllegalReturn-

TypeChange exception at runtime.

6.4 Table-based Dispatch

Our SRP framework-based techniques is taken from
the Dispatch Table Framework (DTF) [23]. This is
a toolkit of many di�erent uni-dispatch and multi-
dispatch techniques. In order to call the DTF to
dispatch a call-site, we need to inform the DTF
of the various classes and methods present in our
Java program. Our interface consists of a number
of straight-forward routines to perform this regis-
tration.

The JVM maintains in-memory structures for each
loaded .class �le. We have extended that
ClassClass structure to contain a DTFType �eld.
It contains a pointer to the C++ object generated
by the DTF. Once a class is dynamically loaded
by the JVM, we check to see if we must register
it with the dispatcher. If the dispatcher has al-

ready been instantiated, we register the class via
javaAddClass(...) and store away the returned
DTFType pointer.

If a dispatcher has not been instantiated, and the
just-loaded class is uni-dispatch only, we defer the
registration in order to reduce the overhead to
uni-dispatch programs. If the just-loaded class is
marked for multi-dispatch and the dispatcher has
not been instantiated, the process is more complex.
First, we instantiate a new dispatcher. Then, we
register each class that has already been loaded, en-
suring that its superclasses and superinterfaces are
registered �rst.

Finally, as the last part of registering a class with
the dispatcher, we need to see whether any methods
from other classes were held in abeyance until this
class was loaded. This can occur if the methods
from other classes expect dispatchable arguments
of the class we're just now loading. As we shall see
below, we deferred registering these methods until
the class was loaded.

Java's facility for dynamically reloading classes
forces us to ensure that two classes with the same
name are assigned di�erent DTFTypes. Java ensures
that two classes with the same name are treated as
distinct by insisting that each one is loaded by a
di�erent classloader [19]. We apply the same tech-
nique by supplying the DTF framework with a name
consisting of the classloader name, followed by \::"
and followed by the class name. They system class-
loader is given the empty name \ ".

For a class marked for multi-dispatch, we need to
register its methods along with their types, via
javaAddMethod(...). If this class implements
MultiDispatchable directly, then we register all of
its methods, including inherited ones. Alternately,
if MultiDispatchable is an inherited interface for
this class, then we know that its superclass has al-
ready registered its methods. Therefore, we don't
need to register them, we only need to register the
methods that we directly implement.

This method registration process is complicated by
our desire to lazily-load classes. If a method accepts
an argument with a class not yet seen by the JVM,
we know that we could never dispatch to it until
that class is loaded12. Therefore, we set aside that
method for future registration.

If all of the argument types for the method are al-

12As mentioned above, our DTF-based systems do not per-
mit null as a dispatchable argument. Therefore, this guaran-
tee holds.

ready registered with the DTF, then we proceed to
register the method. We provide a methodblock

pointer that we want the framework to return if
this method is the dispatched target. We bundle
up the DTF Type values found in the ClassClass

structures for each argument class (including the re-
ceiver argument) and pass them to the framework.
The framework replies with a DTF Behavior pointer
that we store in the methodblock.

Dispatch becomes a very simple operation. We
build an array of the DTF Type pointers from the
arguments on the Java stack. If we encounter a
null argument, we throw a NullPointerException.
The DTF Type array, along with the DTF Behavior

pointer from the compiler-selected method allow the
framework to locate the methodblock pointer that
we had previously registered.

We expect that the returned methodblock pointer
is the method for multi-dispatch. We validate it
against the compiler-selected method. If the return
type has changed, we abort the dispatch and throw
an IllegalReturnTypeChange exception. Other-
wise, we call the found method's original invoker
and return its value as the result of the interpreter's
call to a method invoker.

Single Receiver Projections Single Receiver
Projections [16] is a technique that considers a
multi-dispatch as a request for the joint most spe-
ci�c method available on each argument. For a given
argument position and type, an ordered (most-
speci�c to least-speci�c) vector of potential methods
is maintained. The vectors for all the argument po-
sitions are intersected to provide an ordered vector
of all applicable methods. Because of the ordering,
this vector can be quickly searched for the most ap-
plicable method.

SRP uses a uni-dispatch technique to determine
the vector of potential methods for each individual
argument. Many di�erent techniques are known:
row displacement, selector coloring [2], and com-
pressed selector table indexing [26]. Our implemen-
tation uses selector coloring, because timing exper-
iments [17] indicates that technique provides the
fastest dispatch times.

7 Future Work

Our MSA implementation is the most complete. It
supports

1. null as a dispatchable argument,

2. multi-dispatch on static methods13.

3. primitive dispatchable arguments and widening
thereof,

4. multi-threaded dispatch.

Our table-framework-based dispatchers do not cur-
rently support these facilities. Adding them would
provide additional
exibility, and allow them to fully
support the Java programming language semantics.
In particular, we have a two-table design that will
allow one thread to dispatch through an existing
table, while we register additional methods and/or
classes to a new one.

Our custom SRP system implements multi-dispatch
as a critical section, protected by a mutual-exclusion
lock. We have a technique which would elimi-
nate this overhead (approximately 0.38 �s.for ev-
ery multi-dispatch) and allow concurrent multi-
dispatch. The penalty is that every thread would
need to halt while the multi-dispatch tables are be-
ing updated.

Other multi-dispatch techniques exist, including
compressed n-dimensional tables [1, 12], look-up au-
tomata [10, 11], and eÆcient multiple and predicate
dispatch [7]. A comprehensive exploration applying
these techniques to Java is incomplete at this time.

Another signi�cant improvement for multi-dispatch
is to incorporate our code testing tool into the javac
compiler. At this time, MDLint exists as a separate
executable which will recognize and warn the pro-
grammer about common ambiguities and diÆcul-
ties. It analyzes a complete application and identi-
�es the code sections where the programmer could
invoke an ambiguous method, or have a con
icting
return type.

We support multi-dispatch on all method types
(instance, static, interface, private, etc.), ex-
cept constructors. Because the same bytecode is
used to invoke a constructor in the superclass and a
constructor with a wider type, we cannot distinguish
the two possibilities. This issue is a speci�c instance
of the need to apply a super to an argument other
than the single-receiver. Fortunately, in our expe-
rience, this requirement does not arise in common
programming practice (except for constructors).

Our native SRP implementation allows our dispatch
tables to identify only those types that are are multi-
dispatched. This lazy type numbering is reversible,
allowing the tables to shrink as classes are unloaded.

13signaled by implementing StaticMultiDispatchable.

In turn, multimethods can revert to lower arity
multi-dispatch (or even single-dispatch). We see
great promise in this technique for long-lived Java
server applications.

The DTF framework contains another dispatcher,
Multiple Row Displacement [23] (MRD) that oper-
ates 15% faster than SRP. Therefore, we expect that
dispatch could be enhanced to provide even lower
latency by applying this technique. Unfortunately,
MRD currently does not support incremental dis-
patch table updates in the same way that SRP does.
In a dynamic environment such as Java, incremental
updating of dispatch tables is desirable. Enhancing
MRD to support incremental updates is another re-
search priority.

8 Related Work

Others have attempted to add multi-dispatch to
Java through language preprocessors. Boyland and
Castagna [3] provide an additional keyword parasite

to mark methods which should have multi-dispatch
properties. They e�ectively translate these meth-
ods into equivalent double dispatch Java code. By
translating directly into compiled code, they apply a
textual priority to avoid the thorny issue of ambigu-
ous methods. Unfortunately, the parasitic method
selection process is a sequence of several dispatches
to search over a potentially exponential tree of over-
riding methods.

The language extension and preprocessor approach
has other limitations. First, existing tools do not
support the extensions; for example, debuggers
do not elide the automatically generated double-
dispatch routines. Second, instance methods ap-
pear to take objects only, which is too limiting.
Our experience with Swing shows that existing pro-
grams often double-dispatch on literal null and ar-
ray arguments and pass primitive types as argu-
ments; multi-methods need to support these non-
object types. Third, preprocessors limit code reuse
and extensibility; adding multi-methods to an exist-
ing behaviour requires either access to the original
source code or additional double-dispatch layers.

David Chatterton [8, 9] examines two di�erent
multi-dispatch techniques in mainstream languages:
C++ and Java.. First, he considers providing a
specialized dispatcher class. Each class that par-
ticipates as a method receiver must register itself
with the dispatcher. To relieve the programmer of
this repetitive coding process, he provides a prepro-
cessor that rewrites the Java source to include the
appropriate calls. Each method, marked with the

keyword multi is also expanded by the preprocessor
into many individual methods, one for each combi-
nation of classes (and superclasses). A method invo-
cation is replaced by a call to the dispatcher which
searches via re
ection for an exact match. That
method is then invoked. This system also su�ers
from exponential blowup of methods.

His second approach examines the performance of
various double dispatch enhancements. He provides
a modi�ed C++ preprocessor which analyses the
entire Java program. It can construct a number of
di�erent double dispatch structures, including cas-
caded and nested if-elseif-else statements, in-
line switch statements, and simple two-dimensional
tables. Again, he expands every possible argument
type combination, in order to apply fast equality
tests, rather than slow subtype tests. A signi�-
cant restriction is that full program analysis is re-
quired. This defeats the ability to use existing Java
libraries, and eliminates Java's dynamic class load-
ing features.

One interesting language for multi-dispatch is Leav-
ens and Millstein's Tuple [18]. They describe a lan-
guage \similar in spirit to C++ and Java" that per-
mits the programmer to designate the individual ar-
guments that will be considered for multi-dispatch,
on a callsite-by-callsite basis. His paper does not de-
scribe an implementation; it appears to be a model
of potential syntax and semantics only. A future
project might be to implement his syntax speci�-
cally into the Java environment. In particular, a
simple syntax extension would allow super method
invocations on arbitrary multi-dispatch arguments.

9 Concluding Remarks

We have presented the design and implementa-
tion of an extended Java Virtual Machine that
supports multi-dispatch. This is the �rst pub-
lished description of how to implement arbitrary-
arity multi-dispatch in Java. In contrast to the
more verbose and error-prone double dispatch tech-
nique, currently found in the AWT (Figure 2),
multi-dispatch typically reduces the amount of
programmer-written code and generally improves
the readability and level of abstraction of the code.

Our approach preserves both the performance and
semantics of the existing dynamic uni-dispatch in
Java while allowing the programmer to select dy-
namic multi-dispatch on a class-by-class basis with-
out any language or compiler extensions. The
changes to the JVM itself are small and highly-
localized. Existing Java compilers, libraries, and

programs are not a�ected by our JVM modi�cations
and the programs can achieve performance compa-
rable to the original JVM (Table 2).

In a series of micro-benchmarks, we showed that
our prototype implementation adds no performance
overhead to dispatch if only uni-dispatch is used
(Table 2) and the overhead of multi-dispatch can be
competitive with explicit double dispatch (Table 4).

We have also introduced and implemented an ex-
tension of the Java Most Speci�c Applicable (MSA)
static multi-dispatch algorithm for dynamic multi-
dispatch. In addition, we have performed the
�rst head-to-head comparison of table-based multi-
dispatch techniques implemented in a mainstream
language. In particular, we implemented Single Re-
ceiver Projections (SRP). Overall, our tuned SRP
implementation performs as well (or better) than
programmer-targeted multi-dispatch. With perfor-
mance improvements in concurrency, we expect our
tuned system to out-perform double dispatch.

References

[1] E. Amiel, O. Gruber, and E. Simon. Optimizing multi-
method dispatch using compressed tables. In OOPSLA

1994 Conference Proceedings, pages 244{258. Associa-
tion for Computing Machinery, October 1994.

[2] P. Andre and J. Royer. Optimizing method search with
lookup caches and incremental coloring. In OOPSLA

1992 Conference Proceedings. Association for Comput-
ing Machinery, 1992.

[3] J. Boyland and G. Castagna. Parasitic methods: An
implementation of multi-methods for Java. In OOPSLA

1997 Conference Proceedings, pages 66{76. Association
for Computing Machinery, November 1997.

[4] K. Bruce, L. Cardelli, G. Castagna, The Hopkins Object
Group, G. T. Leavens, and B. Pierce. On binary meth-
ods. Theory and Practice of Object Systems, 1(3):221{
242, 1995.

[5] T. Budd. An Introduction to Object Oriented Program-

ming, Second Edition. Addison-Wesley Publishing Co.,
Reading, Massachusetts, 1997.

[6] C. Chambers. Object-oriented multi-methods in Cecil.
In ECOOP 1992 Conference Proceedings, pages 33{56.
Springer-Verlag, June 1992.

[7] C. Chambers and W. Chen. EÆcient multiple and predi-
cate dispatching. InOOPSLA 1999 Conference Proceed-

ings, pages 238{255. Association for Computing Machin-
ery, November 1999.

[8] D. Chatterton. Dynamic Dispatch in Existing Strongly

Typed Languages. PhD thesis, School of Computing,
Monash University, Monash, Australia, 1998.

[9] D. F. Chatterton and D. M. Conway. Multiple dispatch
in C++ and Java. In TOOLS '21 Asia, pages 75{87,
1996.

[10] W. Chen. EÆcient multiple dispatching based on au-
tomata. Master's thesis, GMD-ISPSI, Darmstadt, Ger-
many, 1995.

[11] W. Chen, V. Turau, and W. Klas. EÆcient dy-
namic lookup strategy for multi-methods. In ECOOP

1994 Conference Proceedings, pages 408{431. Springer-
Verlag, July 1994.

[12] E. Dujardin, E. Amiel, and E. Simon. Fast algorithms
for compressed multimethod dispatch table generation.
ACM Transactions on Programming Languages and

Systems, 20(1):116{165, January 1998.

[13] A. Goldberg and D. Robson. Smalltalk-80 The Lan-

guage and its Implementation. Addison-Wesley Pub-
lishing Co., Reading, Massachusetts., 1983.

[14] J. Gosling, B. Joy, and G. Steele. The Java Lan-

guage Speci�cation. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts, 1996.

[15] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java

Language Speci�cation, 2nd Edition. Addison-Wesley
Publishing Company, Reading, Massachusetts, 2000.

[16] W. Holst, D. Szafron, Y. Leontiev, and C. Pang. Multi-
method dispatch using single-receiver projections. Tech-
nical Report 98-03, Department of Computing Science,
University of Alberta, Edmonton, Alberta, Canada,
1998.

[17] W. M. Holst. The Tension between Expressive Power

and Method-Dispatch EÆciency. PhD thesis, Depart-
ment of Computing Science, University of Alberta, Ed-
monton, Alberta, Canada, 2000.

[18] G. T. Leavens and T. D. Millstein. Multiple dispatch
as dispatch on tuples. In OOPSLA 1998 Conference

Proceedings, pages 244{258. Association for Computing
Machinery, October 1994.

[19] S. Liang and G. Bracha. Dynamic class loading in the
Java virtual machine. In OOPSLA 1998 Conference

Proceedings, pages 36{44. Association for Computing
Machinery, October 1998.

[20] T. Lindholm and F. Yellin. The Java Virtual Ma-

chine Speci�cation. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts, 1996.

[21] T. Lindholm and F. Yellin. The Java Virtual Machine

Speci�cation, 2nd Edition. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1999.

[22] H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama,
Y. Sohda, and Y. Kimura. Openjit: An open-ended,
re
ective jit compile framework for java. In ECOOP

2000 Conference Proceedings. Springer-Verlag, 2000.

[23] C. Pang, W. Holst, Y. Leontiev, and D. Szafron. Multi-
ple method dispatch using multiple row displacement. In
ECOOP 1999 Conference Proceedings, pages 304{328.
Springer-Verlag, June 1999.

[24] G. Steele. Common Lisp. Digital Press, Burlington,
1985.

[25] B. Stroustrup. The C++ Programming Language:

Third Edition. Addison-Wesley Publishing Co., Read-
ing, Massachusetts, 1997.

[26] J. Vitek and R. N. Horspool. Compact dispatch tables
for dynamically typed programming languages. In Pro-

ceedings of the International Conference on Compiler

Construction, 1996.

