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Abstract

There are increasing demands for more computing
power. Parallel hardware is now commonplace and could
be a cost-effective solution. However, to many
developers, parallel programming is not a user-friendly
task. At the same time, many programmers are turning to
object-oriented techniques. Unfortunately, parallel
computing with objects introduces many new problems.
Tools are needed to help programmers convert their
sequential object-oriented programs into parallel ones.
This paper introduces Revy, a platform-neutral, easy-to-
use, object/method granularity visualization system that
assists parallel programmers in transforming their
sequential object-oriented programs into parallel ones.
Revy allows users to view and inspect the object
communication patterns of their sequential applications
and it serves as a profiling system that helps them identify
the high-granularity objects/methods as candidates for
parallel execution. This paper describes the requirements,
architecture and implementation of Revy and illustrates
the ideas with a case study.

Introduction

Networked and multiprocessor workstations provide
users with a large amount of computing power by running
applications on many processors at once. This hardware is
now commonplace and is a cost-effective approach to
solving computationally-intensive applications. However,
the software advances necessary to exploit this power
have lagged behind the hardware advances.

Writing parallel software is often perceived as a
complicated endeavor. It is more difficult to design,
implement and test parallel software than comparable
sequential software. Parallel programming includes issues
like communication, synchronization, deadlock, task
granularity and concurrent non-deterministic behavior.

In the object-oriented programming paradigm,
parallel programs introduce additional problems. Real
world objects are generally autonomous entities whose
activities are performed concurrently. At first glance,

objects and parallel programs seem to be a perfect match.
However, this is not always the case. Problems with
inheritance, encapsulation, and reusability are outstanding
research issues for concurrent object-oriented language
designers since inheritance and synchronization often
conflict [1] [2]. This problem is caled the inheritance
anomaly and requires the re-definition of inherited
methods to maintain the integrity of concurrent objects.
Most parallel object-based languages therefore either do
not support inheritance [3], or do so by compromising the
encapsulation [4] or the reusability [5] properties.

Despite these difficulties, the promise of re-use
through objects and high performance through parallelism
is quite compelling and the number of programmers
attempting to write parallel object-oriented programs is
increasing. This trend has also been strengthened by the
growing use of Java, a language with both objects and
threads. To overcome the difficulties of writing parallel
object-oriented programs, we need tools that help
software developers build these systems easily and
efficiently. The dream tool for parallel object-oriented
programmers is a parallelizing compiler that
automatically transforms a sequential object-oriented
program into a parallel one by typing something like:
"javac -parallel application.java".
However, such compilers are still not available. This
paper proposes an alternative approach. We introduce a
parallelization advisor, which assists programmers in
parallelizing object-oriented applications.

To help develop parallel programs, programmers
need a tool to help them visualize object communication
patterns [6]. This paper discusses Revy, a tool designed to
do exactly this. However, visualizing the communication
patterns is not enough. A programmer cannot simply treat
each object as a separate process or give each object its
own thread, so that it can execute its code concurrently
with other objects. There are two reasons for this. One
reason is the startup overhead for objects. Creating a new
process or thread takes extra time. In sequential object-
oriented programs, thousands of objects are created, used
and destroyed each second. In the parallel domain the
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startup costs for all of these objects would be prohibitive.
The second problem is communication costs, either over a
network or through shared memory on a multi-processor.
Of course network messages are very expensive, but even
shared memory accesses are expensive compared to
memory cache accesses in a sequential processor.

We define method granularity as the ratio of method
computation time to communication time as shown in
Figure 1. With a network of workstations, remotely
executing the method alpha() on frees up CPU cycles
on the local machine, that can be used for other
computations. However, this results in communication
overheads that include the times to: pack the argument
objects into a network message, send the message, receive
the message, unpack the argument objects, pack the result
object into a reply message, send the reply message,
receive the reply message and unpack the result object.

anObject.alpha(argObject)

send/call
(communication)

method
computation

receive/return
(communication)

Figure 1. Communication granularity.

On a shared-memory machine, communication
overhead consists of the extra time for accessing
argument objects from shared memory instead of from
local cache and time for writing the result object to shared
memory. There are two ways this extra time can be spent.
In the first approach, which is analogous to the network
approach, the extra time is divided into two blocks, one at
the start of the computation and one at the end. In the start
block, the argument objects are copied from shared
memory to local memory (and then to the cache when
they are accessed the first time). The computation
accesses the cache for its arguments and stores the result
object in local memory. In the end block, the return object
is copied from local to shared memory. The
communication time is the sum of the times of the start
and end blocks. Alternately, the extra time may be spread
over the computation by accessing argument objects
directly from shared memory as they are needed and
writing the result object directly to shared memory as it is
computed. In this case, the communication cost is harder
to compute. Of course the communication overhead for
shared memory access is significantly smaller than for
network communication so a computation that has low
method granularity on a network will have significantly
higher method granularity on a multi-processor.

In either case, programmers must weigh the benefits
of freeing up the local processor versus the extra costs of
the communication overhead. In object-oriented
applications, method granularity plays a more important
role than in procedural applications. To increase
reusability and maintainability, object-oriented programs

have many short methods instead of a few long
procedures. Since the amount of computation time is
reduced for each method, this can significantly reduce the
communication granularity of computations.

It is not just method granularity that must be
analyzed to properly parallelize an object-oriented
program. We define the object granularity of an object as
the ratio of time that an object is active (executes some
code) to the time it takes to create, initialize, delete and
re-claim its storage. The cost of creating a parallel object
as a process (on a network of workstations) or providing it
with its own thread (on a multi-processor) is greater than
the cost of creating a similar sequential object as a chunk
of memory in the heap. Therefore, parallel objects have
smaller object granularities than their sequential
counterparts. Again, this granularity problem is worse in
object-oriented programs than in procedural ones. In a
procedural program, the data structures are often quite
large. In object-oriented programs, many simple objects
are used instead of a few complex ones to enhance
encapsulation and therefore stimulate re-use. For
example, a phone number is often declared as an object
rather than as a string of 10 digits. The result of this is that
most sequential objects do not have sufficient object
granularity to be created as parallel objects.

We have argued that method and object granularities
play a crucial role in the parallelization of programs in
general, and object-oriented programs in particular.
Therefore, a tool is necessary to identify the granularities
in sequential programs so that they can be efficiently
parallelized. In addition to helping developers visualize
program communications, such a tool should allow
programmers to visualize method and object granularities.

This paper introduces Revy, a platform-neutral,
easy-to-use, object/method granularity visualization tool
that assists programmers in transforming sequential
object-oriented programs into parallel ones. Revy allows
users to view and inspect the object communication
patterns of their sequential applications and it profiles
programs to identify high-granularity objects/methods as
candidates for parallel execution. This paper describes the
requirements, architecture and implementation of Revy
and illustrates the ideas with a case study.

The Revy System

Revy is an integrated parallelization advisor, with
three research objectives:

1. Explore program visualization techniques to help
users understand the object communication patterns,

2. Implement profiling techniques for collecting and
processing the method and object granularities to identify
methods/objects for parallelization, and

3. Investigate parallelization heuristics that suggest the
best candidate objects/methods for parallelization.

Traditional profilers compute the time for each
individual function to execute and provide statistics like
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minimum, maximum and average execution time for each
function. This allows a programmer to decide whether or
not to optimize any particular function by changing the
algorithm or by in-lining the code for the existing
algorithm. Traditional function execution times
correspond to method execution times in an object-
oriented application. However, in an object-oriented
program it is important to differentiate between times for
the same method on different objects. Therefore, some
object-oriented profilers report times for methods on a per
class basis. For example, a sort method may take longer
on instances of the EmployeeList class than on instances
of the SalaryList class, since it takes longer to compare
two Employees than to compare to Salaries. Therefore,
the two methods are analyzed separately for the two
classes. However, class-based analysis is not enough.
Object-oriented languages support generic List classes
whose instances can hold either Employees or Salaries.
Therefore, it is necessary to compare the sort method on
two different instances of the List class, one that holds
Employee objects and one that holds Salary objects.

Revy has three features that distinguish it from
existing profiling and program visualization tools. First,
Revy analyses methods on a per-object basis, not just a
per-class basis. Second, Revy considers not only the
timing statistics, but also the object and method parameter
sizes of a user program. Such information is essential
because method granularity depends on the time spent
transmitting argument data (on networks) or accessing
argument data (in shared memory). Third, Revy times
object creation and destruction so that object granularity
can be computed in addition to method granularity.

A data flow diagram of the Revy architecture is
shown in Figure 2. Note that rounded rectangles denote
major Revy components, regular rectangles denote data
and ovals represent non-Revy components.
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Figure 2. Dataflow diagram for Revy.

Revy has three major components:
1. PAS - The Parsing and Annotation Subsystem parses

source code and annotates it with instrumentation code.
This is the only component of Revy that is language
dependent. We currently have two versions of PAS, one
for Java and one for C++. Naturally, the language
compiler and run-time libraries (or virtual machine) are
also language dependent, but they are not part of Revy.

2. VIS - The Visualization and Interaction Subsystem
serves as the interface between the user and the rest of
Revy. For example, it displays the entire list of classes
and methods in the source code, collects the user’s
instrumentation directives, displays the call graph and
displays the timing statistics.

3. RMS - The Runtime Modeling SubSystem analyses
the call graph and the execution traces, computes statistics
and provides parallelization hints to the user.

Revy parses a user program to identify all of the
classes and methods. The program can either be a
sequential program or in the case of Java, a parallel
program with threads. After parsing the program, Revy
presents a list of all classes and methods to the user in a
graphical user interface. The user provides
instrumentation directives that describe which of the
classes and methods are of interest as shown in Figure 3.

Figure 3. Providing instrumentation directives.

Revy then annotates the source code with
instrumentation code. A standard language compiler that
is not part of Revy compiles the annotated program. The
machine or virtual machine executes the instrumented
code to produce trace information which Revy uses to
build an object call graph, which is a runtime interaction
diagram. Revy then processes the runtime statistics that,
together with the object call graph, are visually reported
to the user as shown in Figure 7. Finally, Revy provides
the user with basic parallelization hints about the program
based on the call graph and the statistics.
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Since Revy analyses sequential programs, before
they are parallelized, actual object and method
granularites are not computed. Instead, Revy measures the
computation times of methods, the parameter sizes of
methods and the active times of objects. Given a
particular parallelization architecture, the method
communication times and parallel-object creation times
can be estimated. These estimates can be used to compute
minimum method computation times and object active
times to produce reasonable method and object
granularities. For example, on our configuration a
minimum method computation time of 300 milliseconds
is necessary to obtain method granularities that produce
reasonable parallel speedups.

Unfortunately, simple method computation times do
not provide enough information for parallelization. For
example, a method named alpha() can call another
methods beta() . The method computation time for
alpha()  includes the method computation time for
beta() . Therefore, it is necessary to factor out the
method computation time for beta() from the time for
alpha()  when considering whether to parallelize
alpha()  or not. This is especially important if the
receiver objects for alpha() and beta() are different,
since a decision must be made about which thread (or
processor) to associate with each object. To analyze such
situations, we define the active time for a method to be the
time taken to execute its code minus the active times for
all of the methods that it calls. We define the aggregate
time for a method as the total method computation time,
the difference between method stop time and method start
time. We also define the active time of an object to be the
sum of the active times for all of its methods. Since many
methods are called several times on an object, we also
define average active and average aggregate times for
methods on each object. Finally, we express the average
active method times and the active object times as a
percentage of the total application time.

The major components of Revy are implemented
using Java version 1.1, on Unix platforms, but also run on
Windows and Mac OS computers. The PAS component
for Java (called JavaSourcer) uses the JavaCC [7] library.
The PAS component for C++ (called C++Sourcer) is
implemented with the Solaris C++ compiler and uses the
Sage++ [8] library. Revy does not have any unusual
hardware requirements. More details about the design and
implementation of Revy can be found in [9].

A Case Study - The 15-Puzzle

The benefits of Revy are best illustrated using a case
study. The example is simple so that there are only a few
objects and the details don’t obscure the focus on the
benefits of Revy. Examples with more complex object
interactions can be found in [9]. In this paper, we apply
Revy to a sequential program that implements the
Iterative deepening A* (IDA*) search algorithm [10].
This algorithm is a search procedure for finding a

maximum (minimum) cost solution in a directed graph.
The search works by having a lower bound on the
solution cost and then searching to prove or disprove the
correctness of the bound. If the bound is incorrect, then it
is incremented (decremented) and the search is restarted.
This iterative algorithm is guaranteed to find the optimal
solution given the assumption that all bounds are
admissible. The IDA* algorithm can be used to solve
many problems including game search trees like Rubik’s
cube, as well as real applications like job scheduling. In
this paper we apply IDA* to solve the 15-puzzle. In the
15-puzzle we must move the tiles from the initial to the
final configuration as shown in Figure 4.

Subtrees can be searched in parallel. A na ve parallel
version of the program would use a separate thread for
each node object in the search tree. However, Revy
quickly shows that such an approach would be disastrous.
There is not enough granularity in the computation to
justify a separate thread for each node object.

Figure 4. The 15-puzzle.

A more complex organization of parallel objects is
necessary. Instead, the high level nodes in the tree should
be programmed as sequential objects that share a thread.
However, some of the nodes in the tree should be
implemented as parallel objects, each with its own thread
(frontier nodes). It will not actually create any node
objects below it. Instead, it will use a recursive method to
hold the state of the computation. However, before we
actually parallelize the program we would like to know
which nodes should be designated as frontier node
objects. Some considerations include:

1. Spawning enough work to keep all processors busy.
2. Spawning work that is substantial enough to justify

the overhead of the parallelism.
3. Ensuring that the size of the pieces of work results in

good load balancing.

Each of these considerations can be addressed by
Revy before the program is parallelized. The simplest
approach is invoke the parallelism at a fixed depth. For
example, all depth 3 nodes can be designated frontier
nodes. Revy gives information on the number of frontier
nodes created. Figure 5 shows one of Revy s text views
that lists all instances of the FrontierNode class, their
unique object id numbers, their active object times and
their relative percentages of active object time versus the
active time of the application.
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Sorted 24 objects by Active Time
-----------------------------------
FrontierNode:5   -   29846 (11.67%)
FrontierNode:7   -   29009 (11.35%)
FrontierNode:10  -   27552 (10.78%)
FrontierNode:4   -   22137 ( 8.66%)

FrontierNode:3   -    4208 ( 1.65%)
FrontierNode:9   -    3679 ( 1.44%)

FrontierNode:22  -     705 ( 0.28%)

Figure 5. Active times (milliseconds) for each
FrontierNode object.

A total of 24 objects are created when the master
spawns work at depth 3 in the tree. This is enough to
ensure that an 8-processor machine has enough active
nodes to keep the machine busy. Although depth 2 has 10
frontier nodes, the number of nodes that are active enough
for effective parallelization is smaller than 8, so some
processors would quickly become idle.

However, this is not the whole story. Revy can also
report the active times of individual methods. This is
important since the active time can vary widely from call
to call. For the 15-puzzle, it is not enough to generate
enough pieces of work. Each piece of work must have
sufficient granularity. From the Revy active method time
data (Figure 6), one can see that the first four calls to the
search() method do not have sufficient active time (less
than 300 milliseconds), to make parallel calls reasonable
even for the highest granularity instance of FrontierNode
(object 5). For example, by the time we reach the 18th

highest granularity object (object 9) the fifth call to the
search() method does not even have sufficient
granularity for parallelization.

  6:search -      0  FrontierNode:5
 20:search -      1  FrontierNode:5
 42:search -      3  FrontierNode:5
 66:search -     31  FrontierNode:5
 90:search -    308  FrontierNode:5
114:search -   2948  FrontierNode:5
138:search -  26555  FrontierNode:5

  3:search -      1  FrontierNode:9
 16:search -      1  FrontierNode:9
 38:search -      1  FrontierNode:9
 62:search -      5  FrontierNode:9
 86:search -     36  FrontierNode:9
110:search -    333  FrontierNode:9
134:search -   3302  FrontierNode:9

Figure 6. Active times (milliseconds) for the
search() method for FrontierNode objects 5 and 9.

Analysis of the search() method calls shows that
there is an exponential distribution in the active times. In
the early iterations of the algorithm, the active times are
short. Each iteration increases the active time of a

search() method call by as much as a factor of 10. Revy
tells us that even though we create FrontierNode objects
at depth 3 to get enough node objects to parallelize, the
first four search calls to each of these FrontierNode
objects should be done sequentially (on a single thread).
Subsequent calls should be done in parallel (each on its
own thread). Without measuring the granularity of
individual method invocations, such pre-parallelization
analysis would be impossible.

Figure 7 presents the same information in a
graphical form. Revy has highlighted the objects whose
active time percentages are greater than 10%. In addition,
all method calls with active times greater than 2000
milliseconds are also annotated in the diagram. Whereas
FrontierNode 7 has a method call with active time more
than 26000 milliseconds, FrontierNode 17 has no method
calls with active times as high as 2000 milliseconds. Of
course these thresholds are adjustable by the user.

Figure 7. An object call graph for the 15-puzzle.

In order to test the Revy analysis, we wrote a
parallel version of the IDA* implementation of the 15-
puzzle. This application is parameterized by two
parameters, d and p. FrontierNode objects are created at a
fixed depth, d. However, the first parallel call to a frontier
node occurs on call, p, after p-1 sequential calls. Revy
predicts that on an 8 processor machine, sufficient parallel
granularity occurs for depth, d ‡ 3, on calls p ‡ 5. This is
a conservative estimate based on 300 millisecond
minimum method times. In fact, it may be possible to get
additional speed-ups for d = 2 or for p < 5 in some
particular cases, if the particular puzzle selected happened
to have good load balancing between frontier nodes.

We applied this suggested parallelization strategy to
the 15-puzzle. We ran the parallel program on an SGI
Challenge with eight 150-MHz R4400 processors and 384
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Mbytes of memory. We obtained a speed-up of 4.4 on 8
processors. The time was 249 seconds for the sequential
version and 56 seconds for the parallel version. The size
of the speed-up is not the the issue for this paper. The
point is that Revy provides the information necessary to
determine how to set parameters (like d and p in this
application) to achieve the maximum speed-up possible
for a given parallel implementation. Making more parallel
calls (by selecting p = 4 or 3) decreases performance, due
to low method granularity penalties (times of 67 and 61
seconds respectively). Making more parallel calls (by
selecting p = 6 or p = 7) also decreases performance
(times of 77 and 122 seconds respectively), due to lost
opportunities for parallelism. Starting the parallelization
at a smaller depth (d = 2 with p = 5) also decreases
performance due to too few frontier nodes (124 seconds).
Note that these correct predictions were made by
analysing the sequential algorithm using Revy without
writing any parallel code.

There is a wide variation in the active times for the
different instances of the FrontierNode class. Some
objects have harder  searches than others (such as
FrontierNode 5 compared to FrontierNode 9 in Figure 6).
This distribution is a serious problem since it indicates
that there will likely be poor load balancing, even using
the advanced strategy of waiting for the fifth call to a
frontier node to increase granularity. It is likely that N-1
processors may be idle waiting for the last (large) piece of
work to complete. For our application, Revy suggests an
an even better solution, but it depends of the application
keeping dynamic timing information about the search.
Each leaf node in the master’s tree can record the amount
of time a search() method call takes and when it
exceeds a threshold (some multiple of the minimum
active time required needed for parallel tasks), then the
master can expand that node to create more (smaller)
pieces of work. In effect, the master now has a variable
depth tree, where the deeper lines indicate more work.
This type of analysis has been used for parallel alpha-beta
search, resulting in such a dynamic algorithm [11]. In this
paper we have shown how Revy can quickly lead to the
recognition that such a dynamic parallelization algorithm
is necessary for maximum speed-ups on a particular
problem.

Conclusions

In this paper we have introduced Revy, a tool that
can use sequential analysis of object-oriented programs to
determine parallelization strategies:

1. It provides visualization techniques that help users to
understand the object communication patterns of their
programs,

2. It provides profiling techniques for collecting and
processing the method and object granularities to identify
methods/objects for parallelization, and

3. It helps the user construct a parallelization strategy,
even in the case of dynamic load-balancing problems.

Revy has three features that distinguish it from
existing profiling and program visualization tools:

1. Revy analyses methods on a per-object basis, not just
a per-class basis.

2. Revy considers not only the timing statistics, but also
the object and method parameter sizes of a user program.
Such information is essential because method granularity
depends on the time spent transmitting argument data (on
networks) or accessing argument data (in shared memory.

3. Revy times object creation and destruction so that
object granularity can be computed in addition to method
granularity.
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