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Abstract. Object-oriented programming, design patterns, and frameworks are
abstraction techniques that have been used to reduce the complexity of sequential
programming. The CO2P3S parallel programming system provides a layered de-
velopment process that applies these three techniques to the more difficult domain
of parallel programming. The system generates correct frameworks from pattern
template specifications at the highest layer and provides performance tuning op-
portunities at lower layers. Each of these features is a solution to a major problem
with current parallel programming systems. This paper describes CO2P3S and its
highest level of abstraction using an example program to demonstrate the pro-
gramming model and one of the supported pattern templates. Our results show
that a programmer using the system can quickly generate a correct parallel struc-
ture. Further, applications built using these structures provide good speedups for
a small amount of development effort.

1 Introduction

Parallel programming offers substantial performance improvements to computational-
ly intensive problems from fields such as computational biology, physics, chemistry,
and computer graphics. Some of these problems require hours, days, or even weeks of
computing time. However, using multiple processors effectively requires the creation
of highly concurrent algorithms. These algorithms must then be implemented correctly
and efficiently. This task is difficult, and usually falls on a small number of experts.

To simplify this task, we turn to abstraction techniques and development tools. From
sequential programming, we note that the use of abstraction techniques such as object-
oriented programming, design patterns, and frameworks reduces the software develop-
ment effort. Object–oriented programming has proven successful through techniques
such as encapsulation and code reuse. Design patterns document solutions to recurring
design problems that can be applied in a variety of contexts [1]. Frameworks provide
a set of classes that implement the basic structure of a particular kind of application,
which are composed and specialized by a programmer to quickly create complete appli-
cations [2]. A development tool, such as a parallel programming system, can provide a
complete toolset to support the development, debugging, and performance tuning stages
of parallel programming.

The CO2P3S parallel programming system (Correct Object-Oriented Pattern-based
Parallel Programming System, or “cops”) combines the three abstraction techniques
using a layered programming model that supports both the fast development of parallel



(a) A screenshot of the Mesh template in CO2P3S. (b) Output image.

Fig. 1. The reaction–diffusion example in CO2P3S with an example texture.

programs and the ability to tune the resulting programs for performance [3, 4]. The
highest level of abstraction in CO2P3S emphasizes correctness by generating parallel
structural code for an application based on a pattern description of the structure. The
lower layers emphasize openness [7], gradually exposing the implementation details of
the generated code to introduce opportunities for performance debugging. Users can
select an appropriate layer of abstraction based on their needs.

This approach advances the state of the art in pattern-based parallel programming
systems research by providing a solution to two recurring problems. First, CO 2P3S gen-
erates correct parallel structural code for the user based on a pattern description of the
program. In contrast, current pattern-based systems also require a pattern description
but then rely on the user to provide application code that matches the selected structure.
Second, the openness provided by the lower layers of CO 2P3S gives the user the ability
to tune an application in a structured way. Most systems restrict the user to the provided
programming model and provide no facility for performance improvements. Those sys-
tems that do provide openness typically strip away all abstractions in the programming
model immediately, overwhelming the user with details of the run-time system.

CO2P3S provides three layers of abstraction: the Patterns Layer, the Intermediate
Code Layer, and the Native Code Layer. The Patterns Layer supports pattern-based
parallel program development through framework generation. The user expresses the
concurrency in a program by manipulating graphical representations of parallel design
pattern templates. A template is a design pattern that is customized for the application
via template parameters supplied by the user through the user interface. From the pat-
tern specification, CO2P3S generates a framework implementing the selected parallel
structure. The user fills in the application–dependent parts of the framework to imple-
ment a program. The two remaining layers, the Intermediate Code Layer and the Native
Code Layer, allow users to modify the structure and implementation of the generated
framework for performance tuning. More details on CO 2P3S can be found in [3, 4].

In this paper, we highlight the development model and user interface of CO 2P3S us-
ing an example problem. CO2P3S is implemented in Java and creates multithreaded par-
allel frameworks that execute on shared memory systems using a native–threaded JVM
that allows threads to be mapped to different processors. Our example is a reaction–



diffusion texture generation program that performs a chemical simulation to generate
images resembling zebra stripes, shown in Figure 1. This program uses a Mesh pattern
template which is an example of a parallel structural pattern for the SPMD model. We
discuss the development process and the performance of this program. We also briefly
discuss two other patterns supported by CO2P3S and another example problem. Our
results show that the Patterns Layer is capable of quickly producing parallel programs
that obtain performance gains.

2 Reaction–Diffusion Texture Generation

This section describes an example program that uses one of the CO 2P3S pattern tem-
plates. The goal is to show how CO2P3S simplifies the task of parallel programming
by generating correct framework code from a pattern template. This allows a user to
write only sequential code to implement a parallel program. To accomplish this goal, a
considerable amount of detail is given about the pattern template, its parameters, and
the framework code that is generated.

Reaction–diffusion texture generation simulates two chemicals called morphogens
as they simultaneously diffuse over a two–dimensional surface and react with one an-
other [8]. This simulation, starting with random concentrations of each morphogen
across the surface, can produce texture maps that approximate zebra stripes, as shown
in Figure 1(b). This problem is solved using convolution. The simulation executes until
the change in concentration for both morphogens at every point on the surface falls be-
low a threshold. This implementation allows the diffusion of the morphogens to wrap
around the edges of the surface. The resulting texture map can be tiled on a larger dis-
play without any noticeable edges between tiles.

2.1 Design Pattern Selection

The first step in implementing a pattern-based program is to analyze the problem and
select the appropriate set of design patterns. This process still represents the bottleneck
in the design of any program. We do not address pattern selection in this paper, but one
approach is discussed in [5]. Given our problem, the two–dimensional Mesh pattern is
a good choice. The problem is an iterative algorithm executed over the elements of a
two–dimensional surface. The concentration of an element depends only on its current
concentration and the current concentrations of its neighbouring elements. These com-
putations can be done concurrently, as long as each element waits for its neighbours to
finish before continuing with its next iteration.

Figure 1(a) shows a view of the reaction–diffusion program in CO 2P3S. The user
has selected the Mesh pattern template from the palette and has provided additional
information (via dialog boxes such as that in Figure 2(a)) to specify the parameters for
the template. The Mesh template requires the class name for the mesh object and the
name of the mesh element class. The mesh object is responsible for properly executing
the mesh computation, which the user defines by supplying the implementation of hook
methods for the mesh element class. For this application, the user has indicated that
the mesh object should be an instance of the RDMesh class and the mesh elements are



(a) Boundary condi-
tions for the Mesh.

(b) Viewing template, showing default implementations of
hook methods.

Fig. 2. Two dialogs from CO2P3S.

instances of the MorphogenPair class. The user has also specified that the Mor-
phogenPair class has no user–defined superclass, so the class Object is used.

In addition to the class names, the user can also define parameters that affect the
mesh computation itself. This example problem requires a fully–toroidal mesh, so the
edges of the surface wrap around. The mesh computation considers the neighbours
of mesh elements on the edges of the surface to be elements on the opposite edge,
implementing the required topology. The user has selected this topology from the dia-
log in Figure 2(a), which also provides vertical–toroidal, horizontal–toroidal, and non–
toroidal options for the topology. Further, this application requires an instance of the
Mesh template that uses a four–point mesh, using the neighbours on the four compass
points, as the morphogens diffuse horizontally and vertically. Alternatively, the user can
select an eight–point mesh for problems that require data from all eight neighbouring
elements. Finally, the new value for a morphogen in a given iteration is based on values
computed in the previous iteration. Thus, the user must select an ordered mesh, which
ensures that iterations are performed in lock step for all mesh elements. Alternatively,
the user can select a chaotic mesh, where an element proceeds with its next iteration as
soon as it can rather than waiting for its neighbours to finish. All of these options are
available in the Mesh Pattern template through the CO2P3S user interface in Figure 1(a).

2.2 Generating and Using the Mesh Framework

Once the user has specified the parameters for the Mesh pattern template, CO 2P3S us-
es the template to generate a framework of code implementing the structure for that
specific version of the Mesh. This framework is a set of classes that implement the
basic structure of a mesh computation, subject to the parameters for the Mesh pattern
template. This structural framework defines the classes of the application and the flow



of control between the instances of these classes. The user does not add code direct-
ly to the framework, but rather creates subclasses of the framework classes to provide
application–dependent implementations of “hook” methods. The framework provides
the structure of the application and invokes these user–supplied hook methods. This is
different than a library, where the user provides the structure of the application and a
library provides utility routines. A framework provides design reuse by clearly separat-
ing the application–independent framework structure from the application–dependent
code. The use of frameworks can reduce the effort required to build applications [2].

The Patterns Layer of CO2P3S emphasizes correctness. Generating the correct par-
allel structural code for a pattern template is only part of this effort. Once this structural
code is created, CO2P3S also hides the structure of the framework so that it cannot
be modified. This prevents users from introducing errors. Also, to ensure that users
implement the correct hook methods, CO2P3S provides template viewers, shown in
Figure 2(b), to display and edit these methods. At the Patterns Layer, the user can on-
ly implement these methods using the viewers. The user cannot modify the internals
of the framework and introduce parallel structural errors. To further reduce the risk of
programmer errors, the framework encapsulates all necessary synchronization for the
provided parallel structure. The user does not need to include any synchronization or
parallel code in the hook methods for the framework to operate correctly. The hook
methods are normal, sequential code. These restrictions are relaxed in the lower layers
of CO2P3S.

For the Mesh framework, the user must write two application–specific sections of
code. The first part is the mainline method. A sample mainline is generated with the
Mesh framework, but the user will likely need to modify the code to provide correct
values for the application. The second part is the implementation of the mesh element
class. The mesh element class defines the application–specific parts of the mesh com-
putation: how to instantiate a mesh element, the mesh operation that the framework
is parallelizing, the termination conditions for the computation, and a gather opera-
tion to collect the final results. The structural part of the Mesh framework creates a
two–dimensional surface of these mesh elements and implements the flow of control
through a parallel mesh computation. This structure uses the application–specific code
supplied by the user for the specifics of the computation.

The mainline code is responsible for instantiating the mesh class and launching the
computation. The mesh class is responsible for creating the surface of mesh elements,
using the dimensions supplied by the user. The user can also supply an optional initial-
izer object, providing additional state to the constructor for each mesh object. In this
example, the initializer is a random number generator so that the morphogens can be
initialized with random concentrations. Analogously, the user can also supply an op-
tional reducer object to collect the final results of the computation, by applying this
object to each mesh element after the mesh computation has finished. Once the mesh
computation is complete, the results can be accessed through the reducer object. Finally,
the user specifies the number of threads that should be used to perform the computation.
The user specifies the number of horizontal and vertical blocks, decomposing the sur-
face into smaller pieces. Each block is assigned to a different thread. This information
is supplied at run-time so that the user can quickly experiment with different surface



import java.util.Random ;
public class MorphogenPair
f

protected Morphogen morph1, morph2 ;

public MorphogenPair(int x,int y,int width,int height,
Object initializer) f

Random gen = (Random) initializer;
morph1 = new Morphogen(1.0-(gen.nextDouble()*2.0),2.0,1.0);
morph2 = new Morphogen(1.0-(gen.nextDouble()*2.0),2.0,1.5);

g /* MorphogenPair */

public boolean notDone() f
return(!(morph1.hasConverged() && morph2.hasConverged()));

g /* notDone */

public void prepare() f
morph1.updateConcentrations();
morph2.updateConcentrations();

g /* prepare */

public void interiorNode(MorphogenPair left, right, up, down) f
morph1.simulate(left.getMorph1(),right.getMorph1(),

up.getMorph1(),down.getMorph1(),morph2, 1);
morph2.simulate(left.getMorph2(),right.getMorph2(),

up.getMorph2(),down.getMorph2(),morph1, 2);
g /* interiorNode */

public void postProcess() f
morph1.updateConcentrations();

g /* postProcess */

public void reduce(int x,int y,int width,int height,Object reducer) f
Concentrations result = (Concentrations) reducer;
result.concentration[x][y] = morph1.getConcentration() ;

g /* reduce */
// Define two accessors for the two morphogens.

g /* MorphogenPair */

Fig. 3. Selected parts of the MorphogenPair mesh element class.

sizes and numbers of threads. If these values were template parameters, the user would
have to regenerate the framework and recompile the code for every new experiment.

The application–specific code in the Mesh framework is shown in Figure 3. The
user writes an implementation of the mesh element class, MorphogenPair, defining
methods for the specifics of the mesh computation for a single mesh element. When
the framework is created, stubs for all of these methods are also generated. The frame-
work iterates over the surface, invoking these methods for each mesh element at the
appropriate time to execute the complete mesh computation. The sequence of method
calls for the application is shown in Figure 4. This method is part of the structure of the
Mesh framework, and is not available to the user at the Patterns Layer. However, this
code shows the flow of control for a generic mesh computation. Using this code with
the MorphogenPair implementation of Figure 3 shows the separation between the
application–dependent and application–independent parts of the generated frameworks.

The constructor for the mesh element class (in Figure 3) creates a single element.
The x and y arguments provide the location of the mesh element on the surface, which
is of dimensions width by height (from the constructor for the mesh object). Pro-



public void meshMethod() f
this.initialize();
while(this.notDone()) f

this.prepare();
this.barrier();
this.operate();

g /* while */
this.postProcess() ;

g /* meshMethod */

Fig. 4. The main loop for each thread in the Mesh framework.

viding these arguments allows the construction of the mesh element to take its position
into account if necessary. The constructor also accepts the initializer object, which is
applied to the new mesh element. In this example, the initializer is a random number
generator used to create morphogens with random initial concentrations.

The initialize() method is used for any initialization of the mesh elements
that can be performed in parallel. In the reaction–diffusion application, no such initial-
ization is required, so this method does not appear in Figure 3.

The notDone() method must return true if the element requires additional iter-
ations to complete its calculation and false if the computation has completed for the
element. Typical mesh computations iterate until the values in the mesh elements con-
verge to a final solution. This requires that a mesh element remember both its current
value and the value from the previous iteration. The reaction–diffusion problem also
involves convergence, so each morphogen has instance variables for both its current
concentration and the previous concentration. When the difference between these two
values falls below a threshold, the element returns false. By default, the stub generated
for this method returns false, indicating that the mesh computation has finished.

The interiorNode(left,right,up,down) method performs the mesh
computation for the current element based on its value and the values of the sup-
plied neighbouring elements. This method is invoked indirectly from the operate()
method of Figure 4. There are, in fact, up to nine different operations that could
be performed by a mesh element, based on the location of the element on the sur-
face and the boundary conditions. These different operations have a different set of
available neighbouring elements. For instance, two other operations are topLeft-
Corner(right,down) and rightEdge(left,up,down). Stubs are generated
for every one of the nine possible operations that are required by the boundary con-
ditions selected by the user in the Mesh pattern template. For the reaction–diffusion
example, the boundary conditions are fully–toroidal, so every element is considered an
interior node (as each element has all four available neighbours since the edges of the
surface wrap around). This method computes the new values for the concentrations of
both of its morphogen objects, based on its own concentration and that of its neighbours.

The prepare() method performs whatever operations are necessary to prepare
for the actual mesh element computation just described. When an element computes its
new values, it depends on state from neighbouring elements. However, these elements
may be concurrently computing new values. In some mesh computations, it is important
that the elements supply the value that was computed during the previous iteration of the



computation, not the current one. Therefore, each element must maintain two copies of
its value, one that is updated during an iteration and another that is read by neighbouring
elements. We call these states the write and read states. When an element requests the
state from a neighbour, it gets the read state. When an element updates its state, it
updates the write state. Before the next iteration, the element must update its read state
with the value in its write state. The prepare() method can be used for this update.
The reaction–diffusion example uses a read and write state for the concentrations in the
two morphogen objects, which are also used in the notDone() method to determine
if the morphogen has converged to its final value.

The postProcess()method is used for any postprocessing of the mesh elements
that can be performed in parallel. For this problem, we use this method to update the
read states before the final results are gathered, so that the collected results will be the
concentrations computed in the last iteration of the computation.

The reduce(x,y,width,height,reducer) method applies a reducer ob-
ject to the mesh elements to obtain the final results of the computation. This reducer
is typically a container object to gather the results so that they can be used after the
computation has finished. In this application, the reducer is an object that contains an
array for the final concentrations, which is used to display the final texture. Like the
initializer, the reducer is passed as an Object and must be cast before it can be used.

2.3 The Implementation of the Mesh Framework

The user of a Mesh framework does not have to know anything about any other class-
es or methods. However, in this section we briefly describe the structure of the Mesh
framework. This is useful from both a scientific standpoint and for any advanced user
who wants to modify the framework code by working at the Intermediate Code Layer.

In general, the granularity of a mesh computation at an individual element is too
small to justify a separate thread or process for that element. Therefore, the two–
dimensional surface of the mesh is decomposed into a rectangular collection of block
objects (where the number of blocks is specified by a user in the mesh object construc-
tor). Each block object is assigned to a different thread to perform the mesh computa-
tions for the elements in that block. We obtain parallelism by allowing each thread to
concurrently perform its local computations, subject to necessary synchronization. The
code executed by each thread, for its block, is meshMethod() from Figure 4.

We now look at the method calls in meshMethod(). The initialize(),
prepare(), and postProcess() methods iterate over their block and invoke the
method with the same name on each mesh element. The notDone() method iter-
ates over each element in its block, calling notDone(). Each thread locally reduces
the value returned by its local block to determine if the computation for the block is
complete. If any element returns true, the local computation has not completed. If all
elements return false, the computation has finished. The threads then exchange these
values to determine if the whole mesh computation has finished. Only when all threads
have finished does the computation end. The barrier() invokes a barrier, causing
all threads to finish preparing for the iteration before computing the new values for their
block. The user does not implement any method for a mesh element corresponding to
this method. Chaotic meshes do not include this synchronization. The operate()



Table 1. Speedups and wall clock times for the reaction–diffusion example.

Processors 2 4 8 16
1680 by Speedup 1.75 3.13 4.92 6.50
1680 Time (sec) 5734 3008 1910 1448

method iterates over the mesh elements in the block, invoking the mesh operation
method for that single element with the proper neighbouring elements as arguments.
However, since some of the elements are interior elements and some are on the bound-
ary of the mesh, there are up to nine different methods that could be invoked. The most
common method is interiorNode(left,right,up,down), but other methods
may exist and may also be used, depending on the selected boundary conditions. The
method is determined using a Strategy pattern [1] that is generated with the framework.
Note that elements on the boundary of a block have neighbours that are in other blocks
so they will invoke methods on elements in other blocks.

2.4 Evaluating the Mesh Framework

The performance of the reaction–diffusion example is shown in Table 1. These perfor-
mance numbers are not necessarily the best that can be obtained. They are meant to
show that for a little effort, it is possible to write a parallel program and quickly ob-
tain speedups. Once we decide to use the Mesh pattern template, the structural code
for the program is generated in a matter of minutes. Using existing sequential code,
the remainder of the application can be implemented in several hours. To illustrate the
relative effort required, we note that of the 696 lines of code for the parallel program,
the user was responsible for 212 lines, about 30%. Of the 212 lines of user code, 158
lines, about 75%, was reused from the sequential version. We must point out, though,
that these numbers are a function of the problem being solved, and not a function of
the programming system. However, the generated code is a considerable portion of the
overall total for the parallel program. Generating this code automatically reduces the
effort needed to write parallel programs.

The program was run using a native threaded Java interpreter from SGI with op-
timizations and JIT turned on. The execution environment was an SGI Origin 2000
with 195MHz R10000 processors and 10GB of RAM. The virtual machine was started
with 512MB of heap space. The speedups are based on wall clock times compared to a
sequential implementation. These speedup numbers only include computation time.

From the table, we can see that the problem scales well up to four processors, but
the speedup drops off considerably thereafter. The problem is granularity; as more pro-
cessors are added, the amount of computation between barrier points decreases until
synchronization is a limiting factor in performance. Larger computations, with either a
larger surface or a more complex computation, yield better speedups.

3 Other Patterns in CO2P3S

In addition to the Mesh, CO2P3S supports several other pattern templates. Two of these
are the Phases and the Distributor. The Phases template provides an extendible way



to create phased algorithms. Each phase can be parallelized individually, allowing the
parallelism to change as the algorithm progresses. The Distributor template supports
a data–parallel style of computation. Methods are invoked on a parent object, which
forwards the same method to a fixed number of child objects, each executing in parallel.

We have composed these two patterns to implement the parallel sorting by regular
sampling algorithm (PSRS) [6]. The details on the implementation of this program are
in [4]. To summarize the results, the complete program was 1507 lines of code, with
669 lines (44%) written by the user. 212 of the 669 lines is taken from the JGL library.
There was little code reuse from the sequential version of the problem as PSRS is an
explicitly parallel algorithm. Because this algorithm does much less synchronization, it
scales well up to 16 processors, obtaining a speedup of 11.2 on 16 processors.

4 Conclusions

This paper presented the graphical user interface of the CO2P3S parallel programming
system. In particular, it showed the development of a reaction–diffusion texture gen-
eration program using the Mesh parallel design pattern template, using the facilities
provided at the highest layer of abstraction in CO2P3S. Our experience suggests that
we can quickly create a correct parallel structure that can be used to write a parallel
program and obtain performance benefits.
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