
Multi-Method Dispatch Using Multiple Row
Displacement?

Candy Pang, Wade Holst, Yuri Leontiev, and Duane Szafron

University of Alberta, Edmonton AB T6G 2H1 Canada
{candy,wade,yuri,duane}@cs.ualberta.ca

Abstract. Multiple Row Displacement (MRD) is a new dispatch tech-
nique for multi-method languages. It is based on compressing an
n-dimensional table using an extension of the single-receiver row dis-
placement mechanism. This paper presents the new algorithm and pro-
vides experimental results that compare it with implementations of ex-
isting techniques: compressed n-dimensional tables, look-up automata
and single-receiver projection. MRD uses comparable space to the other
techniques, but has faster dispatch performance.

1 Introduction

Object-oriented languages can be separated into single-receiver languages and
multi-method languages. Single-receiver languages use the dynamic type of a
dedicated receiver object in conjunction with the method name to determine the
method to execute at run-time. Multi-method languages use the dynamic types
of one or more arguments1 in conjunction with the method name to determine
the method to execute. In single-receiver languages, a call-site can be viewed as
a message send to the receiver object. In multi-method languages, a call-site can
be viewed as the execution of a behavior on a set of arguments. The run-time
determination of the method to invoke at a call-site is called method dispatch.
Note that languages like C++ and Java that allow methods with the same name
but different static argument types are not performing actual dispatch on the
types of these arguments; the static types are simply encoded within the method
name.

Since most of the commercial object-oriented languages are single-receiver
languages, many efficient dispatch techniques have been invented for such lan-
guages [1]. However, there are some multi-method languages in use, such as
Cecil [2], CLOS [3], and Dylan [4]. In such languages, multi-method dispatch is
necessary.

There are two major categories of method dispatch: cache-based and table-
based. Cache-based techniques look in either global or local caches at the time
of dispatch to determine if the method for a particular call-site has already
? This research was supported in part by the Natural Sciences and Engineering Re-

search Council (NSERC) of Canada under grant OGP8191
1 In the rest of this paper, we will assume that dispatch occurs on all arguments.

Rachid Guerraoui (Ed.): ECOOP’99, LNCS 1628, pp. 304–328, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Multi-Method Dispatch Using Multiple Row Displacement 305

been determined. If it has been determined, that method is used. Otherwise,
a cache-miss technique is used to compute the method, which is then cached
for subsequent executions. Table-based techniques pre-determine the method for
every possible call-site, and record these methods in a table. At dispatch-time,
the method name and dynamic argument types form an index into this table.
This paper focuses exclusively on table-based techniques. Table-based techniques
have constant dispatch time. In addition, even when cache-based techniques are
used, table-based techniques can be effectively used for cache-misses.

In this paper we present a new multi-method table-based dispatch technique.
It uses a time efficient n-dimensional dispatch table that is compressed using an
extension of a space efficient row displacement mechanism. Since the technique
uses multiple applications of row displacement, it is called Multiple Row Dis-
placement and will be abbreviated as MRD. MRD works for methods of arbitrary
arity. Its execution speed and memory utilization are analyzed and compared to
other multi-method table-based dispatch techniques.

The rest of this paper is organized as follows. Sect. 2 introduces some notation
for describing multi-method dispatch. Sect. 3 presents the row displacement
single-receiver dispatch technique. Sect. 4 summarizes the existing multi-method
dispatch techniques. Sect. 5 describes n-dimensional table dispatch and presents
the new multi-method table-based technique. Sect. 6 presents time and space
results for the new technique and compares it to existing techniques. Sect. 7
discusses future work, and Sect. 8 presents our conclusions.

2 Terminology for Multi-Method Dispatch

2.1 Notation

Expr. 1 shows the form of a k-arity multi-method call-site. Each argument, oi,
represents an object, and has an associated dynamic type, T i = type(oi). Let
H represent a type hierarchy, and |H| be the number of types in the hierarchy.
In H, each type has a type number, num(T). A directed supertype edge exists
between type Tj and type Ti if Tj is a direct subtype of Ti, which we denote
as Tj ≺1 Ti. If Ti can be reached from Tj by following one or more supertype
edges, Tj is a subtype of Ti, denoted as Tj ≺ Ti.

σ(o1, o2, ..., ok) (1)

Method dispatch is the run-time determination of a method to invoke at a call-
site. When a method is defined, each argument, oi, has a specific static type,
T i. However, at a call-site, the dynamic type of each argument can either be
the static type, T i, or any of its subtypes, {T |T � T i}. For example, consider
the type hierarchy and method definitions in Fig. 1a, and the code in Fig. 1b.
The static type of anA is A, but the dynamic type of anA can be either A or C.
In general, we do not know the dynamic type of an object at a call-site until
run-time, so method dispatch is necessary.

306 C. Pang, W. Holst, Y. Leontiev, D. Szafron

A0

B1 C2

D3
A::α
C::α
C::β
D::β

* The subscript beside the type is the
type number, num(T).

E4

(a) Type Hierarchy

A anA;

if(...)

anA = new A();

else

anA = new C();

anA.α();

(b) Code Requiring Method Dispatch

Fig. 1. An example hierarchy and program segment requiring method dispatch

Although multi-method languages might appear to break the conceptual
model of sending a message to a receiver, we can maintain this idea by in-
troducing the concept of a product-type. A k-arity product-type is an ordered
list of k types denoted by P = T 1×T 2×...×T k. The induced k-degree product-type
graph, k ≥ 1, denoted Hk, is implicitly defined by the edges in H. Nodes in Hk
are k-arity product-types, where each type in the product-type is an element
of H. Expr. 2 describes when a directed edge exists from a child product-type
Pj = T 1

2 ×T 2
2 ×...×T k2 to a parent product-type Pi = T 1

1 ×T 2
1 ×...×T k1 , which is

denoted Pj ≺1 Pi.

Pj ≺1 Pi ⇔ ∃i, 1 ≤ i ≤ k : (T i2 ≺1 T i1) ∧ (∀j 6= i, T j2 = T j1) (2)

The notation Pj ≺ Pi indicates that Pj is a sub-product-type of Pi, which implies
that Pi can be reached from Pj by following edges in the product-type graph
Hk. Fig. 2 presents a sample inheritance hierarchy H and its induced 2-arity
product-type graph, H2. Three 2-arity methods (γ1 to γ3) for behavior γ have
been defined on H2 and associated with the appropriate product-types.2 Note
that for real inheritance hierarchies, the product-type hierarchies, H2,H3, ..., are
too large to store explicitly. Therefore, it is essential to define all product-type
relationships in terms of relations between the original types, as in Expr. 2. Next,
we define the concept of a behavior. A behavior corresponds to a generic-function
in CLOS and Cecil, to the set of methods that share the same signature in
Java, and the set of methods that share the same message selector in Smalltalk.
Behaviors are denoted by Bkσ, where k is the arity and σ is the name. The
maximum arity for all behaviors in the system is denoted byK. Multiple methods
can be defined for each behavior. A method for a behavior named σ is denoted
by σj. If the static type of the ith argument of σj is denoted by T i, the list of
argument types can viewed as a product-type, dom(σj) = T 1×T 2×...×T k. With
multi-method dispatch, the dynamic types of all arguments are needed.3

2 The method γ4 in the dashed box is an implicit inheritance conflict definition, and
will be explained later.

3 In single-receiver languages, the first argument is called a receiver.

Multi-Method Dispatch Using Multiple Row Displacement 307

An Inheritance Hierarchy, H:

A

B

C

Method Definitions onMethod Definitions on HH 22::

γγ 11 →→ AA xx AA
γγ 22 →→ BB xx BB
γγ 33 →→ AA xx CC

The 2-arity product-type graph,The 2-arity product-type graph, HH 22

AxAAxA
γγ 11

AxB BxAAxB BxA

AxCAxC
γγ 33 BxBBxB

γγ 22 CxACxA

BxCBxC
γγ 44 CxBCxB

CxCCxC

Fig. 2. An Inheritance Hierarchy, H, and its induced Product-Type Graph H2

2.2 Inheritance Conflicts

In single-receiver languages with multiple inheritance, the concept of inheritance
conflict arises. In general, an inheritance conflict occurs at a type T if two
different methods of a behavior are visible (by following different paths up the
type hierarchy) in supertypes Ti and Tj . Most languages relax this definition
slightly. Assume that n different methods of a behavior are defined on the set of
types T = {T1, ..., Tn}, where T � T1, ..., Tn. Then, the methods defined in two
types, Ti and Tj in T , do not cause a conflict in T, if Ti ≺ Tj , or Tj ≺ Ti, or
{∃ Tk ∈ T | Tk ≺ Ti & Tk ≺ Tj} .

Inheritance conflicts can also occur in multi-method languages, and are de-
fined in an analogous manner. A conflict occurs when a product-type can see
two different method definitions by looking up different paths in the induced
product-type graph T 1×T 2×...×T k. Interestingly, inheritance conflicts can oc-
cur in multi-method languages even if the underlying type hierarchy, H, has
single inheritance. For example, in Fig. 2, the product-type B×C has an inheri-
tance conflict, since it can see two different definitions for behavior γ (γ3 in A×C
and γ2 in B×B). For this reason, an implicit conflict method, γ4, is defined in
B×C as shown in Fig. 2. Similar to single-receiver languages, relaxation can be
applied. Assume that n methods are defined in product-types P = {P1, ..., Pn},
and let P ≺ P1, ..., Pn. Then, the methods in Pi and Pj do not conflict in P
if Pi ≺ Pj, or Pj ≺ Pi, or {∃ Pk ∈ P | Pk ≺ Pi & Pk ≺ Pj} . In multi-method
languages, it is especially important to use the more relaxed definition of an

308 C. Pang, W. Holst, Y. Leontiev, D. Szafron

inheritance conflict. Otherwise, a large number of inheritance conflicts would be
generated for almost every method definition.

2.3 Statically Typed Versus Dynamically Typed

Some programming languages (C++, Java, Eiffel) require each variable to be
declared with a static type. These languages are called statically typed languages.
Other languages (Smalltalk, CLOS) which do not bind variables to static types,
are called dynamically typed languages. In statically typed languages, a type
checker can be used at compile-time to ensure that all call-sites are type-valid.
A call-site is type-valid, if it has either a defined method for the message or
an implicitly defined conflict method. In contrast, a call-site is type-invalid, if
dispatching the call-site will lead to method-not-understood. For example, the
static type of the variable anA is A in Fig. 1b. The dynamic type of anA can
be either A or C (which is a subtype of A). Since the message α is defined for
type A, no matter what its dynamic type is, anA can understand the message
α. Therefore, the type checker can tell at compile-time that the call-site anA.α()
is type-valid. If the static type of anA is D, neither D nor any of its supertypes
understand the message α. The type checker will find at compile-time that the
call-site anA.α() is type-invalid, and return a compile-time error.

With implicitly defined conflict methods in statically typed languages, no
type-invalid call-site will be dispatched during execution. However, in dynam-
ically typed languages, call-sites may be type-invalid. All dispatch techniques
that use compression may return a method totally unrelated to the call-site.
Therefore, in dynamically typed languages, a method prologue is used to ensure
that the computed method is applicable for the dispatched behavior. It also en-
sures that each of the arguments is a subtype of the associated parameter type
in the method.

The dispatch technique, Multiple Row Displacement introduced in this paper
also has the problem of returning a wrong method for a type-invalid call-site in
dynamically typed languages. The problem can be solved by minor changes to
the data structure, see [18] for details. However, in this paper we assume the
call-sites are statically typed.

3 Single-Receiver Row Displacement Dispatch (RD)

In single-receiver table dispatch, the method address can be calculated in ad-
vance for every legal class/behavior pair, and stored in a selector table, S . Fig. 3a
shows the selector table for the type hierarchy and method definitions in Fig. 1a.
An empty table entry means that the behavior cannot be applied to the type.
At run-time, the behavior and the dynamic type of the receiver are used as in-
dices into S [5]. This algorithm is known as STI in the literature [6]. Although
STI provides efficient dispatch, its large memory requirements prohibit it from
being used in real systems. For example, there are 961 types and 12130 different
behaviors in the VisualWorks 2.5 Smalltalk hierarchy. If each method address

Multi-Method Dispatch Using Multiple Row Displacement 309

A0 B1 C2 D3 E
α A::α A::α C::α -- --
β -- -- C::β D::β D::β

S

(a) Selector Table

0(α) 1(β) 2 3 4 5

A::α A::α C::α C::β D::β D::β

α β
0 1

α A::α A::α C::α -- --
β -- -- C::β D::β D::β

M

M

I

(b) RD Compression

Fig. 3. Compressing A Selector Table By Row Displacement

required 4 bytes, then the selector table would have more than 46.6 Mbytes
(961× 12130× 4 bytes). Fortunately, 95% of the entries in the selector table for
single-receiver languages are empty [7], so the table can be compressed.

Row displacement (RD) reduces the number of empty entries by compress-
ing the two-dimensional selector table into a one-dimensional array [7,8]. As
illustrated in Fig. 3b, each row in S is shifted by an offset until there is only
one occupied entry in each column. Then, this structure is collapsed into a
one-dimensional master array, M . When the rows are shifted, the shift indices
(number of columns each row has been shifted) are stored in an index array, I .

At run-time, the behavior is used to find the shift index from the index array,
I . In fact, each behavior has a unique index determined at compile-time, and
it is this index which is used to represent the behavior in the compiled code.
For simplicity, we will just use the behavior name in this paper. The shift index
is added to the type number of the receiver to form an index into the master
array, M . For example, to dispatch behavior β with D as the dynamic type of
the receiver, the shift index for β is I [β] = 1. The type number of the receiver,
D, is 3. Therefore, the final shift index is 1 + 3 = 4, and the method to execute
is at M [4] which is D::β. Compared with other single-receiver table dispatch
techniques, row displacement is highly space and time efficient [1]. We will show
how this single-receiver technique can be generalized to multi-method languages
in Sect. 5.

4 Existing Multi-Method Dispatch Techniques

This section provides a brief summary of the existing multi-method dispatch
techniques.

1. CNT: Compressed N-Dimensional Tables [9,10,11] represents the dispatch
table as a behavior-specific k-dimensional table, where k represents the ar-
ity of a particular behavior. Each dimension of the table is compressed by
grouping identical dimension lines into a single line. The resulting table is
indexed by type groups in each dimension, and mappings from type number
to type group are kept in auxiliary data structures.

310 C. Pang, W. Holst, Y. Leontiev, D. Szafron

2. LUA: Lookup Automata [12,13] creates a lookup automaton for each behav-
ior. In order to avoid backtracking, and thus exponential dispatch time, the
automata must include more types than are explicitly listed in method def-
initions (inheritance conflicts must be implicitly defined). The automaton
can then be converted to a function containing only if-than-else statements.
At dispatch, this function is called to locate the correct method. LUA has
been extended in [19].

3. SRP: Single-Receiver Projections [14] maintains k extended single-receiver
dispatch tables and projects k-arity multi-method definitions onto these k
tables. Each table maintains a bit-vector of applicable method indices, so
dispatch consists of logically anding bit-vectors, finding the index of the
right-most on-bit and returning the method associated with this index.

4. Extended Cache-Based Techniques are used in Cecil [2]. The cache-based
techniques from single-receiver languages [6] are extended to work for product-
types instead of just simple types.

5 Multiple Row Displacement (MRD)

5.1 N-dimensional Dispatch Table

In single-receiver method dispatch, only the dynamic type of the receiver and
the behavior name are used in dispatch. However, in multi-method dispatch, the
dynamic types of all arguments and the behavior name are used.

The single-receiver dispatch table can be extended to multi-method dis-
patch. In multi-method dispatch, each k-arity behavior, Bkσ , has a k-dimensional
dispatch table, Dk

σ , with type numbers as indices for each dimension. There-
fore, each k-dimensional dispatch table has |H|k. At a call-site, σ(o1, o2, ..., ok),
the method to execute is in Dk

σ [num(T 1)][num(T 2)]...[num(T k)], where T i =
type(oi). For example, the 2-dimensional dispatch tables for the type hierar-
chy and method definitions in Fig. 4a are shown in Fig. 4b. In building an n-
dimensional dispatch table, inheritance conflicts must be resolved. For example,
there is an inheritance conflict at E×E for α, since both α1 and α2 are applicable
for the call-site α(anE, anE). Therefore, we define an implicit conflict method
α3, and insert it into the table at E×E.

N-dimensional table dispatch is very time efficient. However, analogous to the
situation with selector tables in single-receiver languages, n-dimensional dispatch
tables are impractical because of their huge memory requirements. For example,
in the Cecil Vortex3 type hierarchy there are 1954 types. Therefore, a single
3-arity behavior would require 19543 bytes = 7.46 gigabytes.

5.2 Multiple Row Displacement by Examples

Multiple Row Displacement (MRD) is a time and space efficient dispatch tech-
nique which combines row displacement and n-dimensional dispatch tables. We
will first illustrate MRD through examples, and then give the algorithm. The

Multi-Method Dispatch Using Multiple Row Displacement 311

A0

B1

C2

D3

E4

α1(A,D)
α2(C,B)

 *α3(E,E)

β1(A,C)
β2(B,D)

* α3 is an implicit conflict method.

A0 B1 C2 D3 E4

A0 -- -- β1 β1 β1
B1 -- -- β1 β2 β2
C2 -- -- -- -- --
D3 -- -- -- -- --
E4 -- -- β1 β2 β2

2nd Argument

1s
t A

rg
um

en
tA0 B1 C2 D3 E4

A0 -- -- -- α1 α1
B1 -- -- -- α1 α1
C2 -- α2 -- -- α2
D3 -- α2 -- -- α2
E4 -- α2 -- α1 α3

2nd Argument

1s
t A

rg
um

en
t

(a)

(b)

2
αD 2

βD

Fig. 4. N-Dimensional Dispatch Tables

(a)

(b)

A0 -- -- -- α1 α1

B1 -- -- -- α1 α1

C2 -- α2 -- -- α2

D3 -- α2 -- -- α2

E4 -- α2 -- α1 α3

A0 -- -- β1 β1 β1

B1 -- -- β1 β2 β2

C2 -- -- -- -- --
D3 -- -- -- -- --
E4 -- -- β1 β2 β2

A0 -- -- -- α1 α1
B1

C2 -- α2 -- -- α2
D3

E4 -- α2 -- α1 α3

A0 -- -- β1 β1 β1

B1 -- -- β1 β2 β2
C2 -
D3 -
E4

L0
L1(A)

L1(C)

L1(E)

L0

L1(B)

L1(A)

2
αD

2
αD

2
βD

2
βD

Fig. 5. Data Structure for Multiple Row Displacement

312 C. Pang, W. Holst, Y. Leontiev, D. Szafron

first example uses the type hierarchy and 2-arity method definitions from Fig. 4a.
Instead of the single k-dimensional array shown in Fig. 4b, each table can be
represented as an array of arrays as shown in Fig. 5a. The arrays indexed by the
first argument are called level-0 arrays, L0. There is only one level-0 array per
behavior. The arrays indexed by the second argument are called level-1 arrays,
L1(·). If the arity of the behavior is greater than two then the arrays indexed by
the third arguments are called level-2 arrays, L2(·); and so on. The highest level
arrays are level-(k − 1) arrays, Lk−1(·), for k arity behaviors.

It can be seen from Fig. 5a that some of the level-1 arrays are exactly the
same. Those arrays are combined as shown in Fig. 5b. In general, there will be
many identical rows in an n-dimensional dispatch table, and many empty rows.
These observations are the basis for the CNT dispatch technique mentioned in
Sect. 4, and are also one of the underlying reasons for the compression provided
by MRD. It is worth noting that this sharing of rows is only possible due to the
fact that we are compressing a table that uses types to index into all dimensions.
In single-receiver languages, the tables being compressed have behaviors along
one dimension, and types along the other. Sharing between two behavior rows
would imply that both behaviors invoke the same methods for all types, and
although languages like Tigukat [15] allow this to happen, such a situation would
be highly unlikely to occur in practice. Sharing between two type columns is also
unlikely since it occurs only when a type inherits methods from a parent and
does not redefine or introduce any new methods. Such sharing of type columns
is more feasible if the table is partitioned into subtables by grouping a number of
rows together. This strategy was used in the single-receiver dispatch technique
called Compressed Dispatch Table (CT) [16].

We have one data structure per behavior, Dk
σ , and MRD compresses these per

behavior data structures by row displacement into three global data structures: a
Global Master Array, M , a set of Global Index Arrays, Ij, where j = 0, ..., (K−2),
and a Global Behavior Array, B .

In compressing the data structure D2
α in Fig. 5b, the level-1 array L1(A) is

first shifted into the Global Master Array, M , by row displacement, as shown in
Fig. 6a. The shift index, 0, is stored in the level-0 array, L0, in place of L1(A). In
the implementation, a temporary array is created to store the shift indices, but
in this paper, we will put them in L0 for simplicity of presentation. Fig. 6b shows
how L1(C) and L1(E) are shifted into M by row displacement, and how they are
replaced in L0 by their shift indices. Finally, as shown in Fig. 6c, L0 is shifted
into the Global Index Array, I0 by row displacement. The resulting shift index,
0, is stored in the Global Behavior Array at B [α]. After D2

α is compressed into
the global data structures, the memory for its preliminary data structures can
be released. Fig. 7 shows how to compress the behavior data structure, D2

β , into
the same global data structures, M , I0 and B . The compression of the level-1
arrays, L1(A) and L1(B), are shown in Fig. 7a. The compression of the level-0
array, L0, is shown in Fig. 7b. Note that only I0 is used in the case of arity-2
behaviors. For arity-3 behaviors, I1 will also be used. For arity-4 behaviors, I2

will also be used, etc. As an example of dispatch, we will demonstrate how to

Multi-Method Dispatch Using Multiple Row Displacement 313

M

M

M

(a)

(b)

(c)

A0 0 -- -- -- α1 α1
B1 0
C2 -- α2 -- -- α2
D3

E4 -- α2 -- α1 α3

1 2 3 4

-- -- -- α1 α1

0 1 2 3 4 5 6 7 8 9

-- -- α2 α1 α1 α2 α2 -- α1 α3

0 1 2 3 4 5 6 7 8 9

-- -- α1 α1
-- α2 -- -- α2

-- α2 -- α1 α3

A0 0
B1 0
C2 1 -- α2 -- -- α2
D3 1
E4 5 -- α2 -- α1 α3

A0 0
B1 0
C2 1
D3 1
E4 5

L0

L0

L0

L1(A)L1(A)

L1(C)

L1(C)

L1(C)

L1(E)

L1(E)

L1(E)

I0

B

B

1 2 3 4

0 0 1 1 5
α
0

L0I0

I0

B

2
αD

2
αD

2
αD

Fig. 6. Compressing The Data Structure for α

M
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-- -- α2 α1 α1 α2 α2 -- α1 α3
-- -- β1 β1 β1

-- -- β1 β2 β2

(a)

A0 8 -- -- β1 β1 β1

B111 -- -- β1 β2 β2
C2 -
D3 -
E411

L1(A)
L1(B)

L1(A)

L1(B)

L0

B

1 2 3 4

0 0 1 1 5

α
0

L0I0
2
βD

M
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-- -- α2 α1 α1 α2 α2 -- α1 α3 β1 β1 β1 β1 β2 β2

B
α β
0 5

(b)

A0 8
B111
C2 -
D3 -
E411

L0

L0

0 1 2 3 4 5 6 7 8 9

0 0 1 1 5
8 11 -- -- 11

I0

2
βD

Fig. 7. Compressing The Data Structure For β

314 C. Pang, W. Holst, Y. Leontiev, D. Szafron

dispatch a call-site β(anE, aD) using the data structures in Fig. 7b. The method
dispatch starts by obtaining the shift index of the behavior, β, from the Global
Behavior Array, B . From Fig. 7b, B [β] is 5. The next step is to obtain the shift
index for the type of the first argument, E, from the Global Index array, I0.
Since the shift index of β is 5, and the type number of E, num(E), is 4, the
shift index of the first argument is I0[5 + 4] = I0[9] = 11. Finally, by adding the
shift index of the first argument to the type number of the second argument,
num(D) = 3, an index to M is formed, which is 11 + 3 = 14. The method
to execute can be found in M [14] = β2, as expected. MRD can be extended
to handle behaviors of any arity. Fig. 8a shows the method definitions of a
3-arity behavior, δ, and Fig. 8b shows its preliminary behavior data structure,
D3
δ . Figs. 8c to 8e show the compression of this data structure. First, the level-2

arrays, L2(B×D), L2(D×B) and L2(E×E) are shifted into the existing M as
shown in Fig. 8c. Their shift indices (15, 14, 19) are stored in L1(B), L1(D) and
L1(E). In fact, every pointer in Fig. 8b that pointed to L2(B×D) is replaced
by the shift index 15. Pointers to L2(D×B) are replaced by the shift index 14
and the single pointer to L2(E×E) is replaced by the shift index 19. Then, the
level-1 arrays, L1(B), L1(D) and L1(E), are shifted into the Global Index Array
I1 as shown in Fig. 8d. The shift indices (0,1,5) are stored in L0. Finally, L0 is
shifted into the Global Index Array I0 and its shift index (7) is stored in the
Global Behavior Array at B [δ], as shown in Fig. 8e.

5.3 A Description of the Multiple Row-Displacement Algorithm

We have shown, by examples, how MRD compresses an n-dimensional dispatch
table by row displacement. On the behavior level, a preliminary data structure,
Dk
σ , is created for each behavior. Dk

σ is a data structure for a k-arity behavior
named σ, as shown in Fig. 8b. It is actually an n-dimensional dispatch table,
which is an array of pointers to arrays. Each array in Dk

σ has size |H|. The level-
0 array, L0, is indexed by the type of the first argument. The level-1 arrays,
L1(·), are indexed by the type of the second argument. The level-(k − 1) arrays,
Lk−1(·), always contain method addresses. All other arrays contain pointers to
arrays at the next level.

After the compression has finished, there is a Global Master Dispatch Array,
M , K − 1 Global Index Arrays, I0, ..., Ik−2, and a Global Behavior Array, B .
The Global Master Dispatch Array, M , stores method addresses of all methods.
Each Global Index Array, Ij, contains shift indexes for Ij+1. The Global Behavior
Array, B stores the shift indices of the behaviors.

At compile-time, a Dk
σ data structure is created for each behavior. The level-

(k−1) arrays, Lk−1, are shifted into M by row displacement. The shifted indices
are stored in Lk−2. Then, the level-(k − 2) arrays, Lk−2, are shifted into the
index array, Ik−2. The shift indices are stored in Lk−3. This process is repeated
until the level-0 array, L0, is shifted into I0, and the shift index is stored in B [σ].
The whole process is repeated for each behavior. The algorithm to compress all
behavior data structures is shown in Sect. 5.5.

Multi-Method Dispatch Using Multiple Row Displacement 315

(b)

A0 --
B1 δ1
C2 --
D3 --
E4 δ1

A0 --
B1 -- -- --
C2 -- A0 B1 C2 D3 E4

D3 -- -- --
E4

A0 -- A0 --
B1 -- B1 δ1
C2 -- C2 --
D3 δ2

D3 δ2
E4 δ2

E4 δ3

-- --
A0 B1 C2 D3 E4

L0

L1(B)

L1(D)

L1(E)

L2(B×D)

L2(E×E)L2(D×B)

δ1(B,D,B)
δ2(D,B,D)

*δ3(E,E,E)

A0

B1

C3

D4

E5

(a)
* δ3 is an implicit conflict method.

(c)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

-- -- α2 α1 α1 α2 α2 -- α1 α3 β1 β1 β1 β1 β2 β2
-- δ1 -- -- δ1

-- -- -- δ2 δ2

-- δ1 -- δ2 δ3

M
L2(B×D)

L2(D×B)
L2(E×E)

3
δD

B
α β
0 5 (d)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

-- -- α2 α1 α1 α2 α2 -- α1 α3 β1 β1 β1 β1 β2 β2 δ1 δ2 δ2 δ1 δ1 -- δ2 δ3
M

B
α β δ
0 5 7

A0 --
B1 0
C2 --
D3 1
E4 5

(e)

L0

0 1 2 3 4 5 6 7 8 9 10 11

-- -- 14 15 15 14 14 -- 15 19
0 0 1 1 5 8 11 -- -- 11

-- 0 -- 1 5

I k-2
:
I1
I0

L0

M

A0 -- A0 B1 C2 D3 E4

B1 0 -- -- -- 15 15
C2 --
D3 1 -- 14 -- -- 14
E4 5 -- 14 -- 15 19

L0

L1(B)

L1(D)

L1(E)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

-- -- α2 α1 α1 α2 α2 -- α1 α3 β1 β1 β1 β1 β2 β2 δ1 δ2 δ2 δ1 δ1 -- δ2 δ3

0 1 2 3 4 5 6 7 8 9

-- -- -- 15 15
-- 14 -- -- 14

-- 14 -- 15 19
0 0 1 1 5 8 11 -- -- 11

I k-2
:
I1

I0

L1(B)

L1(D)
L1(E)

3
δD

3
δD

Fig. 8. Compressing The Data Structure For δ

316 C. Pang, W. Holst, Y. Leontiev, D. Szafron

The dispatch formula for a call-site, σ(o1, ..., ok), is given by Expr. 3, where
T i = type(oi).

M [Ik−2[Ik−3[... I1[I0[B [σ] + num(T 1)]

+ num(T 2)] + ...] + num(T k−2)] + num(T k−1)] + num(T k)] (3)

As an example of dispatch with Expr. 3, we will demonstrate how to dispatch a
call-site δ(anE, aD, aB) using the data structures in Fig. 8e. Since δ is a 3-arity
behavior, Expr. 3 becomes Expr. 4.

M [I1[I0[B [δ] + num(E)] + num(D)] + num(B)] (4)

Substituting the data from Fig. 8e into Expr. 4 yields the method δ1, as shown
in Expr. 5.

M [I1[I0[7 + 4] + 3] + 1]
= M [I1[I0[11] + 3] + 1]
= M [I1[5 + 3] + 1] (5)
= M [I1[8] + 1]
= M [15 + 1]
= M [16] = δ1

5.4 Optimizations

Single I . For simplicity of presentation, we defined an Index Array per arity
position. Actually, we only need one Global Index Array, I , to store all level-0 to
level-(k−2) arrays. Using a single Index Array provides additional compression,
and has no negative impact on dispatch speed. Expr. 6 shows the modified
dispatch formula that accesses one Global Index Array.

M [I [I [... I [I [B [σ] + num(T 1)]

+ num(T 2)] + ...] + num(T k−2)] + num(T k−1)] + num(T k)] (6)

Row-Matching. Note that the row-shifting mechanism used in our implemen-
tation of row displacement is not the most space-efficient technique possible.
When the row-shifting algorithm is replaced by a more general algorithm called
row-matching (based on string-matching), we get a higher compression rate. In
row-matching, two table entries match if one entry is empty or if both entries are
identical. For example, using row-shifting to compress rows R1 and R2 in Fig. 9a
produces a master array with 9 elements as shown in Fig. 9b. However, using
the improved algorithm to compress R1 and R2 produces a master array with
only 6 elements as shown in Fig. 9c. Using row-matching instead of row-shifting
provides an additional 10-14% compression. Our improved algorithm cannot be
used in single-receiver row displacement, since different rows contain different
behaviors, and thus different addresses.

Multi-Method Dispatch Using Multiple Row Displacement 317

R1 α1 α2 -- -- α2

R2 -- α1 α2 α2 --

(a)

R1 α 1 α 2 -- -- α 2
R2 -- α 1 α 2 α 2 --

R1 R2

α1 α2 -- -- α2 α1 α2 α2 --

R1 α1 α2 -- -- α2
R2 -- α1 α2 α2 --

(b)

(c)

R2 R1

-- α1 α2 α2 -- α2

Fig. 9. Row-Shifting vs. Row-Matching

Byte vs. Word Storage. MRD stores four bytes function addresses in M . In a
large hierarchy, M is the most memory consuming data structure. To reduce the
size of M , a method-map, DMRD

σ , is introduced per behavior. Since all methods
of a behavior are stored in DMRD

σ , a method can be represented by an index
into DMRD

σ . Since it is very unlikely that more than 256 methods are defined
per behavior, only one byte is needed to store the index to the corresponding
DMRD
σ . If M stores this index instead of the function address, the size of M is

reduced to one-forth of its original size. However, there is an extra indirection to
access the method-map at dispatch time. We denote the technique which stores
bytes instead of words by MRD-B.

Type Ordering. In single receiver row displacement type ordering has a sig-
nificant impact on compression ratios [7]. We have investigated type ordering in
multi-method row displacement and found that the impact is smaller.

5.5 The MRD Data Structure Creation Algorithm

The algorithm to build the global data structure for MRD is given below:

Array M , I ;
createGlobalDataStructure() begin

for(each behavior Bkσ) do
BehaviorStructure Dk

σ = Bkσ.createStructure();
createRecursiveStructure(Dk

σ .L0, 0);
Bkσ.shiftIndex = Dk

σ .L0.getShiftIndex();
endfor

end

318 C. Pang, W. Holst, Y. Leontiev, D. Szafron

createRecursiveStructure(Array L, int level) begin
for(int i=0; i<L.size(); i++) do

if(L[i] == null) then
continue;

elseif(L[i].getShiftIndex() == -1) then
if(level == k-2) then

L[i] = M.add(L[i]);
else

createRecursiveStructure(L[i],level+1);
L[i] = L[i].getShiftIndex();

endif
else

L[i] = L[i].getShiftIndex();
endif

endfor
I.add(L);

end

This algorithm uses three support routines: Array.add(Array),
Array.getShiftIndex(), and Behavior.createStructure(). The
Array.add(Array) function shifts the given array into the current array
by row-matching or row-shifting, and returns the shift index. The returned shift
index is also stored in the given array. The Array.getShiftIndex() function
returns the shift index of the current array, which is stored in the current array
when it is added to another array. If the current array has never been added
to another array, this function returns −1. The Behavior.createStructure()
function creates an n-dimensional table for the current behavior.

5.6 Separate Compilation

With table-based dispatch, the tables must be built before they can be used. If
a language does not support separate compilation, then the tables can be built
at compile-time when the entire type hierarchy and all the method definitions
are compiled. If a language supports separate compilation, then neither the type
hierarchy nor the set of all method definitions for a particular behavior are
available when a class is being compiled. In this case, the dispatch tables must
be built at link-time. Fortunately, these tables only take a few seconds to build.
In addition to building the dispatch tables, call-sites in compiled code must
be patched with base table start addresses and global behavior shift indices.
However, this is no more difficult than resolving other external references in
separately compiled object files.

6 Performance Results

Here we present memory and execution results for the new technique, MRD,
and three other techniques, CNT, LUA and SRP. When analyzing dispatch tech-

Multi-Method Dispatch Using Multiple Row Displacement 319

niques, both execution performance and memory usage need to be addressed. A
technique that is extremely fast is still not viable if it uses excessive memory, and
a technique that uses very little memory is not desirable if it dispatches methods
very slowly. We present both timing and memory results for MRD, SRP, LUA
and CNT. This is the first time a comparison of multi-method techniques has
appeared in the literature.

The rest of this section is organized into three subsections. The first sub-
section discusses the data-structures and dispatch code required by the various
techniques. The second subsection presents timing results. The third subsection
presents memory results.

6.1 Data Structures and Dispatch Code

This section provides a brief description of the required data-structures for each
of the four dispatch techniques in a static context. The code that needs to be
generated at each call-site is also presented. In the subsections that follow, the
code presented refers to the code that would be generated by the compiler upon
encountering the call-site σ(o1, o2, ..., ok).

The notationN(oi) represents the code necessary to obtain a type number for
the object at argument position i of the call-site. Naturally, different languages
implement the relation between object and type in different ways, and dispatch
is affected by this choice. Our timing results are based on an implementation in
which every object is a pointer to a structure that contains a ’typeNumber’ field
(in addition to its instance data).

MRD. MRD has an M array that stores function addresses, an I array that
stores level-array shift indices, and a B array that stores behavior shift indices.

The dispatch sequence is given in Expr. 7.

(∗(M [I[...I[I[#bσ +N(o1)]
+N(o2)] + ...] +N(ok−1)] +N(ok)]))(o1, o2, ..., ok) (7)

Note that the Global Behavior Array, B , from Expr. 3, is known at compile-time,
so B [σ] is known at compile-time. Thus #bσ is a literal interger obtained from
B [σ].

MRD-B. The dispatch sequence for MRD-B is given in Expr. 8.

(∗(DMRD
σ [M [I[...I[I[#bσ +N(o1)]

+N(o2)] + ...] +N(ok−1)] +N(ok)]]))(o1, o2, ..., ok) (8)

CNT. For each behavior, CNT has a k-dimensional array, but since we are as-
suming a static environment, this k-dimensional array can be linearized into a

320 C. Pang, W. Holst, Y. Leontiev, D. Szafron

one-dimensional array. Indexing into the array requires a sequence of multiplica-
tions and additions to convert the k indices into a single index. For a particular
behavior, we denote its one-dimensional dispatch table by DCNT

σ .
In addition to the behavior-specific information, CNT requires arrays that

map types to type-groups. In [11], these group arrays are compressed by selector
coloring (SC). Our dispatch results are based on such a compression scheme, and
assume that the maximum number of groups is less than 256, so that the group
array can be an array of bytes. Furthermore, since the compiler knows exactly
which group array to use for a particular type, it is more efficient to declare
n statically allocated arrays than it is to declare an array of arrays. Thus, we
assume that there are arrays G1, ..., Gn, and that the compiler knows which
group array to use for each dimension of a particular behavior.

If we assume that the compressed n-dimensional table for k-arity behavior
σ has dimensions nσ1 , nσ2 , ..., nσk, where the nσi values are behavior specific, and
that the group arrays for these dimensions are Gσ1 , Gσ2 , ..., Gσk then the call-site
dispatch code is given in Expr. 9.

(∗ (DCNT
σ [Gσ1 [N(o1)]×#(nσ1 × nσ2 × ...× nσk−1)

+ Gσ2 [N(o2)]×#(nσ2 × ...× nσk−1)
+ ...

+ Gσk [N(ok)]])) (o1, o2, ...ok) (9)

Note that since the nσi are known constants, the products of the form: #(nσ1 ×
...× nσj), can be precomputed. Thus, only k − 1 multiplications are required at
run-time.

Note that [11] assumes a behavior specific function-call to compute the dis-
patch using Expr. 9. Although this function-call reduces call-site size, it signifi-
cantly increases dispatch time. We have remove the function-call by inlining to
make CNT more competitive in our timings.

SRP. SRP has K selector tables, denoted S1, ..., SK where Si represents the
applicable method sets for types in argument position i of all methods. These
dispatch tables can be compressed by any single-receiver dispatch technique,
such as selector coloring (SRP/SC), row displacement (SRP/RD), or compressed
dispatch table (SRP/CT). The timing and space results, and the code that
follows, are for SRP/RD.

In addition to the argument-specific dispatch tables, SRP has, for each be-
havior, an array that maps method indices to method addresses, which we denote
by DSRP

σ .
The dispatch code for SRP is given in Expr. 10, where FirstBit() is some

macro or function that implements the operation of finding the position of the
first ’1’ bit in a bit-vector. [14] discusses this in some detail. Our timing and
space results assume that this is a hardware-supported operation with the same

Multi-Method Dispatch Using Multiple Row Displacement 321

performance as shift-right.

(∗(DSRP
σ [F irstBit(S1[N(o1) + #bσ1] &

S2[N(o2) + #bσ2] &
... &
Sk[N(ok) + #bσk])])) (o1, o2, ..., ok) (10)

Note that #bσi is the shift index assigned to behavior σ in argument-table i and
is a literal integer.

LUA. LUA is, in some ways, the most difficult technique to evaluate accurately.
First, there are a number of variations possible during implementation, that
have vastly different space vs. time performance results. For example, in order
to provide dispatch in O(k), the technique must resort to an array access in
certain situations, at the expense of substantially more memory. Second, [13]
does not provide any explicit description of what the code at a particular call-
site would look like. They discuss the technique in terms of data structures, and
do not mention that in a statically-typed environment, a collection of if-then-else
statements would be a much more efficient implementation. It is only indicated
later in [19] that method dispatch will happen as a function-call to a behavior-
specific function. Given this assumption the call-site code for LUA is given in
Expr. 11.

dispatchσ(o1, o2, ..., ok); (11)

Although the published discussion of CNT also assumes such a behavior-specific
call, we have provided a more time-efficient implementation of CNT by inlining
the dispatch computation (Expr. 9), at the expense of more memory per call-
site. Unfortunately, it is not feasible to inline the dispatch computation for LUA
because the call-site code would grow too much.

Our timing results assume the best possible dispatch situation for LUA,
in which there are only two k-arity methods from which to choose. In such a
situation, LUA needs to perform at most k subtype tests. Although numerous
subtype-testing implementations are possible [17,19], we have choosen one that
provides a reasonable trade-off between time and space efficiency. Each type, T ,
maintains a bitvector, subT , in which the bit corresponding to every subtype of T
is set to 1, and all other bits are set to 0. Assuming the bit-vector is implemented
as an array of bytes, we can pack 8 bits into each array index, so determining
whether Tj is a subtype of Ti consists of the expression: subTi [num(Tj) >>
3]&(1 << (num(Tj) & 0x7)). However, note that the actual subtype testing
implementation does not really affect the overall dispatch time because LUA
invokes a behavior-specific dispatch function, and this extra function call is, in
general, much more expensive than the actual computation itself.

The size of the per behavior function to be executed depends on the number
of methods defined for the behavior. In the best possible case, there are only two

322 C. Pang, W. Holst, Y. Leontiev, D. Szafron

methods, m1 and m2 defined for each behavior in a statically typed language
(if there is only one method, no dispatch is necessary). We reiterate that this is
a rather liberal under-estimate of the actual time a particular call-site takes to
dispatch. The simplest function that a behavior can have is shown in the code:

dispatch σ(o1, ..., ok) {
if (subT 1 [N(o1) >> 3] & (1 << (N(o1) & 0x7)))

...
if (subTk [N(ok) >> 3] & (1 << (N(ok) & 0x7)))

return call m1(o1, ..., ok);
return call m2(o1, ..., ok);

}

6.2 Timing Results

In order to compare the address-computation time of the various techniques
we generate technique-specific C++ programs that perform the computations
listed in the previous section. Each program consists of a loop that iterates
2000 times over 500 blocks of code representing the address-computation for
randomly generated call-sites, where a call-site consists of a behavior name and
a list of k applicable types (for a k-arity behavior). Each block consists of two
expressions. The first expression assigns to a global variable the result of an
address-computation (i.e. the code described in the previous section, without the
actual invocation). The second expression in each group calls a dummy function
that modifies the previously assigned variable. These contortions are performed
in order to stop the compiler from doing optimizations (such as only performing
the last assignment in each group of 500, or in moving the code outside the
2000-iteration loop). Note that we are timing just the computation of addresses,
since this is the only part of the dispatch process that varies from technique
to technique (the actual invocation of the computed address is the same in all
techniques). We also time a loop over 500 constant assignments interleaved with
calls to the dummy function in order to time the overhead incurred (this is
referred to as noop in the results).

Thus, each execution of one of these programs computes the time for 1,000,000
method-address computations. For each technique, such a program is generated
and executed 20 times. The program is then regenerated (thus resulting in a dif-
ferent collection of 500 call-sites) an additional 9 times, and each such program
is executed 20 times. This provides 200 timings of 1,000,000 call-sites for each
of the techniques. The average time and standard-deviation of these 200 timings
are reported in our results. In the graph, the histograms represent the mean,
and the error-bars indicate the potential error in the results, as plus and minus
twice the standard deviation.

In order to establish the effect that architecture and optimization have on
the various techniques, the above timing results are performed on five different
platforms using optimization levels from -O0 to -O3. All code is compiled using
GNU C++ (in future work, we will obtain timings for a variety of different

Multi-Method Dispatch Using Multiple Row Displacement 323

compilers). In the interest of space, we present results for two platforms, and
only for optimization level -O2. Furthermore, we only present results for 2-arity
dispatch, since all techniques scale similarily for higher-arity dispatch sequences.
In this and subsequent sections, Platform1 refers to a 299MHz Sun Microsystems
Ultra 5/10 running Solaris 2.6 with 128 Mb of RAM and Platform2 refers to a
400MHz Prospec PII running Linux 2.0.34 with 256Mb of RAM. From Fig. 10, it

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

noop MRD MRD-B CNT SRP LUA

Ti
m

e
(m

icr
os

ec
on

ds
) f

or
 P

lat
fo

rm
 1

Technique

0

0.05

0.1

0.15

0.2

0.25

noop MRD MRD-B CNT SRP LUA

Ti
m

e
(m

icr
os

ec
on

ds
) f

or
 P

lat
fo

rm
 2

Technique

Fig. 10. Number of microseconds required to compute a method at a call-site

can be seen that MRD provides the fastest dispatch time on both platforms, and
did so for all five platforms tested.4 Furthermore, LUA has the slowest dispatch
time on all platforms. However, the relative performance of MRD-B, SRP and
CNT varied with platform, although MRD-B was usually fastest, followed by
SRP, followed by CNT.

6.3 Memory Utilization

We can divide memory usage into two different categories: 1) data-structures,
and 2) call-site code-size. The amount of space taken by each of these depends
on the application, but in different ways. An application with many types and
methods will naturally require larger data-structures than an application with
fewer types and methods. As well, although the size of an individual call-site is
independent of the application, the number of call-sites (and hence the amount
of code generated) is application dependent.

In order to compare the call-site size of the various techniques, we generated
another set of technique-specific C++ programs. For each technique, a program
4 The other three platforms were: a Sun SPARCstation 10 Model 50 running SunOS

4.1.4 with 128 Mb, an 180MHz SGI O2 running IRIX 6.5 with 64 Mb, and an IBM
RS6000/360 running AIX 4.1.4 with 128 Mb

324 C. Pang, W. Holst, Y. Leontiev, D. Szafron

was created that represented the code for 200 consecutive two-arity method
invocations, including the dispatch computation. The program placed a label at
the beginning and end of this code and reported the computed average call-site
size based on the difference between the addressed of the labels. Note that the
call-site size for a particular technique can vary slightly if the randomly generate
arguments happen to be identical, or if the constants in the dispatch computation
happen to be less than 256 or less than 65535, allowing them to be stored using
smaller instructions. Fig. 11 shows the number of bytes required by the call-site

0

10

20

30

40

50

60

70

80

90

100

CNTMRD SRPLUA MRD-B

Av
er

ag
e

by
te

s p
er

 ca
ll-s

ite
 o

n
Pl

at
fo

rm
 1

Technique

0

10

20

30

40

50

60

CNTMRD SRPLUA MRD-B

Av
er

ag
e

by
te

s p
er

 ca
ll-s

ite
 o

n
Pl

at
fo

rm
 2

Technique

Fig. 11. Call-Site Memory Usage

dispatch code. Similar results are returned from higher arity behaviors. Since
the data-structure size is dependent on an application, we chose to measure the
size required to maintain information for all types and all behaviors in the Cecil
Vortex3 (Cecil compiler [20]) hierarchy and the Harlequin Dylan hierarchy (a
Dylan [4] GUI hierarchy called duim). Harlequin is a commercial implementation
of Dylan. The Cecil Vortex-3.0 hierarchy contains 1954 types, 11618 behaviors
and 21395 method definitions. The Dylan hierarchy contains 666 types, 2146
behaviors and 3932 method definitions.

In order to measure the amount of space required by the various techniques,
we filtered the set of all possible behaviors to arrive at the set of behaviors
that truly require multi-method dispatch. In particular, we do not consider any
0-arity or 1-arity behaviors, because the address for such behaviors can be iden-
tified at compile-time and with single-receiver techniques respectively. Further-
more, since our data assumes a statically-typed language, we ignore behaviors
with only one method defined on them, since they too can be determined at
compile-time. Finally, for each remaining behavior, we remove any arguments
in which only one type participates. If there is only one type in an argument
position, no dispatch is required on that argument. For example, if behavior σ

Multi-Method Dispatch Using Multiple Row Displacement 325

Arity # Behavior

2 203

3 22

4 11

Method Count # Behavior

2 53

3 33

4 35

5-8 41

9-15 14

16-32 12

33+ 4

(a) Cecil Vortex3 Type Hierarchy

Arity # Behavior

2 95

3 13

Method Count # Behavior

2 21

3 11

4 32

5-8 23

9-15 12

16-32 7

33+ 2

(b) Harlequin Type Hierarchy

Fig. 12. Type Hierarchy Details for Two Different Hierarchies

is defined only on A × A, B × A and C × A, then no dispatch on the second
argument is required (because we are assuming statically typed languages). By
reducing behaviors down to the set of arguments upon which dispatch is truly
required, we get an accurate measure of the amount of multi-method support
the language requires. After the reduction, the Cecil Vortex3 hierarchy has 1954
types, 226 behaviors and 1879 methods, and the Dylan hierarchy has 666 types,
108 behaviors and 738 methods. The method distributions of these hierarchies
are shown in Fig. 12. The data-structure memory usage for each technique is
shown in Fig. 13. In these reduced Cecil Vortex3 and Dylan hierachies, many

0

1000

2000

3000

4000

5000

6000

LUA MRD MRD-B SRP CNT

ki
lo

by
te

s

technique

Fig. 13. Static Data Structure Memory Usage for Cecil Vortex3

326 C. Pang, W. Holst, Y. Leontiev, D. Szafron

of the method definitions have arguments typed as the root-type. Whenever an
argument is typed as the root-type, MRD suffers. All rows on the dimension
of that argument will be filled, so that, not much compression can be claimed
from row-shifting or row-matching. More research is needed to find out whether
it is a common practice to define many methods with arguments typed as the
root-type in multi-method programming languages. However, if we remove all
methods with root-typed argument(s) from the reduced Cecil Vortex3 hierarchy,
the data structure size of each technique is profoundly different from those shown
in Fig. 13. As multi-methods become more common, we expect that the actual
distribution of methods will be somewhere between these two extremes.

After removing all methods with root-typed argument(s), there are 1661
types, 660 behaviors and 1299 methods remaining in the Cecil Vortex3 hierar-
chy. The data structure size of each technique for this no root-type Cecil Vortex3
hierarchy is shown in Fig. 14. The results for the Dylan hierarchy are similar.

0

50

100

150

200

250

300

350

400

450

LUA MRD MRD-B SRP CNT

ki
lo

by
te

s

technique

Fig. 14. Static Data Structure Memory Usage for No Root-Typed Cecil Vortex3

7 Future Work

The research that produced MRD is part of a larger research project analyzing
various multi-method dispatch techniques. Numerous issues impact the perfor-
mance results given in this paper. For example, the simple loop-based timing
approach poses a problem. It reports an artificially deflated execution time due
to caching effects. Since the same data is being executed 10 million times, it
stays hot. This problem can be partially solved by generating large sequences of
random call-sites on different behaviors with different arguments. However, this
approach might actually discount caching effects that would occur in a real pro-
gram, since random distributions of call-sites will have poorer cache performance
than real-world applications that have locality of reference.

Multi-Method Dispatch Using Multiple Row Displacement 327

Furthermore, some of the techniques allow for a variety of implementations.
The implementations usually trade space for time, so we can choose the imple-
mentation with the execution and memory footprint that most closely satisfies
our application requirements. Also related to the issue of implementation is the
impact of inlining of dispatch code. In single-receiver languages, the dispatch
code is placed inline at each call-site, but some of the multi-method dispatch
techniques have large call-site code chunks. For example, LUA defines a sin-
gle dispatch function for each behavior. This function reduces call-site size, but
significantly increases dispatch time. Rather than always calling a function, con-
ditional inlining of a call-site is an open area of future research.

In order to obtain the best possible analysis of the various techniques, we need
some indepth metrics on the distribution of behaviors in multi-method languages.
In particular, the number of behaviors of each arity, and the numbers of methods
defined per behavior are critical. As more and more multi-method languages are
introduced, we will be able to get a better feel for realistic distributions. Note
that call-site distributions are especially important for accurate analysis of LUA,
since its dispatch time depends on the average number of types that need to be
tested before a successful match occurs.

8 Conclusion

We have presented Multiple Row Displacement (MRD), a new multi-method dis-
patch technique that compresses an n-dimensional table by row displacement.
It has been compared with existing table-based multi-method techniques, CNT,
LUA and SRP. MRD has the fastest dispatch time and the second smallest
per-call-site code size (next to LUA, which uses a function call). If the other
techniques used a function call, they could reduce their call-site size at the ex-
pense of dispatch time.

In addition to presenting the new technique, we have provided the first perfor-
mance comparison of the existing table-based multi-method dispatch techniques.

References

1. Holst, W., Szafron, D.: A General Framework For Inheritance Management and
Method Dispatch in Object-Oriented Languages, ECOOP’97.

2. Chambers, C.: Object-Oriented Multi-Methods in Cecil, ECOOP’92 Conference
Proceedings, 1992.

3. Bobrow, B., DeMichiel, D., Gabriel, R., Keene, S., Kiczales G., Moon, D.: Common
Lisp Object System Specification, June 1988, X3J13 Document 88-002R.

4. Dylan Interim Reference Manual, Apple Computer, Inc., 1994.
5. Cox, B.: Object-Oriented Programming, An Evolutionary Approach, Addison-

Wesley, 1987.
6. Driesen, K., Hölzle, U., Vitek, J.: Message Dispatch on Pipelined Processors,

ECOOP’95 Conference Proceedings, 1995.
7. Driesen, K., Hölzle, U.: Minimizing Row Displacement Dispatch Tables, OOP-

SLA’95 Conference Proceedings, 1995.

328 C. Pang, W. Holst, Y. Leontiev, D. Szafron

8. Driesen, K.: Selector Table Indexing and Sparse Arrays, OOPSLA’93 Conference
Proceedings, 1993.

9. Amiel, E., Gruber, O., Simon, E.: Optimizing Multi-Method Dispatch Using Com-
pressed Dispatch Table, OOPSLA’94 Conference Proceedings, 1994.

10. Dujardin, E., Amiel, E., Simon, E.: Fast Algorithms for Compressed Multi-Method
Dispatch Table Generation, TOPLAS’96 Conference Proceedings, 1996.

11. Dujardin, E., Amiel, E., Simon, E.: Fast Algorithms for Compressed Multi-Method
Dispatch Table Generation, TOPLAS Journal, vol. 20, no. 1, Jan 1998, p116-165.

12. Chen, W., Turau, V., Klas, W.: Efficient Dynamic Look-up Strategy for Multi-
methods, ECOOP’94 Conference Proceedings, 1994.

13. Chen, W.: Efficient Multiple Dispatching Based on Automata, Darmstadt, Ger-
many, 1995.

14. Holst, W., Szafron, D., Leontiev, Y., Pang, C.: Multi-Method Dispatch Using
Single-Receiver Projections, TR-98-03, University of Alberta, Edmonton, Alberta,
Canada, 1998.

15. Özsu, T., Peters, J., Szafron, D., Irani, B., Lipka, A., Muñoz, A.: TIGUKAT: A
Uniform Behavioral Objectbase Management System, VLDB’95 Conference Pro-
ceedings, 1995.

16. Vitek, J., Nigel Horspool, R.: Compact Dispatch Tables for Dynamically Typed
Programming Languages, CC’96 Conference Proceedings, 1996.

17. Krall, A., Vitek, J., Nigel Horspool, R.: Near Optimal Hierachical Encoding of
Types, ECOOP’97 Conference Proceedings, 1997.

18. Pang, C.: Multi-Method Dispatch Using Multiple Row Displacement, thesis, Uni-
versity of Alberta, 1999.

19. Chambers, C., Chen, W.: Efficient Predicate Dispatching, Technical Report UW-
CSE-98-12-02, Department of Computing Science and Engineering, Univeristy of
Washington.

20. Chambers, C.: Object-oriented multi-methods in Cecil, ECOOP’92 Conference
Proceedings, 1992.

	Introduction
	Terminology for Multi-Method Dispatch
	Notation
	Inheritance Conflicts
	Statically Typed Versus Dynamically Typed

	Single-Receiver Row Displacement Dispatch (RD)
	Existing Multi-Method Dispatch Techniques
	Multiple Row Displacement (MRD)
	N-dimensional Dispatch Table
	 Multiple Row Displacement by Examples
	A Description of the Multiple Row-Displacement Algorithm
	Optimizations
	The MRD Data Structure Creation Algorithm
	Separate Compilation

	Performance Results
	Data Structures and Dispatch Code
	Timing Results
	Memory Utilization

	Future Work
	Conclusion

