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Abstract: A view mechanism can help handle the complex semantics in emerg-
ing application areas such as image databases. This paper presents the view
mechanism we de�ned for the DISIMA image database system. Since DISIMA is
being developed on top of an object-oriented database system, we �rst propose
a powerful object-oriented view mechanism based on the separation between
types (interface functions) and classes that manage objects of the same type.
The image view mechanism uses our object-oriented view mechanism to allow
us to give di�erent semantics to the same image. The solution is based on the
distinction between physical salient objects which are interesting objects in an
image and logical salient objects which are the meanings of these objects.

14.1 INTRODUCTION

Views have been widely used in relational database management systems to ex-
tend modeling capabilities and to provide data independence. Basically, views
in a relational database can be seen as formulae de�ning virtual relations that
are not produced until the formulae are applied to real relations (view materi-
alization is an implementation/optimization technique). View mechanisms are
useful in other newly emerging application areas of database technology. In this
paper, we discuss a view mechanism for one of those areas, image databases.
This work is conducted within the context of the DISIMA (DIStributed Image
database MAnagement system) prototype which is under development at the
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University of Alberta. Since DISIMA uses object-oriented technology, we deal
with object-oriented views.

Despite several research e�orts in the object-oriented community [4; 1; 14;
16], the objective of a view mechanism, as de�ned for the relational model, has
not yet been achieved. The problem is more complex and may be too general
in the object-oriented environment. Assume that a virtual class is de�ned from
an existing schema. Will each virtual object in this virtual class get a new OID
each time the view is activated? This violates object-oriented principles. Can
this virtual class be considered as a normal class? In this case, what is its place
in the class hierarchy?

Due to the volume and the complexity of image data, image databases are
commonly built on top of object or object-relational database systems. Im-
age databases, in particular, can bene�t from a view mechanism. Speci�cally,
an image can have several interpretations that a view mechanism can help to
model. The DISIMA system [11] de�nes a model that is capable of handling
an image and all the meta-data associated with it, including syntactic charac-
terization (shape, color and texture) of salient objects contained in the image.
The level at which the syntactic features are organized and stored is called the
physical salient object level. Each physical salient object can then be given a
meaning at the logical salient object level. How do we get this information?
In general, salient object detection and annotation is a semi-automatic or a
manual process.

Given the fact that we can manually or automatically extract meta-data
information from images, how do we organize this information so that an image
can be interpreted with regard to a context? That is, if the context of an image
changes, the understanding of the image may change as well. Consider an
electronic commerce system with a catalog containing photographs of people
modeling clothes and shoes. From the customer's point of view, interesting
objects in this catalog are shirts, shorts, dresses, etc. But the company may
want to keep track of the models as well as clothes and shoes. Assume the
models come from di�erent modeling agencies. Each of the agencies may be
interested in �nding only pictures in which their models appear. All these
users of the same database (i.e. the catalog) have di�erent interpretations of
the content of the same set of images.

De�ning an image content with regard to a context helps capture more
semantics, enhances image modeling capabilities, and allows the sharing of im-
ages among several user groups. Our mechanism of image views, currently
being implemented in the DISIMA system, allows users to virtually create an
image interpretation context that includes salient object semantics and repre-
sentations.

Our class derivation mechanism is general enough to be applied to any
object-oriented application and is presented in Section 14.2. Section 14.3 de-
scribes the DISIMA model and extends it to support views on images, Section
14.4 presents the image view de�nition language and describes the current im-



DEFINING VIEWS IN AN IMAGE DATABASE SYSTEM 233

plementation of the image views, Section 14.5 discusses the related work and
Section 14.6 concludes.

14.2 DERIVED CLASSES

We separate the de�nition of object characteristics (a type) from the mechanism
for maintaining instances of a particular type (a class) for several well known
reasons [9]. A type de�nes behaviors (or properties) and encapsulates hidden
behavioral implementations (including state) for objects created using the type
as template. We use the term behaviors (or properties) to include both public
interface functions (methods) and public state (public instance variables). The
behaviors de�ned by a type describe the interface for the objects of that class.
A class ties together the notion of type and object instances. The entire group
of objects of a particular type, including its subtypes is known as the extent
of the type and is managed by its class. We refer to this as deep extent and
introduce shallow extent to refer only to those objects created directly from the
given type without considerating its subtypes. For consistency reasons all the
type names used in this paper start with T .

Let C be the set of class names. If C is a class name, T (C) gives the type
of C and �(C) denotes the extent of the class C. We denote by T , the graph
representing the type hierarchy. We consider two types of derived classes:
simple derived classes (derived from a single class called the parent class) and
composed derived classes (derived from two or more parent classes). We will
use the term root class to refer to a non-derived class. In the same way, a
root object refers to an object of a root class. The derivation relationship
is di�erent from the specialization/generalization one in the sence that the
objects and properties introduced are obtained from data previously stored in
the database.

14.2.1 Simple Derived Class

A simple derived class is a virtual class derived from a single parent class.

De�nition 1 A derived class Cd is de�ned by (C;�;	) where:

C is the parent class

�, the �lter, is a formula that selects the valid objects from C for the
extent of Cd

	, the interface function, de�nes the type of Cd by combining the func-
tions A: Augment and H: Hide such that 	 = A �H, where A maps a set
of objects of a particular type to a set of corresponding objects in a type
with some addtional properties. Similarily H hides some properties.

�(Cd) = 	(�(�(C)))

As de�ned, 	, A and H have to be applied to sets of objects of a certain type
to return sets of objects of another type. To avoid introducing news terms, we
will extend their applications to types.
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If �; �; 
; � are properties de�ned in T C, H(T C; f�; �g) will create a new
type (let us call it T restricted C) in which only the properties 
; � are de�ned.
Hence T restricted C is a supertype of T C.

A(T C; f(� : f1); (� : f2)g) will create a type (T augmented C) with the
additional properties � and �, where f1 and f2 are functions that implement
them. T augmented C is a subtype of T C.

A(H(T C; f�; �g); f(� : f1); (� : f2)g) de�nes the type T Cd for a class Cd

derived from a class C with the properties �; � of T C hidden and �; � as new
properties.

In general, the type T (Cd) of a class Cd derived from the class C, is a sibling
of T (C). However, if no properties are hidden, T (Cd) � T (C), where � stands
for a subtyping relationship and � for a supertyping relationship. Alternatively,
if no properties are added, T (Cd) � T (C). The notion of sibling generalizes
the notion of subtyping and supertyping. The most general case where some
properties are removed and new ones are added is illustrated by Figure 14.1.
In this example, we assume that the following properties are de�ned for the
di�erent types:

T Person(SIN: int, LastName: string, FirstName: string, Sex: char, Da-
teOfBirth: date)

T Restricted Person(SIN: int, LastName: string, FirstName: string, Sex:
char)

T Augmented Restricted Person(SIN: int, LastName: string, FirstName:
string, Sex: char, Age: int)

type

T_Augmented_Restricted_Person T_Person

(has_type)

Augmented_Restricted_Person Person

T_Restricted_Person

(subtype_of)

class

Figure 14.1 An Example of a Derived Class and its Type
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In Figure 14.1, the extent of Augmented Restricted Person is a subset of the
extent of Person with a di�erent interface de�ned by the type T Augmented
Restricted Person.

14.2.2 Composed Derived Class

Assume that the type T Person has two subtypes T Student and T Faculty.
Some of the students teach and some faculty do only research. The Type
T Student has the properties (Year: int) and (Teach: boolean) while the proper-
ties (HiringDate: date) and (Teach: boolean) are de�ned for Faculty. We would
like to derive a class Teacher of all the persons who teach with the property
(TimeServed: int) obtained either from HiringDate or from Year depending on
the type of the root object. The class Teacher cannot be directly derived from
the class Person since the useful properties are not de�ned in T Person. In the
following, we propose a way (composed derived class) to solve this problem.

De�nition 2 Let (C1; C2) 2 C2 be a pair of classes. Then:

Cd = C1 � C2 with a �lter � and an interface 	 is a composed derived
class with �(Cd) = 	(�(�(C1) \ �(C2))

Cd = C1 + C2 with a �lter � and an interface 	 is a composed derived
class with �(Cd) = 	(�(�(C1) [ �(C2))

Cd = C1 � C2 with a �lter � and an interface 	 is a composed derived
class with �(Cd) = 	(�(�(C1)� �(C2))

with T (Cd) a sibling of Anc(T (C1); T (C2)) where Anc(T (C1); T (C2)) is a func-
tion that returns the �rst common ancestor of (T (C1); T (C2)) in the type hier-
archy T .

The semantics of the constructive operations f�;+;�g are respectively based on
the basic set operations \;[ and �. As de�ned, f�;+;�g are binary operations
but the formulae obtained can be seen as terms and be combined for more
complex ones. Note that C1 and C2 can be derived classes as previously de�ned.
The ancestor function Anc works �ne when T is rooted. When this is not the
case, a common supertype T C is created for T (C1); T (C2). In the worst case,
T C will not have any properties in it.

The problem of deriving a class Teacher can be solved by de�ning a simple
derived class Student Teacher whose extent is a subset of all the students. In the
same way, we derive the class Faculty Teacher fromFaculty. Teacher is then de-
�ned as Teacher = Student Teacher+Faculty Teacher. The type T Teacher
is a subtype of T Person which is the common ancestor (Figure 14.2).

14.2.3 Identifying and Updating a derived object

A derived object is always derived from one and only one root object although
its properties can be totally di�erent from the properties of the root object.
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Student_Teacher Faculty_Teacher

TeacherStudent Faculty

T_Person

T_Student T_FacultyT_Teacher

+

type

class

derived_from

subtype_of

has_type

Figure 14.2 An Example of a Composed Derived Class and its Type.
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This happens when all the properties of the root class are hidden and new ones
are de�ned for the derived class. Hence, a derived object can be seen as a root
object viewed from another angle (the interface function of the derived class).
Both the derived object and its corresponding root object can be identi�ed by
the OID of the root object (ROOT OID). If we rede�ne the notion of OID
as follows: OID= < class name;ROOT OID > then the root object can be
di�erentiated from the derived one. This OID de�nes a logical iden�er for any
object including the derived ones independently from any view implementation
technique. In the case of view materialization with incremental maintenance,
an active research area [3; 6; 12; 2], the derived object OID is a key candidate
and can be directly used as identi�er.

A derived object knows its root object. Therefore, updating a property in-
herited from the root type can easily be propagated to the root object. Creating
new objects for a derived class should �rst create the objects in the root class
with some possible unknown property values.

14.3 DEFINING IMAGE VIEWS IN DISIMA

The mechanism of image views presented in this paper is based on the DISIMA
image DBMS, which is a research project for developing a distributed interop-
erable DBMS for image and spatial applications. The DISIMA model aims at
organizing the image and associated meta-data to allow content-based queries.

14.3.1 The DISIMA Model: Overview

The model provides e�cient representation of images and related data to sup-
port a wide range of queries. The DISIMA model, as depicted in Figure 14.3,
is composed of two main blocks: the image block and the salient object block.
We de�ne a block as a group of semantically related entities.

The Image Block. The image block is made up of two layers: the image
layer and the image representation layer. We distinguish an image from its
representations to maintain an independence between them, referred to as rep-
resentation independence.

At the image layer, the user de�nes an image type classi�cation. Figure 14.4
depicts a type hierarchy for an electronic commerce application that represents
the catalogs as classes. The general T Catalog type is derived from the root
type T Image, the root image type provided by DISIMA. The type T Catalog
is specialized by two types: T ClothingCatalog, and T ShoesCatalog.

The Salient Object Block. The salient object block is designed to handle
salient object organization. A simple example of a salient object hierarchy,
corresponding to the image hierarchy de�ned in Figure 14.4, is given in Fig-
ure 14.5.

DISIMA distinguishes two kinds of salient objects: physical and logical
salient objects. A logical salient object is an abstraction of a salient object
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(represented_by)
(represented_by)

(correspond_to)

inheritance

other relationships

belongs tocategory (class)

instance

Salient Object
(logical)

Salient Object
(physical)

Image

Image 
Representation

(contains)

Image Block Salient Object Block

Salient Object
Representation

Figure 14.3 The DISIMA Model Overview.

T_Image

T_Catalog

T_ClothingCatalog T_ShoesCatalog

Figure 14.4 An Example of an Image Hierarchy.

T_Person

T_Politician T_Model T_AthleteT_ClothingT_Shoes

T_Item

T_Salient_object

Figure 14.5 An Example of Logical Salient Object Hierarchy.
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that is relevant to some application. For example, an object may be created
as an instance of type Politician to represent President Clinton. The object
\Clinton" is created and exists even if there is yet no image in the database in
which President Clinton appears. This is called a logical salient object; it main-
tains the image independent generic information that might be stored about
this object of interest (e.g., name, position, spouse). Particular instances of this
object (called physical salient objects) may appear in speci�c images. There is
a set of information (data and relationships) linked to the fact that \Clinton
appears in an image". The data can be the colors of his clothes, his localization,
or his shape in this image.

We now give a formal de�nition of the content of an image, using physical
and logical salient objects.

De�nition 3 A physical salient object (PSO) is a region of an image, that
is, a geometric object (without any semantics) in a space (de�ned by an image)
with the following properties: shape, color, and texture.
A logical salient object (LSO) is the interpretation of a region. It is a
meaningful object that is used to give semantics to a physical salient object.

De�nition 4 Let L be the set of all logical salient objects and P be the set of
all physical salient objects. The content of an image i is de�ned by a pair
Cont(i) =< Pi; s > where:

- Pi � P is a set of physical salient objects,
- s : Pi �! L maps each physical salient object to a logical salient object.

An image is a basic unit in the DISIMA model and is de�ned as follow:

De�nition 5 An image i is de�ned by a triple <Rep(i), Cont(i), Desc(i)>
where:
- Rep(i) is a set of representations of the raw image in a format such as GIF,
JPEG, etc;
- Cont(i) is the content of the image i;
- Desc(i) is a set of descriptive alpha-numeric data associated with i.

Color and texture characterizing the whole image are part of the Desc(i).

How to Recognize the Salient Objects of an Image. Despite progress
in the computer vision �eld, automatic detection of objects is \hard" and
application-dependent. The state of the art in computer vision does not permit
automatic recognition of an arbitrary scene [15].

Assume an object is detected by the image analysis software. In the general
case, this object is a syntactic object without any semantics. That is, it is a
region of an image with properties such as color, shape and texture. Another
challenge is to provide syntactic objects with semantics. Assume the object
detected is a person. How can a computer assign a name to this person? This
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example explains why, in most cases, the image analysis is semi-automatic or
manual.

One component of the DISIMA project is in charge of image processing
and object detection. Our �rst concern was images with people. The image
processing software detects the faces contained in the image with a minimum
bounding rectangle (useful for spatial relationships) and a human-annotator
assigns a logical salient object to the face. In addition, an image has some
descriptive properties such as date and photographer that have to be provided.
In the remainder of the paper, we assume that the information at the two levels
of salient objects is provided.

The two levels of salient objects ensure the semantic independence and multi-
representation of salient objects. The idea of image views is based on this
semantic independence and the class derivation mechanism presented in Section
14.2.

14.3.2 Extending the DISIMA Model to Support Image Views

A DISIMA schema is composed of two sub-schemas: the image type hierarchy
and the salient object type hierarchy. An image view can be de�ned by a
derived image class or by giving di�erent semantics to the salient objects an
image contains using derived logical salient object classes.

Derived classes can be de�ned for both image and salient-object classes.
Derived salient object classes are illustrated by examples shown in Section 2.
The aim of a derived image class is to �lter salient objects or to rede�ne their
semantics through derived logical salient object classes.

De�ning Image Views Using Derived Image Classes. A derived image
class, in addition to de�ning a new type, converts some salient objects of a
parent image class into non-salient in a derived one.

De�nition 6 A derived image class is a class derived from an image class
that speci�es the valid logical salient objects for images in its extent. If id is an
image derived from an image i, then the set of physical salient objects contained
in id is a subset of the set contained in i. The physical salient objects in id are
those for which the corresponding logical salient objects belong to one of the
valid logical salient objects.

In addition to rede�ning the type, a derived image class rede�nes the content of
the images it contains. For example, from the ClothingCatalog class de�ned in
Figure 14.4, we can derive two di�erent catalogs giving di�erent interpretations
of the images in the ClothingCatalog image class: the customer catalog class
(CustomerCatalog) and the clothing company catalog (CompanyCatalog). The
customers are interested in �nding clothing from the catalog. Therefore, the
valid logical salient object class is Clothing. In addition to the clothing, the
company may be interested in keeping some information about the models.

A composed derived image class can also be created. For example, from
ClothingCatalog we can derive the class FemaleClothingCatalog. We can also
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derive FemaleShoesCatalog from ShoesCatalog. FemaleClothingCatalog and Fe-
maleShoesCatalog can be combined using the + operator to derive a class Fe-
maleApparelCatalog. The common ancestor of FemaleClothingCatalog, and Fe-
maleShoesCatalog is Catalog. Therefore the type of FemaleApparelCatalog has
to be a sibling of the type of Catalog (Figure 14.6).

type

class

FemaleApparelCatalog

+

T_Catalog

FemaleClothingCatalogFemaleShoesCatalog

ShoesCatalog

T_ClothingCatalogT_ShoesCatalog

ClothingCatalog

Studenthas_type

derived_from

subtype_of

Figure 14.6 An Example of a Composed Derived Image Class

De�ning Image Views Using Derived Logical Salient Object Classes.
De�nition 5 de�nes the content of an image i as a pair Cont(i) =< Pi; s >

where Pi represents the physical salient objects and the function s maps each
physical salient object to a logical salient object. An image id can be derived
from i and Cont(id) =< Pi; sd >. Assume we derived a logical salient object
class L1 from the logical salient object class L and that all the physical salient
objects in Pi are mapped to objects of L. If we note by f the interface function
that transforms an object of L to an Object of L1, and we de�ne sd = s � f ,
then id is a derived image that contains L1 objects.

For example, the classes FemaleClothing and FemaleShoes can be respec-
tively derived from Clothing and Shoes (Figure 14.5). A composed derived
class FemaleApparel can be derived from the two previously derived classes



242

and the derived image class FemaleApparelCatalog can be de�ned as images
containing female apparels. Of course, T FemaleClothing and T FemaleShoes
can respectively be di�erent from T Clothing and T Shoes. T FemaleApparel
is then, a sibling of T Apparel.

De�nition 7 An image view is de�ned by:

a derived image class

rede�ning the semantics of the physical salient objects an image contains
through derived logical salient object classes.

14.4 THE IMAGE VIEW DEFINITION LANGUAGE

The view de�nition language allows us to de�ne derived classes. Queries in the
view de�nition are expressed in MOQL (Multimedia Object Query Language)
[10], the query language de�ned for DISIMA. MOQL extends the standard
object query language, OQL [5] with predicates and functions to capture tem-
poral and spatial relationships. Most of the extensions have been introduced in
the where clause in the form of new predicates including the contain predicate
to check if a salient object belongs to an image. The convention used in the
language de�nition is: [ ] for optional, f g (di�erent from fg which are part
of the language) for 0 to n times, and j for one and only one among di�erent
possibilities. The view language allows us to create and delete derived classes:

Create a derived class
derive f <derived class name> from <class de�nition >

[ augment f<virtual property name> as <query> j
<function name> ;g]

[ hide < property list>]
fcast < property> into <derived type> g
[ content< valid salient object class list>]
extent <extent name > [as <query>]

g;

<class de�nition> := <class name> j
(<class de�nition > union j intersect j minus <class de�nition>)

Delete a derived class
delete <derived class name>

The derive clause is used to de�ne a derived logical salient object class, as
well as derived image classes. The classes that the derived classes are derived
from can be ordinary or derived classes. The query in the extent clause de�nes
the derived class extent and must return a unique subset of the combination of
the parent class extents. The augment clause is used to de�ne new properties.
A query can invoke an existing property. In this case, the keyword this is used
to refer to the current object. If (� : T (C)) is a property and Cd is a class
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derived from C, then the clause cast can be used to cast the type of � into
T (Cd).

The content clause allows us to de�ne the valid logical salient objects. This
clause is used only for derived image classes and does more than hide the
previous image content and rede�ne a new one. It implements the image views
using derived logical salient object classes. If the logical salient object class
mentioned is a derived class, then it changes the semantics of the physical
salient objects from parent to derived objects. Assume a salient object class Sd

is derived from class S and an image i (element of the image class I) contains
a salient object of type T (S). If we derive an image class Id from I with the
clause content Sd, image id derived from i will contain a salient object of type
T (Sd) instead of T (S). For example, in the image view CustomerClothing that
follows, an image of CustomerCatalog contains elements of CustomerClothing,
rather than Clothing as salient objects.

14.4.1 Examples of Image Views

In the following, we give some examples of image views derived from the catalog
database. The corresponding schema expressed in the ODMG object model [5]
is given in the Appendix. The schema given in the Appendix can be seen as the
view of the company: each image contains models and clothes. The examples
correspond to the Customer View, the Female Clothing Catalog View, and the
Female Aparel Catalog view.

Image View 1 The CustomerCatalog view
derive fCustomerClothing from Clothing
augment inStock as this.inStock();

avgPriceForType as
avg(Select c.price
From Clothes c
Where c.type = this.type);

hide stock, lastOrderDate, lastArrivalDate, nextArrivalDate
extent CustomerClothesg;

derive fCustomerCatalog from ClothingCatalog
hide photographer, date, time, place
cast accessories into Set<Ref<CustomerCatalogs>>
extent CustomerCatalogs
content CustomerClothingg;

The derived class CustomerClothes rede�ned Clothes for the customers' use.
Attributes stock, lastOrderDate, lastArrivalDate, nextArrivalDate are hidden
and the virtual attribute avgPriceForType returns the average price for this
type of clothing.

The image view CustomerCatalog uses the image class Catalog renamed as
CustomerCatalog with CustomerCatalogs as its extent name. All the images are
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available but their content will be limited to objects of type CustomerClothes
which rede�nes Clothing. Attributes photographer, date, time, place are hidden.
The attribute accessories was de�ned as a set of images from Catalog. Its type
has to be changed to set of CustomerCatalogs to ensure consistency.

Image View 2 The FemaleClothingCatalog view
derive fFemaleClothing from CustomerClothing
extent FemaleClothes as

Select c
From CustomerClothes c
Where c.sex = 'female' or c.sex = 'unisex'g;

derive fFemaleClothingCatalog from ClothingCatalog
hide photographer, date, time, place
cast accessories into Set<Ref<CustomerCatalogs>>
extent FemaleClothingCatalogs
content FemaleClothingg;

Only images containing female items are selected from the clothing catalog.
The salient objects are restricted to female clothing.

Image View 3 The FemaleApparelCatalog view
derive fFemaleShoes from Shoes;
augment inStock as this.inStock();

avgPriceForType as
avg(Select s.price
From Shoes s
Where s.type = this.type);

hide stock, lastOrderDate, lastArrivalDate, nextArrivalDate
extent FemaleShoesExtent as

Select s
From ShoesExtent c
Where c.sex = 'female' g;

derive fFemaleShoesCatalog from ShoesCatalog
hide photographer, date, time, place
extent FemaleShoesCatalogs
content FemaleShoesg;

derive fFemaleApparelCatalog from FemaleClothingCatalog union
FemaleShoesCatalog

extent FemaleApparelCatalogsg;

The FemaleApparelCatalog combines the FemaleClothingCatalog and the Fe-
maleShoesCatalog into a new derived catalog.
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14.4.2 Implementing Derived Classes in DISIMA

The distinction between types and classes is not supported by most object-
oriented languages in current use. DISIMA is being implemented on top of
ObjectStore [8] using C++. DISIMA provides types for image and logical
salient objects that can be subtyped by the user. The implementation we
describe in this section simulates the idea using C++. We implement all our
types as C++ classes. We call these C++ classes type classes and their names
start with T . For example T Person will be a type class for the class Person.
Our classes are objects of the C++ class C Class. C Class has a subclass
D Class for derived classes. The properties de�ned for C Class are:

Name: name of the class

Type: type class name

SuperclassList: list of the superclasses

SubClassList: list of the subclasses

ShallowExtent (virtual function): The shallow extent of the class

DependentList: list of classes derived depending on this one

The properties de�ned for D Class are:

RootClassList: list of the classes it is derived from

Filter: �lter function

ShallowExtent: rede�ned

MaterializationFlag: set when the ShallowExtent is up-to-date

Change: function used to unset the MaterializationFlag

The DependentList in the class C Class contains all the classes derived from
that class and also all the derived classes for which an augmented property is
computed using objects of that class. Since the type of a derived class can be
di�erent from the type of its root class we choose to materialize the derived
class extent. An object of C Class represents a user's class and the extent (Shal-
lowExtent) property returns objects of the type class (Type). The SubClassList
can be used to recursively compute the deep extent. To simplify the material-
ization process, we only store one level of root class. That is, the RootClassList
of a derived class contains only non-derived classes. A derived class extent is
materialized the �rst time the class is referred to and the materialization 
ag
is set. Each time new objects are created, modi�ed or deleted in a root class, a
change message is sent to each of the classes in the DependentList to unset the
materialization 
ag. If the materialization 
ag is unset when a derived class is
accessed, the derived class extent is recomputed and the materialization 
ag is
reset.
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When the augmented properties of a derived object are computed from the
single root object without any aggregate, the management algorithm for in-
cremental view maintenance can easily be implemented as follows. An object
of a derived class contains the OID of the root object it is derived from. The
Change method passes the OID of the changed root object (new, deleted or
updated) to the derived class object where it is kept in the ChangeList of the
derived class object. The ChangeList can then be visited to update or cre-
ate the derived objects for modi�ed or new root objects and to delete derived
objects corresponding to deleted root objects.

14.5 RELATED WORK

To the best of our knowledge, there is no other view mechanism de�ned for
image which can be compared to our solution. DISIMA, as well as most multi-
media products and prototypes, is being developed on top of an object-oriented
database system. We de�ned an object-oriented view mechanism used in the
image view solution. This section will focus on two of the most representative
object-oriented view solutions: O2View and Multiview.

14.5.1 O2View

O2View is the view mechanism de�ned for the O2 system. O2View distinguishes
two kinds of derived classes: virtual and imaginary classes. The main ideas are
the following:

A virtual class (1) selects through a query, objects existing in the root
database; (2) is connected to the root hierarchy; and (3) provides a name
for the extension of the virtual class. Its interface can be modi�ed for
hiding an attribute or adding a virtual one.

An imaginary class (1) selects and restructures through a query data
from the root database or the view, (2) turns them into objects, (3) is
not connected to the root hierarchy, and (4) provides an extension.

A virtual attribute attaches (possibly restructured) data to an object in
the view, through a query on the root database or the view. It augments
the original interface of virtual objects.

An attribute hiding restricts the original interface of root objects. It hides
the attributes of a virtual object not to be visible to the end-user

14.5.2 Multiview

Multiview [7] is a research prototype developed at the University of Michigan
on top of the GemStone system. Multiview provides updatable materialized
object-oriented database views. The main features of the system are:

Integration of both virtual and base classes into a uni�ed global schema.
This is done through a classi�cation algorithm [13] that restructures the
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whole class hierarchy. Hence, virtual classes participate in the inheritance
hierarchy and can be used in the same way base classes are used.

Generation of schemata composed of user-selected bases and virtual classes.

Includes incremental view maintenance algorithm for view materializa-
tion.

O2V iews [14], makes the distinction between virtual classes that select through
queries existing objects in the database and imaginary classes for which the se-
lected objects are restructured and turned into objects. Virtual classes are
connected to the generalization hierarchy by a maybe relationship whereas
imaginary classes are not. Multiview [7] integrates the derived classes into
the global class hierarchy using a complex classi�cation algorithm [13]. Our
solution is simpler and yet more powerful. A virtual class can be derived from
one or several classes with its type integrated into the type hierarchy without
any modi�cation of the user-de�ned root classes. In addition to having the
object-oriented views features, an image view should provide a semantic inde-
pendence. That is, the content of the same image can be di�erent from one
view to another.

14.6 CONCLUSION

Several object view mechanisms have been proposed since the early 90s [4; 1; 14;
16; 7]. In general, the main problems with these views are [16] (i) expressive
power (restrictions on queries de�ning views), (ii) reusability and modeling
accuracy (insertion of the views into the generalization hierarchy), and (iii)
consistency (stability in OID generation).

Problems (i) and (ii) are somewhat related. For example, using the view
mechanism in [14], if the user wants the view class to be linked to the general-
ization hierarchy, the query that generates the view class has to be restricted.
In addition, the problem (ii) raises a typing problem (how is the type of the
virtual class related to the type hierarchy?) and a classi�cation problem (how
is the extent of a virtual class related to the existing ones?). Finding an an-
swer to these two questions in an environment where the only relationship is
the is-a relationship can lead to contradictions. The distinction between the
derivation hierarchy and the generalization hierarchy in our proposal, based on
the distinction between type and class, provides an elegant solution to prob-
lems (i) and (ii). In addition, the object-oriented view mechanism presented in
this paper allows us to derive classes from several existing ones. Problem (iii)
is also solved by the fact that a derived object is seen as a root object with a
di�erent interface function. A derived object and its root class share the same
OID but are uniquely identi�ed by the pair < class name;OID > which is
invariant even if the derived object is recomputed.

The DISIMA model separates the objects contained in an image (physical
salient objects) from their semantics (logical salient objects). Using our object
view mechanism, we proposed an image view mechanism that allows us to give
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di�erent semantics to the same image. For example, a derived image class can
be de�ned by deriving new logical salient object classes that give new semantics
to the objects contained in an image or by hiding some of the objects by directly
de�ning a derived image class.

The main contributions of this paper are the proposal of a powerful object-
oriented view mechanism based on the distinction between class and type, a
proposal of an image view mechanism based on image semantics and the image
view implementation using a language that does not intrinsically support the
distinction between class and type.
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Appendix: Sample Schema

class Imagef
Set<Ref<Representation>> representations;
Set<Ref<PhysicalSalientObject>> physicalSalientObjects

inverse image;
// Methods
display(); g

class Catalog: Imagef
Person photographer; Date date; Time time; String place; g

class LogicalSalientObjectf
Set<Ref<PhysicalSalientObject>> physicalSalientObjects

inverse logicalSalientObject;
//Methods
Region region(Image m); // salient object's region in image m
Color color(Image m); // salient object's color in image m
Texture texture(Image m); // salient object's texture in image m g

class Person: LogicalSalientObjectf
String name; String occupation; Address address; g

class Model: Personf
String : agency; g

class Apparel: LogicalSalientObjectf
String name; String type; Real price; Set<Real> size;
Manufacturer manufacturer; Integer stock; String colors;
Date lastOrderDate; Date lastArrivalDate; Date nextArrivalDate;
//Methods
Boolean inStock(); // true if the the clothing is in stock g

class Clothing: Apparel f
Set<Ref<Catalog>> accessories;// images of items that match with the cloth g

class Shoes: Apparel f
String sole;String upper; g

class PhysicalSalientObjectf
Ref<LogicalSalientObject> logicalSalientObject

inverse physicalSalientObjects;
Ref<Image> image

inverse physicalSalientObjects;
Region region; Color color; Texture texture g

Set<Ref<SalientObject>> SalientObjects; //all salient objects
Set<Ref<Person>> Persons; //salient objects of type Person
Set<Ref<Model>> Models; //salient objects of type Model
Set<Ref<Clothing>> Clothes; //salient objects of type Clothing
Set<Ref<Shoes>> ShoesExtent; //salient objects of type shoes
Set<Ref<Image>> Images; //all images


