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Abstract

The issues of schema evolution and temporal object models are generally considered to be orthogonal
and are handled independently. However, to properly model applications that need incremental design
and experimentation, the evolutionary histories of the schema objects should be traceable rather than
corrective so that historical queries can be supported. In this paper we propose a method for managing
schema changes, and propagating these changes to object instances by exploiting the functionality of a
temporal object model. The result is a uniform treatment of schema evolution and temporal support for
many object database management systems applications that require both.
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1 Introduction

In this paper, we address the issues of schema evolution and temporal object models. These two issues

are generally considered to be orthogonal and are handled independently. However, many object database

management system (ODBMS) applications require both. For example:

� The results reported in [Sjø93] illustrate the extent to which schema changes occur in real-world

database applications such as health care management systems. Such systems also require a means to

represent, store, and retrieve the temporal information in clinical data [KFT91, DM94, CPP95].

� The engineering and design oriented application domains (e.g., CAD, software design process) require

incremental design and experimentation [KBCG90, GTC+90]. This usually leads to frequent changes

to the schema over time, which need to be retained as historical records of the design process so that

historical queries can be executed.

Given that the applications supported by ODBMSs need support for incremental development and experi-

mentation with changing and evolving schema, a temporal domain is a natural means for managing changes

in schema and ensuring consistency of the system. The result is a uniform treatment of schema evolution

and temporal support for many ODBMS applications that require both.



A typical schema change can affect many aspects of a system. There are two fundamental problems to

consider:

1. Semantics of Change. The effects of the schema change on the overall way in which the system or-

ganizes information (i.e., the effects on the schema). The traditional approach to solving this problem

is to define a set of invariants that must be preserved over schema modifications.

2. Change Propagation. The effects of the schema change on the consistency of the underlying objects

(i.e., the propagation of the schema changes to the existing object instances). The traditional approach

of solving this is tocoerce objects to coincide with the new definition of the schema.

In this paper, a method for managing schema changes and propagating the changes to underlying instances

by exploiting the functionality of a temporal object model is presented. The approach described in this

work is conducted within the context of the TIGUKAT temporal DBMS. However, the results reported here

extend to any ODBMS that uses time to model evolution histories of objects.

Schema evolution is the process of allowing changes to schema without loss of information. Typical

schema changes include adding and dropping behaviors (properties) defined on a type, and adding and

dropping subtype relationships between types. The meta-model of TIGUKAT is uniformly represented

within the object model itself, providing reflective capabilities [PÖ93]. One result of this uniform approach

is that schema objects (e.g., types) are objects with well-defined behaviors. The approach of keeping track of

the changes to a type is the same as that for keeping track of the changes to objects. By defining appropriate

behaviors on the meta-architecture, the evolution of schema is supported. Any changes in schema object

definitions involve changing the history of certain behaviors to reflect the changes. For example, adding

a new behavior to a type changes the history of the type's interface to include the new behavior. The old

interface of the type is still accessible at a time before the change was made.

Using time to maintain and manage schema changes gives substantial flexibility in the software design

process. It enables the designers to retrieve the interface of a type that existed at any time in the design

phase, reconstruct the super(sub)-lattice of a type as it was at a certain time (and subsequently the type

lattice of the object database at that time), and trace the implementations of a certain behavior in a particular

type over time.

A change to the schema of an object database system necessitates corresponding changes to the under-

lying object instances in order to ensure the overall consistency of the system. Change propagation deals

with reflecting changes to the individual objects bycoercing them to coincide with the new schema defini-

tion. Two main approaches have been proposed to deal with coercing object instances to reflect the changed

schema:immediate anddeferred. Immediate object coercion results in suspension of all running programs

until all objects have been coerced, while deferred object coercion leads to delays each time an object is

accessed.

The change propagation strategy proposed in this paper supports both deferred object update semantics

and immediate object update semantics. The granularity of object coercion is based on individual behaviors.

That is, individualbehaviors defined on the type of an object can be coerced to a new definition for that object

when the object is accessed, leaving the other behaviors to retain their old definitions. This is in contrast



to other models where an object is converted in its entirety to a changed type. The approach taken in our

work has two distinct advantages, depending on whether deferred or immediate update semantics are used.

If deferred update semantics are used, the “behavior-at-a-time” coercion results in an even “lazier” update

semantics, since a behavior application to an object results in the update of only part of the object's structure.

Updates due to other behavior changes are delayed until they are needed by other behavior applications. If

immediate update semantics are used, then the update can be done more quickly since the system knows

that changes to the affected type are localized to the single behavior that was just changed. This is important

because the major drawback of immediate update semantics is the speed of update. Another identifying

characteristic of the propagation model is that a historical record of the coerced behaviors is maintained for

each object so that even if behaviors are coerced to reflect an update to an object, older definitions of the

behaviors can still be accessed for each object.

The remainder of the paper is organized as follows. In Section 2, we examine some of the previous

work on schema evolution. We also examine the three main approaches to schema change propagation,

and compare our approach to these. In Section 3, we give a brief overview of the TIGUKAT temporal

object model with an emphasis on how histories of objects are maintained. In Section 4, we describe the

schema changes that can occur in TIGUKAT, and how they are managed using a temporal object model. In

Section 5, we describe how behavior implementation changes are propagated to underlying object instances,

and provide algorithms that implement the semantics of our time-varying behavior dispatch process. In

Section 6, we show how the immediate object coercion is implemented in our approach. Concluding remarks

and results of the paper are summarized in Section 7.

2 Related Work

The issue of schema evolution has been an area of active research in the context of ODBMSs [BKKK87,

KC88, PS87, NR89]. In much of the previous work, the usual approach is to define a set of invariants

that must be preserved over schema modifications in order to ensure consistency of the system. Orion

[BKKK87, KC88] is the first system to introduce the invariants and rules approach as a more structured

way of describing schema evolution in ODBMSs. Orion defines a complete set of invariants and a set

of accompanying rules for maintaining the invariants over schema changes. The work of Smith and Smith

[SS77] on aggregation and generalization sets the stage for defining invariants when subtypes and supertypes

are involved. Changes to schema in previous works arecorrective in that once the schema definitions are

changed, the old definitions of the schema are no longer traceable. In TIGUKAT, a set of invariants similar

to those given in [BKKK87] are defined. However, changes to the schema are not corrective. The provision

of time in TIGUKAT establishes a natural foundation for keeping track of the changes to the schema. This

allows applications, such as CAD, to trace their design over time, make revisions if necessary, and execute

historical queries.

There have been many temporal object model proposals (for example, [RS91, SC91, WD92, KS92,

CITB92, BFG97]). In handling temporal information, these models have focussed on managing the evolu-

tion of real-world entities. The implicit assumption in these models is that the schema of the object database

is static and remains unchanged during the lifespan of the object database. More specifically, the evolution of



schema objects (i.e., types, behaviors, etc) is considered to be orthogonal to the temporal model. However,

given the kinds of applications that an ODBMS is expected to support, we have exploited the underlying

temporal domain in the TIGUKAT temporal model as a means to support schema evolution.

In the context of relational temporal models, Ariav [Ari91] examines the implications of allowing data

structures to evolve over time, identifies the problems involved, and establishes a platform for their discus-

sion. McKenzie and Snodgrass [MS90] develop an algebraic language to handle schema evolution. The

language includes functions that help track the schema that existed at a particular time. Schema definitions

can be added, modified, or deleted. Apart from the addition and removal of attributes, the nature of the

modifications to the schema and their implications are not demonstrated. Roddick [Rod91] investigates the

incorporation of temporal support within the meta-database to accommodate schema evolution. In [Rod92],

SQL/SE, an SQL extension that is capable of handling schema evolution in relational database systems is

proposed using the ideas presented in [Rod91]. The approach used in the TIGUKAT temporal object model

is similar in the sense that temporal support of real-world objects is extended in a uniform manner to schema

objects, and then used to support schema evolution. Some of the ideas in [Rod91, Rod92, Rod95] have been

carried forward in the design of the TSQL2 temporal query language [Sno95].

Skarra and Zdonik [SZ86, SZ87] define a framework within the Encore object model for versioning types

as a support mechanism for changing type definitions. A type is organized as a set of individual versions.

This is known as theversion set of the type. Every change to a type definition results in the generation of a

new version of the type. Since a change to a type can also affect its subtypes, new versions of the subtypes

may also be generated. This approach provides fine granularity control over schema changes, but may lead

to inefficiencies due to the creation of a new version of the versioned part of an object every time a single

attribute changes its value. In our approach, any changes in type definitions involve changing the history of

certain behaviors to reflect the changes. For example, adding a new behavior to a type changes the history

of the type's interface to include the new behavior. The old interface of the type is still accessible at a time

before the change was made. This alleviates the need of creating new versions of a type each time any

change is made to a type.

In addition to schema modifications, a system must define how schema changes are reflected in the

instances. In order for the instances to remain meaningful, either the relevant instances must be coerced into

the new definition of the schema or a new version of the schema must be created leaving the old version

intact. Three main approaches have been identified and employed in the past.Immediate (conversion) and

deferred (lazy, screening) propagate changes to the instances - only at different times - whilefiltering is a

solution for versioning that attempts to maintain the semantic differences between versions of schema. A

fourth approach is to combine the above three methods into ahybrid model. The various techniques are

summarized below.

� Immediate: Each schema change initiates an immediate conversion of all objects affected by the

change. This approach causes delays during the modification of schema, but no delays are incurred

during access to objects. GemStone [PS87] andO2 [FMZ+95] systems report the use of immediate

conversion for schema change propagation. InO2, immediate conversion is implemented using the

algorithm defined for deferred conversion.



� Deferred: Schema changes generate a conversion program that is capable of converting objects into

the new representation. The conversion is not immediate; but is delayed until an instance of the

modified schema is accessed. Object access is monitored and whenever an object is accessed, the

conversion program is invoked, if necessary, to convert the object into the new definition. The conver-

sion programs resulting from multiple independent changes to a type are composed, meaning access to

an object may invoke the execution of multiple conversion programs where each one handles a certain

change to the schema. Deferred conversion causes delays during object access. ORION [BKKK87]

uses this approach and OTGen [LH90] uses it for database reorganization. InO2 [FMZ94, FMZ+95],

implementation strategies are defined for conversion functions implemented as deferred database up-

dates.

� Filtering: In the filtering approach, changes are never propagated to the instances. Instead, objects

become instances of particular versions of the schema. When the schema is changed, the old objects

remain with the old version of the schema and new objects are created as instances of the new one.

The filters define the consistency between the old and new schema versions and handle the problems

associated with behaviors written according to one version accessing objects of a different version.

Error handlers are one example of filters. They can be defined on each version of the schema to trap

inconsistent access and produce error and warning messages. The Encore model [SZ86] uses type

versioning with error handlers as a filtering mechanism. The Avance [BH89] system adopts a similar

approach to Encore. Exception handlers are defined as filters to cope with mismatches between differ-

ent versions. Both Encore and Avance use emulation to present old instances as if they are new ones.

It is not possible to associate additional storage with existing attributes since all objects are strictly

connected to the version in which they were created. As such additional attributes would necessarily

be read-only and have a fixed, default value. This problem is remedied in CLOSQL [MS92] where

objects are allowed to dynamically change the class version with which they are connected. Each

attribute of an object has update and backdate functions (provided by the user) for converting objects

into different formats. However, the overhead of the conversion process and the added responsibility

on the user are quite significant in CLOSQL.

� Hybrid: A hybrid approach combines two or more of the above methods. GemStone mentions an

effort to incorporate a hybrid approach, but currently we are unaware of such a system implementa-

tion. In Sherpa [NR89], schema changes are propagated to instances through conversion or screening,

which is selected by the user. However, only the conversion approach is discussed. Change propaga-

tion is assisted by the notion ofrelevant classes. A relevant class is a semantically consistent partial

definition of a complete class and is bound to the class. A relevant class is similar to a type version in

[SZ86] and a complete class resembles a version set.

Although numerous approaches have been proposed for propagating different schema changes to object

instances, the schema change that involves changing the implementation of a behavior, and how it affects the

underlying object structure has not been addressed comprehensively. In this work, a deferred approach that

uses a finer grained filtering based on behavior histories is used as the underlying mechanism for behavior



implementation change propagation. The approach also allows for immediate behavior coercion to reflect

the changed schema. This makes it feasible for the system to take a more active role by using deferred object

coercion as the default and switching to immediate object coercion whenever the system is idle.

In systems that use immediate or deferred object coercion, the entire object must be converted upon

coercion and in the systems that don't define versions of schema, the old state of the object is lost. The

approach in this paper differs in that the granularity of object coercion is based on individual behaviors.

That is, an individual behavior of an object's type can be coerced to a new definition for that object, leaving

the other behaviors to retain their old definitions. Furthermore, a historical record of the coerced behaviors is

maintained for each object so one can access the older definitions of the behaviors for each object. Complete

object conversion takes place only if all behaviors defined in the type of the object have been coerced. This

results in considerable savings of work.

3 The Temporal Object Model

3.1 Basic Object Model

We work with an object model whose identifying characteristics are itsbehavioral nature and itsuniform

object semantics. The model isbehavioral in the sense that all access and manipulation of objects is based

on the application of behaviors to objects. The model isuniform in that every component of information,

including its semantics, is modeled as afirst-class object with well-defined behavior. Other typical features

supported by the model include strong object identity, abstract types, strong typing, complex objects, full

encapsulation, multiple inheritance, and parametric types. This is the model of the TIGUKAT ODBMS

[Pet94,ÖPS+95] that is being implemented at the University of Alberta.

The primitive objects of the model include:atomic entities (reals, integers, strings, etc.);types for defin-

ing common features of objects;behaviors for specifying the semantics of operations that may be performed

on objects;functions for specifying implementations of behaviors over types;classes for automatic classifi-

cation of objects based on type1; andcollections for supporting general heterogeneous groupings of objects.

Figure 1 shows a simple type lattice that will be used to illustrate the concepts introduced in the rest of the

paper.

T_person T_taxSource

T_employee

T_null

T_patient

T_bloodTest

T_object

Figure 1: Simple type lattice.

The access and manipulation of an object's state occurs exclusively through the application of behav-

1Types and their extents are separate constructs in our model.



iors. We clearly separate the definition of a behavior from its possible implementations (functions). The

benefit of this approach is that common behaviors over different types can have different implementations

in each of the types. This provides direct support for behavioroverloading andlate binding of functions

(implementations) to behaviors.

In this paper, a reference prefixed by “T ” refers to a type, “C ” to a class, “B ” to a behavior, and

“T XhT Yi” to the typeT X parameterized by the typeT Y. For example,T person refers to a type,

C person to its class,B ageto one of its behaviors andT collectionhT personi to the type of collec-

tions of persons. A reference such asjoe, without a prefix, denotes some other application specific reference.

Types are instances of the primitive typeT type and behaviors are instances of the typeT behavior. The

typeT object binds the type lattice from the top (i.e., least defined type) while the typeT null binds

the lattice from the bottom (i.e., most defined type). The behaviorB baseTypeis defined on the parametric

typeT XhT Yi to return the base (argument) typeT Y.

3.2 The Temporal Extensions

The philosophybehind adding temporality to the basic object model is to accommodate multiple applications

that have different type semantics requiring various notions of time [LGÖS97, G̈OS97]. Consequently, the

temporal object model consists of an extensible set of primitive time types with a rich set of behaviors

to model time. The only part of the temporal model that is relevant to this paper is the management of

event histories. Therefore, we focus on history management and details of other aspects can be found in

[GLÖS96].

Our model represents the temporal histories of real-world objects whose type isT X as objects of

the T historyhT Xi type. For example, suppose a behaviorB salary is defined in theT employee

type. Now, to keep track of the changes in salary of employees,B salarywould return an object of type

T historyhT reali which would consist of the different salary objects of a particular employee and their

associated time periods.

A temporal history consists of objects and their associated timestamps (time intervals or time instants).

One way of modeling a temporal history would be to define a behavior that returns a collection of<timestamp,

object> pairs. However, instead of structurally representing a temporal history in this manner, we use a

behavioral approach by defining the notion of atimestamped object. A timestamped object knows its time-

stamp (time interval or time instant) and its associated value at (during) the timestamp. A temporal history

is made up of such objects. The following behaviors are defined on theT historyhT Xi type:

B history : T collectionhT timeStampedObjecthT Xii

B timeline : T timeline

B insert : T X; T timeStamp!

B remove : T X; T timeStamp!

B validObjects : T timeStamp! T collectionhT timeStampedObjecthT Xii

B validObject : T timeStamp! T timeStampedObjecthT Xi



BehaviorB history returns the set (collection) of all timestamped objects that comprise the history.

A history object also knows the timeline it is associated with and this timeline is returned by the behav-

ior B timeline. The timeline basically orders the timestamps of timestamped objects [GLÖS96]. The

B insert behavior accepts an object and a timestamp as input and creates a timestamped object that is in-

serted into the history. BehaviorB removedrops a given object from the history at a specified timestamp.

TheB validObjectsbehavior allows the user to get the objects in the history that were valid at (during) a

given timestamp. BehaviorB validObjectis derived fromB validObjectsto return the timestamped object

that exists at a given time instant.

Each timestamped object is an instance of theT timeStampedObjecthT Xi type. This type rep-

resents objects and their corresponding timestamps. TypeT timeStampedObject defines behaviors

B value andB timeStampwhich return the value and the timestamp (time interval or time instant) of a

timestamped object, respectively.

Example 3.1 Suppose the typeT patient shown in Figure 1 represents different patients in a hospital.

To represent a patient's blood test history over the course of a particular illness, the behaviorB bloodTests

is defined onT patient to return an object of typeT historyhT bloodTesti. Each blood test is

represented by an object of the typeT bloodTest. Therefore, the history of the different blood tests

undertaken byjoe (an instance ofT patient) would then be retrieved using the behavior application

joe.B bloodTests. Let us call this history objectbloodTestHistory. Now, supposejoe was suspected of

having septicemia2 and had diagnostic hematology and microbiology blood tests on 15 January 1995. As

a result of a raised white cell count,joe was given a course of antibiotics while the results of the tests

were pending. A repeat hematology test was ordered on 20 February 1995. To record these tests, three

objects with typeT bloodTest were created and then entered into the object database using the following

TIGUKAT behavior applications:

bloodTestHistory:B insert(microbiology; 15 January 1995)

bloodTestHistory:B insert(hematology1; 15 January 1995)

bloodTestHistory:B insert(hematology2; 20 February 1995)

If subsequently there is a need to determine which blood testsjoe took in January 1995, this would be

accomplished by the following behavior application:

bloodTestHistory:B validObjects([1 January 1995; 31 January 1995])

This would return a collection of the two timestamped objects,ftimeStampedMicrobiology, timeStamped-

Hematology1g, representing the blood testsjoe took in January 1995. The first timestamped object would

havemicrobiology as its value and the second would havehematology1 as its value3.

2An infection of the blood.
3It should be noted that although we have two different timestamped objects containing the valuesmicrobiology and

hematology1, they both contain the same timestamp. That is, althoughtimeStampedMicrobiology.B value = microbiology

andtimeStampedHematology1.B value= hematology1, timeStampedMicrobiology.B timestamp= timeStampedHematol-

ogy1.B timestamp= 15 January 1995.



To assist in clarifying the contents and structure of a history object, we give a pictorial representation

of bloodTestHistory in Figure 2. In the figure, the boxes shaded in grey are objects. Objects have an

outgoing edge labeled by each applicable behavior that leads to the object resulting from the application

of the behavior. For example, applying the behaviorB timeline to the objectbloodTestHistory results in

the objectbloodTestTimeline. A circle labeled with the symbolsf g represents a collection object and has

outgoing edges labeled with “2” to each member of the collection. For example, applying theB history

behavior to the objectbloodTestHistory results in a collection object whose members are the timestamped

objectstimeStampedMicrobiology, timeStampedHematology1, andtimeStampedHematology2. Fi-

nally, theB insert behavior updates the blood test history (bloodTestHistory) when given an object of

typeT bloodTest and a timestamp. Similarly, theB validObjectsbehavior returns a collection of times-

tamped blood test objects when given a timestamp.2

hematology2

joe

{ }

{ } timestamped blood tests

aTimeStamp(B_validObjects )
B_insert aBloodTest,aTimeStamp( )

B_timeline

B_history

bloodTestHistory bloodTestTimeline

B_value

timeStampedMicrobiology

microbiology

B_value

timeStampedHematology1 timeStampedHematology2

ε ε ε

B_timeStamp

hematology1

B_valueB_timeStamp

B_timeStamp

B_bloodTests

20 February 199515 January 1995

Figure 2: A pictorial representation of a patient's blood test history.

Another important behavior introduced by the temporal extensions is theB lifespanbehavior defined

on T object. This behavior is applied to an object, accepts a collection as an argument, and returns a

timestamp (interval) representing the time in which the object exists in the given collection. For example,

the behavior applicationjoe.B lifespan(joe.B mapsto.B classof.B shallowExtent) returns the lifespan of

the objectjoe in the class associated withT person. The behaviorB mapstois defined inT object

and returns the type of the receiver object. TheB classofbehavior is defined inT type and returns the

class associated with the receiver type object, and the behaviorB shallowExtentreturns all the elements of

T person excluding objects from the subtypes ofT person.



4 Management of Schema Evolution by the Temporal Object Model

4.1 Schema Related Changes

There are different kinds of objects modeled by TIGUKAT, some of which are classified as schema objects.

Schema objects fall into one of the following categories:type, class, behavior, function, andcollection.

There are three kinds of operations that can be performed on schema objects:add, drop andmodify. Table 1

shows the combinations between the various schema object categories and the different kinds of operations

that can be performed in TIGUKAT [Pet94, PÖ97]. Thebold entries represent combinations that imply

schema changes while theemphasized entries denote non-schema changes.

Operation

Objects Add (A) Drop (D) Modify (M)

Type (T) subtyping type deletion add behavior(AB)

drop behavior(DB)

add supertype link(ASL)

drop supertype link(DSL)

Class (C) class creation class deletion extent change

Behavior (B) behavior definition behavior deletion change association(CA)

Function (F) function definition function deletion implementation change

Collection (L) collection creation collection deletion extent change

Table 1: Classification of schema changes.

In the context of a temporal model,adding refers to creating the object and beginning its history,drop-

ping refers to terminating the history of an object, andmodifying refers to updating the history of the schema

object. Since type-related changes form the basis of most other schema changes, we describe the modifica-

tions that affect the type schema objects. Type modification (depicted at the intersection of the (M) column

and (T) row in Table 1) includes several kinds of type changes. They are separated into changes in the

behaviors of a type (depicted asMT-AB andMT-DB in Table 1) and changes in the relationships between

types (depicted asMT-ASL andMT-DSL in Table 1). Invariants for maintaining the semantics of schema

modifications in TIGUKAT are described in [Pet94, PÖ97]. The invariants are used to gauge the consis-

tency of a schema change in that the invariants must be satisfied both before and after a schema change is

performed. The semantics of the changes to a type are discussed in the following sections. The discussion

includes the neccessary behavior applications that would be needed to accomodate changes to a type. These

behavior applications would all be done by the system to manage the temporal schema information. They

are shown and described here to illustrate that changes to a type can be done through consistent behavioral

semantics of the TIGUKAT model itself.



4.2 Changing Behaviors of a Type

Every type has aninterface, which is a collection of behaviors that are applicable to the objects of that type.

A type's interface can be dichotomized into two disjoint subsets:

1. the collection ofnative behaviors, which are those behaviors defined by the type and not defined on

any of its supertypes;

2. the collection ofinherited behaviors, which are those behaviors defined natively by some supertype

and inherited by the type.

There are three behaviors defined onT type to return the various components of a type's interface:B native

returns the collection of native behaviors,B inheritedreturns the inherited behaviors, andB interfacere-

turns the entire interface of the type.

Types can evolve in different ways. One aspect of a type that can change over time is the behaviors

in its interface (i.e., adding or deleting behaviors). To keep track of this aspect of a type's evolution, we

define histories of interface changes by extending the interface behaviors with time-varying properties. The

definition of the extended behaviors are as follows:

B native : T historyhT collectionhT behaviorii

B inherited : T historyhT collectionhT behaviorii

B interface : T historyhT collectionhT behaviorii

Each behavior now returns a history consisting of a collection whose elements are timestamped collec-

tions of behaviors. Adding a new behavior to a type changes the history of the type's interface to include

the new behavior. The old interface of the type is still accessible at a time before the change was made.

Note that we do not need to explicitly maintain separate histories for each of these behaviors. For

example, in an implementation we can choose to only maintain the native behaviors of a type. The entire

interface of a type can be derived by unioning the native behaviors of all the supertypes of the type. The

inherited behaviors can be derived by taking the difference of the interface and the native behaviors of the

type. As another alternative, we may choose to maintain the interface of a type and derive the native and

inherited behaviors. In this approach, the native behaviors of a type can be derived by unioning the interfaces

of the direct supertypes and subtracting the result from the interface of the type. The inherited behaviors can

be derived in the same way as above.

With the time-varying interface extensions, we can determine the various aspects of a type's interface at

any time of interest. For example, Figure 3 shows the history of the entire interface for the typeT person.

At time t0, behaviorsB name, B birthDate, andB ageare defined onT person and the initial history

of T person's interface isf<t 0; fB name;B birthDate; B ageg>g. At time t5, behaviorB spouseis

added toT person. To reflect this change, the interface history is updated tof<t0; fB name;B birthDate;

B ageg>;<t5; fB name;B birthDate; B age; B spouseg>g. This shows that betweent0 andt5 only

behaviorsB name, B birthDate, andB ageare defined and att5 behaviorsB name, B birthDate, B age,

B spouseexist. Next, at timet10, behaviorB age is dropped from typeT person and at the same
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timeStampedBhvCollA
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B_birthDate

B_age B_age
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B_name
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B_interface

B_history

ε εε

behaviorHistory
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t0 t5 t10
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B_name

ε
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ε
ε ε

ε

B_spouse

B_children

Figure 3: Interface history of typeT person.

time behaviorB children is added. The final history of the interface ofT person after this change is

f<t0; fB name;B birthDate; B ageg>;<t5; fB name;B birthDate; B age; B spouseg>;<t10;

fB name;B birthDate; B spouse; B childreng>g4. The native and inherited behaviors would contain

similar histories. Using this information, we can reconstruct the interface of a type at any time of interest.

For example, at timet3 the interface of typeT person wasfB name;B birthDate; B ageg, at timet5
it wasfB name;B birthDate; B age; B spouseg, and at timet10 (now) it is fB name;B birthDate;

B spouse; B childreng.

The behavioral changes to types include theMT-AB andMT-DB entries of Table 1. These changes

affect various aspects of the schema and have to be properly managed to ensure consistency of the schema.

Modify Type - Add Behavior (MT-AB). This change adds a native behaviorb to a typeT at timet. The

MT-AB change has the following effects:

� The histories of the native and interface behaviors of typeT need to be updated. The behavior

applicationsT:B native:B insert(b; t) andT:B interface:B insert(b; t) perform this up-

date. For example, the behavior applicationT person.B interface.B insert(B spouse,t5) up-

dates the interface history ofT person when behaviorB spouseis added toT person at time

t5.

� The implementation history of behaviorb needs to be updated to associate it with some function

f . This is achieved by the behavior applicationb:B implementation:B insert(f; t) (details

4Note that in Figure 3 objects that are repeated in the timestamped collections are actually the same object. For example, the

B nameobject in all three timestamped collections is the same object. It is shown three times in the figure for clarity.



on implementation histories of behaviors are given in Section 4.3). For example, if the function

associated with behaviorB spouseis the stored functionsspouse , then the implementation his-

tory ofB spouseis updated using the behavior applicationB spouse.B implementation.B insert

(sspouse,t5).

� The history of inherited and interface behaviors of all subtypes of typeT needs to be adjusted.

That is,

8T
0

j T
0

subtype-ofT; T
0

:B inherited:B insert(b; t) andT
0

:B interface:B insert(b; t)

For example, the histories of inherited and interface behaviors of typesT employee and

T patient (see Figure 1) need to be adjusted to reflect the addition of behaviorB spouse

in typeT person at timet5. For theT employee type, this is accomplished using the behav-

ior applicationsT employee.B interface.B insert(B spouse,t5) andT employee.

B inherited.B insert(B spouse,t5). Similar behavior applicationsare carried out forT patient.

Modify Type - Drop Behavior (MT-DB). This change drops a native behaviorb from a typeT at timet.

When a behavior is dropped, its native definition is propagated to the subtypes unless the behavior is

inherited by the subtype through some other chain. In this way, as with the supertypes, the subtypes

of a type also retain their original behaviors. Thus, only the single type involved in the operation

actually drops the behavior and the overall interface of the subtypes and supertypes are not affected

by the change. Many behavior inheritance semantics are possible. One such semantics is that when a

native behavior is dropped from a type, all subtypes retain that behavior. This means that if another

supertype of the subtype defines this behavior, there is no change. Otherwise, the behavior in the

subtype moves from the inherited set to the native set. This is the semantics we are modeling in this

paper. If any other behavior inheritance semantics are used, appropriate changes can easily be made

to the temporal histories. TheMT-DB change has the following effects:

� The native behaviors history of typeT changes. The behavior applicationT:B native:

B remove(b; t) performs this update. For example, the behavior applicationT person.

B native.B remove(B age,t10) updates the history of native behaviors ofT person when the

behaviorB ageis dropped from typeT person.

� The native and inherited behavior histories of the subtypes ofT (possibly) change. For example,

the behavior applicationsT employee.B native.B insert(B age,t10) andT employee.

B inherited.B remove(B age,t10) add behaviorB ageto the native behaviors ofT employee,

and drop behaviorB age from the inherited behaviors ofT employee respectively, when

B ageis dropped fromT person att10. This is becauseB ageis not inherited byT employee

through any other chain. IfB agewas inherited byT employee from some other supertype,

nothing would change. Similar behavior applications are carried out for typeT patient.

4.3 Changing Implementations of Behaviors

Each behavior defined on a type has a particular implementation for that type. TheB implementation

behavior defined onT behavior is applied to a behavior, accepts a type as an argument and returns the



implementation (function) of the receiver behavior for the given type. In order to model the aspect of

schema evolution that deals with changing the implementations of behaviors on types, we maintain a history

of implementation changes by extending theB implementationbehavior with time-varying properties. The

definition of the extended behavior is as follows:

B implementation : T type! T historyhT functioni

With this behavior we can determine the implementation of a behavior defined on a type at any time of inter-

est. For example, Figure 4 shows the history of the implementations for behaviorB ageon typeT person.

There are two kinds of implementations for behaviors [Pet94]. Acomputed function consists of runtime calls

to executable code and astored function is a reference to an existing object in the object database.

{ }
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Figure 4: Implementation history of behaviorB ageon typeT person.

In Figure 4, we useci to denote a computed function,si to denote a stored function. At timet2, the

implementation ofB agechanged from the computed functionc1 to the computed functionc3. At time t4,

the implementation ofB agechanged from the computed functionc3 to the stored functions1. All these

changes are reflected in the implementation history of behaviorB age, which isf<t0; c1>;<t2; c3>;<

t4; s1>g.

Using the results of this section and Section 4.2, we can reconstruct the behaviors, their implemen-

tations and the object representations5 for any type at any timet. For example, the interface of type

T person at time t3 is given by the behavior applicationT person.[t3 ]B interface, which results in

fB name;B birthDate; B ageg as shown in Figure 3. We use the syntaxo:[t]b to denote the application of

behaviorb to objecto at timet. The implementation ofB ageat t3 is given byB age.[t3]B implementation

(T person), which isc3, as shown in Figure 4.

5Stored functions associated with behaviors allow us to reconstruct object representations (i.e., states of objects) for any type at

any timet. This is useful in propagating changes to the underlying object instances (see Section 5).



In this paper, we assume there is no implementation inheritance. That is, if the binding of a behavior to

a function changes in a type, the bindings of that behavior in the subtypes are unaffected. If implementation

inheritance is desired, it can easily be modeled by temporal histories similarly to behavioral inheritance.

4.4 Changing Subtype/Supertypes of a Type

In Section 4.2, we described how the changes in a type's interface was one aspect in which a type evolves.
Another aspect of a type that can change over time is the relationships between types. These include adding
a direct supertype link and dropping a direct supertype link. TheB supertypesandB subtypesbehaviors
defined onT type return the direct supertypes and subtypes of the receiver type, respectively. In order to
model the structure of the type lattice through time, we define histories of supertype and subtype changes of
a type by extending theB supertypesandB subtypesbehaviors with time-varying properties:

B supertypes : T historyhT collectionhT typeii

B subtypes : T historyhT collectionhT typeii

Using theB supertypesandB subtypesbehaviors, we can reconstruct the structure of a type's super-
type and subtype lattice at any time of interest. To facilitate this, the derived behaviorsB superlatticeand
B sublatticeare defined onT type:

B superlattice : T historyhT posethT typeii

B sublattice : T historyhT posethT typeii

The behaviorB superlatticeis derived by recursively applyingB supertypesuntilT object is reached,

while the behaviorB sublatticeis derived by recursively applyingB subtypesuntil T null is reached. In

both cases, the intermediate results are partially ordered. Figure 5 shows the supertype lattice history for

typeT employee.

At time t0, the superlattice history of typeT employee included the typesT person, T taxSource,

andT object. At time t5, the supertype link betweenT employee andT taxSource is dropped. To

reflect this change, the superlattice history ofT employee is updated tof<t0; fT person; T taxSource;

T objectg>;<t5; fT person; T objectg>g.

The relationships between types include theMT-ASL andMT-DSL entries of Table 1. Similar to the

behavioral changes to types discussed in Section 4.2, the relationships between types affect various aspects

of the schema and have to be properly managed to ensure consistency of the schema.

Modify Type - Add Supertype Link (MT-ASL). Include a type, sayS, as a direct supertype of another

type, sayT , at timet. TheMT-ASL change has the following effects:

� The history of the collection of supertypes of typeT is updated. The behavior application

T:B supertypes:B insert(S; t) performs this update. The history of the super-lattice ofT

is adjusted accordingly. For example, adding the supertype link betweenT employee and

T taxSource at t0 necessitates an update to the history of supertypes forT employee. This

is done by the behavior applicationT employee.B supertypes.B insert

(T taxSource,t0). The history of the direct supertypes ofT employee would then bef<

t0; fT taxSourceg>g.
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Figure 5: Supertype lattice history for typeT employee.

� The history of the collection of subtypes of typeS is updated. This is performed by the be-

havior applicationS:B subtypes:B insert(T; t). The history of the sub-lattice ofS is adjusted

accordingly. In this case, the history of the collection of subtypes ofT taxSource has to be

updated using the behavior applicationT taxSource.B subtypes.B insert(T employee,t0 ).

The history of the direct subtypes ofT taxSource would then bef<t0; fT employeeg>g.

� The behaviors ofS are inherited byT and all the subtypes ofT . Therefore, the inherited behavior

history ofT and all subtypes ofT is adjusted. The current behaviors ofS are inherited byT and

all subtypes ofT , and timestamped witht - the creation time of the supertype link.

8b 2 S:B interface:B history:B last; 8T
0

j T
0

subtype-ofT; T
0

:B inherited:B insert(b; t)

BehaviorB last is defined on typeT historyhT Xi and it returns the collection of behaviors

that are currently valid from the interface history ofS. Let us assumeT taxSource has the

behaviorB taxBracketdefined att0. B taxBracketthen has to be added to the history of inher-

ited behaviors ofT employee. TheT employee.B inherited.B insert(B taxBracket,t0) be-

havior application performs this update. The history of the inherited behaviors would then bef<

t0; fB name;B birthDate; B age; B taxBracketg>g. BehaviorsB name,B birthDate,B age

are inherited from typeT person (see Figure 3), while behaviorB taxBracketis inherited from

typeT taxSource.

Modify Type - Drop Supertype Link (MT-DSL). Drop a direct supertype link between two types at time

t (a direct supertype link toT object cannot be dropped). Consider typesT andS whereS is the



direct supertype ofT . Removing the direct supertype link betweenT andS at timet has the following

effects:

� Adjust the history of supertypes ofT and the history of subtypes ofS. For example, dropping the

supertype link betweenT employee andT taxSource at t5 requires updating the history of

supertypes ofT employee and the history of subtypes ofT taxSource. This is carried out

using the behavior applicationsT employee.B supertypes.B remove(T taxSource,t5 ) and

T taxSource.B subtypes.B remove(T employee,t5).

� TheMT-ASL operation is carried out fromT to every supertype ofS, unlessT is linked to the

supertype through another chain. This operation is not required when the supertype link between

T employee andT taxSource is dropped becauseT employee is linked to the supertype

of T taxSource (T object) throughT person.

� TheMT-ASL operation is carried out from each subtype ofT to S, unless the subtype is linked

to S through another chain. This operation requires adding a supertype link betweenT null

andT taxSource.

� The native behaviors ofS are dropped from the interface ofT . That is, the history of inher-

ited behaviors ofT is adjusted. This means the behaviorB taxBracket, defined natively on

T taxSource, has to be dropped from the history of inherited behaviors ofT employee.

The behavior applicationT employee.B inherited.B remove(B taxBracket,t5) performs this

update.

4.5 Queries

In this sub-section, we show how queries can be constructed using the TIGUKAT query language (TQL)

[PLÖS93] to retrieve schema objects at any time in their evolution histories. This gives software designers a

temporal user interface that provides a practical way of accessing temporal information in their experimental

and incremental design phases. TQL incorporates reflective temporal access in that it can be used to retrieve

both objects and schema objects in a uniform manner. Hence, TQL does not differentiate between queries

(which are query objects) and meta-queries (which are query schema objects).

4.5.1 The TIGUKAT Query Language

The TIGUKAT Query Language (TQL6) is based on the SQL paradigm [Dat87] and its semantics is defined

in terms of an object calculus. Hence, every statement of the language corresponds to an equivalent object

calculus expression. The basic query statement of TQL is theselect statement, which operates on a set of

input collections and returns a new collection as the result:

select < object variable list >

[ into < collection name > ]
from < range variable list >

[ where < boolean formula > ]

6TQL was developed before the release of OQL [Cat94]. It is quite similar to OQL in structure.



The select clause in this statement identifies the objects to be returned in a new collection. There can be

one or more object variables with different formats (constant, variables, path expressions or index variables)

in this clause. They correspond to free variables in object calculus formulas. Theinto clause declares a

reference to a new collection. If theinto clause is not specified, a new collection is created; however, there

is no reference to it. Thefrom clause declares the ranges of object variables in theselect andwhere clauses.

Every object variable can range over an existing collection or a collection returned as a result of a subquery;

a subquery can be given explicitly or as a reference to a query object. Thewhere clause defines a boolean

formula that must be satisfied by objects returned by a query.

Having described TQL, we show in the next section how temporal objects can uniformly be queried

using behavior applications without changing any of the basic constructs of TQL.

4.5.2 Query Examples

Example 4.1 Return the time when the behaviorB childrenwas added to the typeT person.

select b.B timestamp

from b in T person.B interface.B history

where B childrenin b.B value

The result of this query would be the timet10 as seen in Figure 3.2

Example 4.2 Return the types that define behaviorsB ageandB taxBracketas part of their interface.

select T

from T in C type

where (b1 in T .B interface.B historyand B agein b1.B value) or

(b2 in T .B interface.B historyand B taxBracketin b2.B value)

This query would return the typesT person, T taxSource, T employee, andT null. The type

T person defines behaviorB agenatively (see Figure 3), while the typeT taxSource defines behavior

B taxBracketnatively. The behaviorsB ageandB taxBracketare inherited by typesT employee and

T null since they are subtypes ofT person andT taxSource as shown in Figure 1.2

Example 4.3 Return all implementations of behaviorB agein typeT person before or at timet1.

select i.B value

from i in B age.B implementation(T person).B history

where i.B timestamp.B lessthaneqto(t1)

The behaviorB lessthaneqtois defined on typeT timeStamp and checks if the receiver timestamp is less

than or equal to the argument timestamp. The result of the query is the computed functionc1 as shown in

Figure 6.2

Example 4.4 Return all super-lattices of typeT employee before or at timet3.

select r.B value

from r in T employee.B super-lattice.B history

where r.B timestamp.B lessthaneqto(t3)



The super-lattice ofT employee at t3 consists of the typesT person, T taxSource, andT object.

This is shown in Figure 5.2

Example 4.5 Return the types that define behaviorB agewith the same implementation as one of their

supertypes at exactly the same time.

select T

from T in C type, V in T .B supertypes.B history, S in V .B value,

i in B age.B implementation(T ).B history,

j in B age.B implementation(S).B history

where b in S.B interface.B historyand B agein b.B valueand

i.B value= j.B valueand i.B timestamp= j.B timestamp

This query would return the typesT employee, T patient, andT null, assuming the implementation

of behaviorB ageis not changed when it is inherited by these types.2

5 Schema Change Propagation

5.1 Changing Implementations of Behaviors

There are two kinds of implementations for behaviors [Pet94]. Acomputed function consists of runtime

calls to executable code and astored function is a reference to an existing object in the object database.

Thus, a behavior with a computed function implementation can be considered an abstraction of a method in

classical object models, whereas a behavior with a stored function implementation is an abstraction of an

attribute (with “set” and “get” operations). The valid implementation changes for behaviors are shown in

Table 2. The notationcomputedi (ci) andstoredi (si) refer to computed and stored functions respectively.

The subscriptsi and j are used to denote distinct functions. The termundefined is for the case when

the behavior is undefined. The combinationscomputedi to computedi andstoredi to storedi (which imply

changes to the function code) are not included in the table because these do not reflect changes in function

association. Theemphasized entries represent user-level changes (i.e., by the schema designer) and thebold

entry is a system-level change for reorganizing the internal representation of objects.

Old Implementation New Implementation
CC computedi computedj

CS computedi storedj

SS storedi storedj

SC storedi computedj

US undefined storedj

UC undefined computedj

Table 2: Valid implementation changes of a behavior in a type.

With theB implementationbehavior (defined in Section 4.3) we can determine the implementation of a

behavior defined on a type at any time of interest. For example, Figure 6 shows the history of the implemen-

tations for behaviorsB birthDateandB ageon typeT person. A timeline representation and the result of



B birthDate.B implementation(T person).B historyandB age.B implementation(T person).B history

are shown. The implementation histories ofB birthDateandB agereturn a collection of timestamped func-

tion objects. The value of each timestamped function is a computed or stored function. The timestamp of

each timestamped function denotes the time interval during which the particular implementation is valid.

The interface history ofT person is also shown for clarity. TheB interfacebehavior is defined inT type

and returns a history of the evolution of behaviors in a type. Each timestamped object in the history consists

of a collection of behaviors that are valid during the associated time interval.

In the timeline representation,B X :ci or B X :si denotes the association of a computed or stored function

with behaviorB X . Moreover, for stored functions the subscripti refers to a location (e.g., a slot number)

in an object representation that the stored function accesses. Each association is valid at a certain timet and

remains valid until it is modified or removed. An object representation (i.e., the state of an object) consists

of a number of slots for holding information carried by the object. The representations of objects at different

times according to the stored functions associated with behaviors at those times are depicted by the boxes

labeled with behaviors. For example, between timest4 andt6, the object representation consists of two

slots – the first slot is for the stored implementation of behaviorB ageand the second is forB birthDate.

Between timest8 andt10, the object representation consists of only one slot which is forB birthDate, since

during this interval,B ageis associated with the computed function,c2.
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: s1 : s2 : s1
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Figure 6: Implementation histories of behaviorsB birthDateandB age for type T person and object

representations.

Figure 6 is used to describe how the implementation changes in Table 2 are maintained by implementa-

tion histories. Prior to timet0 both behaviors are undefined and at timet0, B ageis defined as stored (US)

andB birthDateis defined as computed (UC). At time t2, the implementation ofB birthDatechanges from

the computed functionc1 to the computed functionc3 (CC). At time t4, the implementation ofB birthDate

changes from the computed functionc3 to the stored functions2 (CS). At time t6, the implementation of



B birthDatechanges from the stored functions2 to the stored functions1 (SS) andB agechanges froms1
to s2 (SS). At time t8, the implementation ofB agechanges from the stored functions2 to the computed

functionc2 (SC).

Note that at timet12 the binding of the behaviorB birthDatechanges from the stored functions1 to

the computed functionc5. Since all object representations at timet12 require only one slot, the change to

B birthDateforces a change toB ageso that at timet12 behaviorB ageaccesses slot one instead of slot

two. Furthermore, the implicit implementation change ofB ageis from a stored function to a stored function

(SS) which is a system managed change and therefore is transparent to the user. The implicit implemen-

tation change ofB ageis reflected in its history by the two entries<[t10; t12); s2> and<[t12; now]; s1>.

In general, the slots of an object representation are reorganized (i.e., an implicit change occurs) whenever a

stored to computed implementation change removes a slot other than the last slot of an object's representa-

tion. The system can also rearrange slots as part of an implementation change, necessitating internal system

organization as att6.

Using the results of this section, one can reconstruct the implementations of behaviors, and the object

representations for any type at any timet. The implementation ofB birthDateat timet7 (wheret6 < t7 <

t8) is given byB birthDate.[t7]B implementation(T person) which iss1. Similarly, the implementation

of B ageat timet7 is given by the behavior applicationB age.[t7]B implementation(T person) which is

s2. Since there are two stored functions, this implies a two slot representation for objects at timet7. That

is, B birthDateaccesses slot one using stored functions1 andB ageaccesses slot two using stored function

s2.

5.2 Change Propagation

The behaviors applicable to an object at its creation is the set of behaviors defined on the type of the object.

The implementations of these behaviors are those that exist in the implementation histories for the type at

creation time (which can be obtained by means of theB createdbehavior defined onT object).

When changes occur to the type definition and behavior implementations, we do not immediately prop-

agate them to the instances. Instead, the old version of the schema is maintained and the change is recorded

in the proper behavior histories. For adding and dropping behaviors, we make changes to the interface his-

tories (B native, B inherited, B interface) of the type [GS̈OP97]. For changes in the implementation of a

behavior we make changes to the implementation history (B implementation) of the behavior (as described

in Section 5.1).

The propagation of changes to the instances is delayed until the instances are accessed. In our model

this occurs when a behavior is applied to an object. At that point in time, the behavior is coerced to reflect

the implementation changes that have occurred on the behavior since the last behavior application. These

changes are recorded in theB changesbehavior which is defined inT type. The signature forB changes

is as follows:

B changes : T listhT timeStamp; T behaviori

The result ofB changesis a list of (timestamp, behavior) pairs. Each pair denotes the time at which the

implementation for the behavior has changed. TheB changeslist is used by our behavior dispatch routine



(defined in Section 5.3) to determine the most recent coercion time of the behavior that is applied to an

object. The time is used as a reference point for finding an appropriate implementation of the behavior.

A novel characteristic of our model is that the basic unit of object coercion is individual behaviors. More

specifically, objects from the older schema are coerced to the newer schema one behavior at a time. Thus,

portions of an object (i.e., some behaviors) may correspond to older schema, while other portions correspond

to newer schema.

In order to model the representations of an object over time (resulting from changes to its structure),

we use theT history mechanism that is described in Section 3.2. For example, typeT person =

T historyhT person0i is created to maintain the representations of a person over time. Therefore, if

joe is an object of typeT person, thenjoe represents the history of its different structural changes over

time. The value of each timestamped object in an objecto of typeT X = T historyhT X0i is called a

representation object of o, and is of typeT X 0.

In this paper we are using the notationT historyhT X0i to denote a type whose schema changes we

wish to record. However, an actual user of the ODBMS would simply use the notationT X and indicate at

type creation time that the schema changes should be recorded for this type. The ODBMS would then create

T X asT historyhT X0i and the user would never deal directly withT X0. However, we will continue to

use the notationT historyhT X0i in this paper since we wish to show how our model and algorithms for

schema changes can be defined using only our existing temporal model and without introducing any new

concepts. The user does not actually see or useT history.

Whenever a change to the representation of an object occurs due to coercion of one of the behaviors

of its base type7, the change is recorded by updating the history of its structural changes. Thus, an object

of typeT historyhT X0i is generic in the sense that it consists of all its representation objects over time.

This is called thegeneric instance of the object. The default representation object of a generic instance is

the most current representation object in the history of its structural changes. The individual representation

objects in the history denote how the object existed at certain times in the past. Each of these representation

objects is called astructural instance of the object and has typeT X 0. In essence, theB changeslist of the

typeT X0 and the objects of typeT historyhT X0i (potentially) “grow” with each behavior application if

that behavior has been modified since its last application to the object.

Example 5.1 Consider Figure 7, which contains the objectjoe created as an instance of typeT history

hT person0i. Assuming no behavior application has occurred, the figure shows the created time and the

representation objects ofjoe. It also shows the changes list ofT person8. The notationo@ti is used to

denote the structural instance of an objecto at timeti. Objectjoe is created at timet0. The default properties

and implementations for this object are those that exist at timet0, namely,B birthDate:c1 andB age:s1 (see

Figure 6). There are no entries in the changes list ofT person since no coercion of any behaviors of

T person0 has taken place yet. Therefore,joe has only one structural instancejoe@t0, the representation

object that existed at the creation time ofjoe.

Now supposejoe is accessed at timet7 through the behavior applicationjoe:[t7]B birthDate. The

B birthDatebehavior is coerced to a version att7, andjoe is updated. These changes are shown in Figure 8.
7The base type of an objecto of typeT history<T X'> is the typeT X'.
8Although we say the changes list ofT person, it is actually computed from the base type asT person

0.B changes.



joe.B created = t0
joe.B history = f<[t0; now]; joe@t0>g

T person0.B changes = f g

Figure 7: Initial representation ofjoe and changes list ofT person.

joe.B created = t0
joe.B history = f<[t0; t4); joe@t0>;<[t4; t6); joe@t4>;<[t6; now]; joe@t6>g

T person0.B changes = f<t0; B birthDate>;<t2; B birthDate>;<t4; B birthDate>;

<t6; B birthDate>g

Figure 8: The representation objects ofjoe and the changes list ofT person after behavior application of

B birthDateat timet7.

Since this is the first behavior application ofB birthDateon objectjoe, theB changeslist of T person

is updated with the times of all implementation changes that took place on behaviorB birthDateprior to

timet7. From Figure 6 we see that these times aret0, t2, t4, andt6. The behavior coercions at timest4 andt6
lead to changes in the representation of objectjoe. At t4, the implementation ofB birthDatechanges from

a computed to a stored function and att6, the implementation changes from a stored to a stored function.

These changes in structural representation are recorded injoe as shown in Figure 8. Note that changes to

B ageare not yet recorded since we use deferred coercion andB agehas not yet been applied att7. 2

5.3 Temporal Behavior Dispatch

The preceding sections establish mechanisms for maintaining the histories of behavior implementations and

the representations of temporal objects. We now illustrate the behavior dispatch process that occurs when

a behaviorb is applied to an objecto at a given timet. We denote this application aso:[t]b. The time

component is optional and if left out the current timenow is assumed.

Figure 9 provides an overview of the dispatch process. Detailed explanations of the various steps are

given in the sections that follow. In general, a dispatch mechanism takes a type and a behavior and returns

the function associated with the behavior for the given type [HS97]. In this paper, the dispatch mechanism

is extended to take a third argument; namely, time.

A behavior application is first checked for temporal validity. It is considered valid if the objecto exists

at timet and behaviorb is defined in the interface ofo's base type at timet. A temporally invalid behavior

application generates the only possible error while dispatching. As illustrated in Figure 9, this error is caught

early in the dispatch process, which is a good feature of the design.

For a valid application, theB changeslist of the base type ofo is updated. A search is made in

b.B implementationfor implementation changes that took place before or at the same time ast. The

B changeslist of the base type ofo is then updated with all implementation changes that have not yet

been recorded inB changes. Objecto is then updated if neccssary.

The appropriate representation objecto@t of o, and the appropriate implementationf of b for the base
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f, o@t

Figure 9: Dispatch process for applying a behaviorb to an objecto at timet.

type of o at time t are then retrieved by indexing intoo and theB implementationhistory of b, respec-

tively. Finally, functionf is applied to the representation objecto@t. Examples of this process are given in

Section 5.3.2; after the algorithms for the dispatch semantics are discussed.

5.3.1 Dispatch Semantics

In order for a behavior application to be valid, objecto must exist at timet and behaviorbmust be defined in

the interface of the base type ofo at timet. The temporal validity check algorithm, Algorithm 5.1, performs

this test in the form of a logical expression.

Algorithm 5.1 TemporalValidity:

Input: An objecto, a behaviorb and a timet

Output: True if the application is valid, false otherwise

Procedure:

return (t:B within(o:B lifespan(o:B mapsto:B classof:B shallowExtent)) (1)

^ 9x(x 2 o:B mapsto:B baseType:B interface:B history (2)

^ t:B within(x:B timeStamp) (3)

^ b 2 x:B value)) (4)

The first part of the expression (1) checks thato exists at timet by testing whether timet lies within9 the

lifespan ofo in the class of its associated type. In the second part of the expression,o.B mapsto.B baseType.
9TheB within behavior is defined onT timeStamp and checks whether one timestamp is within another timestamp.



B interface.B history returns the interface history for the base type of objecto. This history is searched for

an entryx that satisfies (3), which checks that timet lies within the timestamp of entryx, and (4), which

checks that behaviorb is part of the collection of behaviors defined in the interface of the type at this time.

If all conditions are satisfied, the behavior application is valid.

If the validity test is satisfied, the next step is to coerce behaviorb to the implementation changes that

took place prior to timet. Algorithm 5.2 performs this operation.

Algorithm 5.2 Coerce:

Input: An objecto, a behaviorb and a timet

Procedure:

o:B mapsto:B baseType:B updateChanges(t; b:B implementation(o:B mapsto:B baseType))

(5)

o:B updateRep(t; b:B implementation(o:B mapsto:B baseType)) (6)

In step (5), theB changeslist of the base type ofo is updated with the implementation changes that took

place on behaviorb at or before timet. TheB updateChangesbehavior, defined on theT type type, per-

forms this update by takingt andB implementationof b as arguments. It searchesB implementationof b for

implementation changes that took place before or at the same time ast and updates theB changeslist with

all implementation changes that have not yet been recorded inB changes. For example, the behavior ap-

plication T person0:B updateChanges(t7; B birthDate:B implementation(T person0)) updates the

B changeslist of the base type ofjoe (T person0) during the behavior applicationjoe:[t7]B birthDate.

The updatedB changeslist is shown in Figure 8. The objecto is then updated if neccessary (6). The

B updateRepbehavior, defined on base type objects, performs this update. For each behavior implemen-

tation change at timeti that leads to a change in the representation ofo, B updateRepupdateso with the

appropriate representation object with respect to timeti and the time interval during which it was valid. The

behaviors applicable to the representation object are those that exist in the interface of its type att i. The

implementations of these behaviors are those that exist in the implementation histories for the type att i. The

stored functions atti determine the initial state of the representation object.
Algorithm 5.3 performs the simple task of returning the appropriate representation object ofo at timet.

Algorithm 5.3 Representation:

Input: An objecto and timet

Output: An object with its representation at timet

Procedure:
return o:B validObject(t):B value

The appropriate implementationf of b for the base type ofo at time t is then retrieved from the

B implementationhistory ofb. Algorithm 5.4 finds and returns this implementation.



Algorithm 5.4 Implementation:

Input: An objecto, a behaviorb and a timet

Output: The function that implements behaviorb for objecto at timet

Procedure:
return b:B implementation(o:B mapsto:B baseType):B validObject(t):B value

A final step of the dispatch mechanism is the execution of the function returned from Algorithm 5.4

to the representation object returned by Algorithm 5.3. We use theB executebehavior on functions to

accomplish this. The relationships between all the algorithms are shown in Algorithm 5.5.

Algorithm 5.5 Dispatch:

Input: An objecto, a behaviorb and a timet

Output: An object resulting from the applicationo:[t]b

Procedure:

if TemporalValidity(o,b,t) then
Coerce(o; b; t)
o@t Representation(o; t)
f  Implementation(o; b; t)
f:B execute(o@t)

else
INVALID: objecto does not exist at timet

or behaviorb not defined in the interface ofo's base type at timet

5.3.2 Dispatch Examples

For the following examples, consider Figure 10, which extends the timeline of typeT person in Figure 6

by adding a behaviorB spousewith the computed implementationc6 at timet14 and dropping the behavior

B ageat timet16. Note that an object representation will not change by adding behaviorB spouseand the

representations will be empty after behaviorB ageis dropped. For this example,now > t16.

Several example behavior applications using time are presented to show how the dispatch process is

followed in order to determine the proper implementation and state instance that are appropriate at the given

time of interest. We assume the behavior applications take place in chronological order.

Example 5.2 Behavior applicationjoe:[t7]B birthDate (assuming no previous behavior application has

taken place)

Validity: Object joe was created at timet0 and exists at timenow. Therefore, the lifespan ofjoe is the

time interval[t0; now]. Sincet7 in within this interval (i.e., lifespan), the object part of the behavior

application is valid. The base type ofjoe is T person0. The interface ofT person0 at time t7 is

fB birthDate; B ageg. SinceB birthDateis part of this interface, the behavior part of the applica-

tion is valid and, thus, the validity test is satisfied.
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Figure 10: Example showing effects on implementation histories of first adding and then dropping a behav-

ior.

Coerce: The next step is to update theB changeslist of the base type ofo and the representation history of

o. These updates are performed by the behavior applications

T person0:B updateChanges(t7; B birthDate:B implementation(T person0)) and

joe:B updateRep(t7; B birthDate:B implementation(T person0)), respectively. The updatedB changes

list and representation history ofo is shown in Figure 8.

Representation: The behavior applicationjoe:B validObject(t7):B value returnsjoe@t6, which is the

appropriate representation object ofjoe at timet7 (see Figure 8).

Implementation: The behavior application

B birthDate:B implementation(T person0):B validObject(t7):B value returns the appropriate

implementation ofB birthDatefor typeT person at timet7, which is the stored functions1.

Dispatch: To complete the dispatch of the behavior, the stored functions1 is executed using the represen-

tation objectjoe@t6 as an argument. This will access the first slot of the representation ofjoe at t6.

The represenation ofjoe at t7 is the same as the one att6, so the behavior application accesses the

appropriate birthdate slot ofjoe at t7.

2

Example 5.3 Behavior applicationjoe:[t3]B birthDate

The validity test is satisfied. TheB birthDatehas already been coerced to the implementations at timest0

andt2 since the entries<t0; B birthDate> and<t2; B birthDate> exist in the changes list ofT person.

Therefore,B changesando remain unchanged. The representation object att3 is joe@t0 (see Figure 8) and

the implementation chosen att3 is the computed functionc3. The functionc3 is then applied tojoe@t0. 2



Example 5.4 Behavior applicationjoe:[t12]B birthDate

The validity test is satisfied. In Algorithm 5.2, the implementation change ofB birthDateat time t12 is

recorded in theB changeslist, and the representation history for objectjoe also changes since the im-

plementation forB birthDatechanges from a stored function (timet6) to a computed function (timet12).

Figure 11 shows the changes inB changesand the representation history ofjoe.

joe.B created = t0
joe.B history = f<[t0; t4); joe@t0>;<[t4; t6); joe@t4>;<[t6; t12); joe@t6>;

<[t12; now]; joe@t12>g
T person0.B changes = f<t0; B birthDate>;<t2; B birthDate>;<t4; B birthDate>;

<t6; B birthDate>;<t12; B birthDate>g

Figure 11: The representation objects ofjoe and the changes list ofT person after behavior application

of B birthDateat timet12.

The appropriate implementation forB birthDate at t12, which is the computed functionc5, is then

applied tojoe@t12, which is the representation object ofjoe at t12. 2

Example 5.5 Behavior applicationjoe:[t10]B age

Now suppose a different behavior (B age) is applied to objectjoe. The validity test is satisfied. The

B changeslist is updated with the times of all implementation changes that took place on behaviorB age

prior to timet10. From Figure 10 we see that these times aret0, t6, t8, andt10. The behavior coercions at all

these times lead to changes in the structural representation of objectjoe. At t0, the implementation ofB age

changed from undefined to stored (UC), at t6 the implementation changed from stored to stored (SS), at

t8 the implementation changed from stored to computed (SC), and att10 the implementation changed from

computed to stored (CS). The new value ofB changesand the structural representation history ofjoe are

shown in Figure 12.

joe.B created = t0
joe.B history = f<[t0; t4); joe@t0>;<[t4; t6); joe@t4>;<[t6; t8); joe@t6>;

<[t8; t10); joe@t8>;<[t10; t12); joe@t10>;<[t12; now]; joe@t12>g
T person0.B changes = f<t0; B birthDate>;<t0; B age>;<t2; B birthDate>;

<t4; B birthDate>;<t6; B birthDate>;<t6; B age>;

<t8; B age>;<t10; B age>;<t12; B birthDate>g

Figure 12: The representation objects ofjoe and the changes list ofT person after behavior application

of B ageat timet10.

Having updated theB changeslist ando, the representation objectjoe@t10, and the implementations2
are returned from Algorithms 5.3 and 5.4 at timet10. We can now applys2 to joe@t10. 2

Example 5.6 Behavior applicationjoe:[now]B age

This fails the validity test because behaviorB ageis not part of the interface ofT person0 at timenow. 2



Example 5.7 Behavior applicationjoe:[t15]B spouse

The validity test is satisfied. An appropriate entry< t14; B spouse > is added to the changes list of

T person. The representation history ofjoe remains unchanged since the implementation change is from

an undefined function to a computed one (UC). The representation object at timet14 is joe@t12 (see Fig-

ure 12) and the implementation is the computed functionc6. The functionc6 is then applied tojoe@t12.

2

Example 5.8 Behavior applicationjane:[t7]B age

Suppose the objectjane was created at timet6. The validity test is satisfied. The changes list ofT person

remains unchanged since it has already been updated with the implementation changes ofB ageprior to

t7 (see Figure 12). The structural representation history ofjane however, is updated to reflect the behavior

coercions that took place at or afterjane was created and before or att7. This is shown in Figure 13.

jane.B created = t6
jane.B history = f<[t6; now]; jane@t6>g

Figure 13: The representation objects ofjane after behavior application ofB ageat timet7.

The timet7 is used to find the appropriate representation object forjane and the correct implementation

of B agefor typeT person0. The representation object chosen isjane@t6 and the implementation returned

is the stored functions2. This function is then applied tojane@t6. 2

6 Immediate Object Conversions

The temporal infrastructure proposed in this paper is sufficiently powerful to support schema change ap-

proaches other than the deferred coercion strategy that we have developed. In this section, we show how the

immediate object coercion approach of schema change propagation can be implemented using the model

presented in Section 5. In this case, changes are immediately propagated to the instances. In our model,

this would mean that each time the implementation of a behavior changes, the behavior is coerced to the

newer implementation at that time and the structural representations of all objects of that type are updated,

if necessary. These changes are recorded in theB implementationandB changesbehaviors, respectively.

Figure 14 shows the changes list forT person and the representation history of objectjoe when immediate

object coercion is used for the behavior implementation changes shown in Figure 10.

TheB changesbehavior forT person0 shows that each time the implementation of a behavior changes

after the object was created, the behavior is coerced to the newer implementation since immediate object

coercion is used. For example, afterjoe is created, the implementation of behaviorB birthDatechanges

at timest2, t4, t6, andt12 (see Figure 10). Subsequently,B birthDateis also coerced to the newer imple-

mentations at these times. This is shown in the changes list ofT person. The representation history of an

object is only updated when a change to the representation of an object occurs due to the coercion of one of

its behaviors. For example, although the behaviorB birthDateis coerced to a newer implementation at time

t2, the representation ofjoe is unaffected since the implementation is changed from one computed function



joe.B created = t0
joe.B history = f<[t0; t4); joe@t0>;<[t4; t6); joe@t4>;<[t6; t8); joe@t6>;

<[t8; t10); joe@t8>;<[t10; t12); joe@t10>;<[t12; t16); joe@t12>;
<[t16; now]; joe@t16>g

jane.B created = t6
jane.B history = f<[t6; t8); jane@t6>;<[t8; t10); jane@t8>;<[t10; t12); jane@t10>;

<[t12; t16); jane@t12>;<[t16; now]; jane@t16>g
T person0.B changes = f<t0; B birthDate>;<t0; B age>;<t2; B birthDate>;

<t4; B birthDate>;<t6; B birthDate>;<t6; B age>;

<t8; B age>;<t10; B age>;<t12; B birthDate>;

<t12; B age>;<t14; B spouse>g

Figure 14: The representation objects ofjoe and jane, and the changes list ofT person for immediate

object coercion.

to another computed function (see Figure 10). Therefore,joe is unchanged att2. A similar situation occurs

at t14 for joe andjane when behaviorB spouseis added to typeT person0.

With immediate coercion, if a behavior implementation change at timet for a typeT necessitates an

update of the representation of an object, the change is recorded in the representation histories ofall objects

of typeT that exist at timet. This is exemplified in Figure 14 where the tuples in representation histories of

objectsjoe andjane (of typeT person) are updated at the same time afterjane was created (fromt8 to

now).

In the immediate coercion approach, Algorithm 5.2 is carried out at the time of behavior implementation

change, and not during a behavior application process as was the case in deferred coercion. The only

difference to the dispatch algorithm is that invocation of coerce is not necessary. The example below shows

how the dispatch process is followed when immediate object coercion is used for the behavior application

given in Example 5.2.

Example 6.1 Behavior applicationjoe:[t7]B birthDate

The validity test is satisfied. The appropriate representation object forjoe at timet7 is joe@t6, while the

appropriate implementation ofB birthDatefor typeT person0 is the stored functions1. We can now apply

s1 to joe@t6. The function and representation are correct forjoe since the implementation of behavior

B birthDatechanged at timet6 for this object, andB birthDatewas coerced to the new version at the same

time.2

From the above example, we note that the function and the representation object obtained forjoe using

immediate object coercion are the same as those obtained in Example 5.2, in which deferred object coercion

was used. The function chosen in both cases is the stored functions1, and the representation object chosen

for joe in both cases isjoe@t6. This equivalence of deferred and immediate object coercion strategies is

neccessary.



7 Conclusion

In this paper, we present a new approach to schema evolution for ODBMS. This strategy is characterized by

four novel concepts:

1. The schema evolution strategy is based on a uniform temporal model. Consequently, no special

concepts are introduced for modeling schema changes that are expressed as changes to the behaviors

defined on types. These changes are tracked using the sameT history mechanism that is used for

modeling temporal changes to non-schema objects in the database.

2. In addition to schema changes, the strategy supports lossless recording of these changes, allowing

historical queries.

3. The strategy supports both deferred (lazy) object update semantics and immediate object update se-

mantics using the same basic algorithms. Only the application time of the algorithms is changed to

produce the desired update semantics.

4. The granularity of schema changes is finer than traditional approaches that require a complete type

change every time a single behavior changes. We handle behavior changes individually. This approach

has two distinct advantages depending on whether deferred or immediate update semantics are used. If

deferred update semantics are used, the finer granularity results in an even “lazier” update semantics.

That is, when a modified behavior is applied to an object, only part of the object's structure needs to

be updated to reflect changes for only that particular behavior. Updates due to other behavior changes

are delayed until they are needed by other behavior applications. If immediate update semantics are

used, then the update can be done more quickly since the system knows that changes to the affected

type are localized to the single behavior that was just changed. This is important because a major

drawback of immediate update semantics is the speed of the update.

Support for historical queries potentially has a profound effect on ODBMS behavior dispatch. In traditional

behavior dispatch, each behavior on a type is bound to a single function (implementation) and dispatch is a

mapping of behavior-type pairs to functions. With recorded schema evolution, each behavior may be bound

to a different function at different times. Therefore, the dispatch process must map a three-tuple (behavior,

type, time) to a function. Unfortunately, the domain of the temporal argument is very large compared to the

domain of all behaviors (or all types), so standard dispatch techniques do not work very well. This paper

provides a temporal dispatch algorithm to demonstrate that no new concepts need to be added to the schema

evolution model to solve the temporal dispatch

To overcome the corrective nature of schema evolution, the concept ofschema versioning in ODBMSs

has been proposed [SZ86, SZ87, KC88, ALP91, MS92, MS93]. In most of these systems, a change to

a schema object may result in a newversion of the schema object, or the schema in general. However,

schema changes are usually of a finer granularity than definable versions. This implies that not every schema

change should necessarily result in a new version. Rather, one should be able to define a version during any

stable period in the evolutionary history of the schema. Within a particular version, the evolution of the

schema should be traceable. For example, in an engineering design application many components of an



overall design may go through several modifications in order to produce a final product. Furthermore, each

intermediate version of the component may have certain properties that need to be retained as a historical

record of that particular component (the different versions may have been used in other products). The

inter-connection of the various versions of components also gives rise to versions of the overall design. The

resulting designs may be part of others and so on. Our contention is that schema evolution using temporal

modeling sets the stage for full-fledged version control. We intend to use the schema evolution policies

reported in this paper as a basis for version control in ODBMSs.
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