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Abstract

The issues of schema evolution and temporal object models are generally considered to be orthogonal
and are handled independently. However, to properly model applications that need incremental design
and experimentation, the evolutionary histories of the schema objects should be traceable rather than
corrective so that historical queries can be supported. In this paper we propose a method for managing
schema changes, and propagating these changes to object instances by exploiting the functionality of a
temporal object model. The result is a uniform treatment of schema evolution and temporal support for
many object database management systems applications that require both.
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1 Introduction

In this paper, we address the issues of schema evolution and temporal object models. These two issues
are generally considered to be orthogonal and are handled independently. However, many object database
management system (ODBMS) applications require both. For example:

e The results reported in [Sjg93] illustrate the extent to which schema changes occur in real-world
database applications such as health care management systems. Such systems also require a means to
represent, store, and retrieve the temporal information in clinical data [KFT91, DM94, CPP95].

e The engineering and design oriented application domains (e.g., CAD, software design process) require
incremental design and experimentation [KBCG90, G¥90]. This usually leads to frequent changes
to the schema over time, which need to be retained as historical records of the design process so that
historical queries can be executed.

Given that the applications supported by ODBMSs need support for incremental development and experi-
mentation with changing and evolving schema, a temporal domain is a natural means for managing changes
in schema and ensuring consistency of the system. The result is a uniform treatment of schema evolution
and temporal support for many ODBMS applications that require both.



A typical schema change can affect many aspects of a system. There are two fundamental problems to
consider:

1. Semantics of Change. The effects of the schema change on the overall way in which the system or-
ganizes information (i.e., the effects on the schema). The traditional approach to solving this problem
is to define a set of invariants that must be preserved over schema modifications.

2. Change Propagation. The effects of the schema change on the consistency of the underlying objects
(i.e., the propagation of the schema changes to the existing object instances). The traditional approach
of solving this is tacoerce objects to coincide with the new definition of the schema.

In this paper, a method for managing schema changes and propagating the changes to underlying instances
by exploiting the functionality of a temporal object model is presented. The approach described in this
work is conducted within the context of the TIGUKAT temporal DBMS. However, the results reported here
extend to any ODBMS that uses time to model evolution histories of objects.

Schema evolution is the process of allowing changes to schema without loss of information. Typical
schema changes include adding and dropping behaviors (properties) defined on a type, and adding and
dropping subtype relationships between types. The meta-model of TIGUKAT is uniformly represented
within the object model itself, providing reflective capabilitie€J&3]. One result of this uniform approach
is that schema objects (e.qg., types) are objects with well-defined behaviors. The approach of keeping track of
the changes to a type is the same as that for keeping track of the changes to objects. By defining appropriate
behaviors on the meta-architecture, the evolution of schema is supported. Any changes in schema object
definitions involve changing the history of certain behaviors to reflect the changes. For example, adding
a new behavior to a type changes the history of the type's interface to include the new behavior. The old
interface of the type is still accessible at a time before the change was made.

Using time to maintain and manage schema changes gives substantial flexibility in the software design
process. It enables the designers to retrieve the interface of a type that existed at any time in the design
phase, reconstruct the super(sub)-lattice of a type as it was at a certain time (and subsequently the type
lattice of the object database at that time), and trace the implementations of a certain behavior in a particular
type over time.

A change to the schema of an object database system necessitates corresponding changes to the under-
lying object instances in order to ensure the overall consistency of the system. Change propagation deals
with reflecting changes to the individual objectsdmgrcing them to coincide with the new schema defini-
tion. Two main approaches have been proposed to deal with coercing object instances to reflect the changed
schemaimmediate anddeferred. Immediate object coercion results in suspension of all running programs
until all objects have been coerced, while deferred object coercion leads to delays each time an object is
accessed.

The change propagation strategy proposed in this paper supports both deferred object update semantics
and immediate object update semantics. The granularity of object coercion is based on individual behaviors.
Thatis, individual behaviors defined on the type of an object can be coerced to a new definition for that object
when the object is accessed, leaving the other behaviors to retain their old definitions. This is in contrast



to other models where an object is converted in its entirety to a changed type. The approach taken in our
work has two distinct advantages, depending on whether deferred or immediate update semantics are used.
If deferred update semantics are used, the “behavior-at-a-time” coercion results in an even “lazier” update
semantics, since a behavior application to an object results in the update of only part of the object's structure.
Updates due to other behavior changes are delayed until they are needed by other behavior applications. If
immediate update semantics are used, then the update can be done more quickly since the system knows
that changes to the affected type are localized to the single behavior that was just changed. This is important
because the major drawback of immediate update semantics is the speed of update. Another identifying
characteristic of the propagation model is that a historical record of the coerced behaviors is maintained for
each object so that even if behaviors are coerced to reflect an update to an object, older definitions of the
behaviors can still be accessed for each object.

The remainder of the paper is organized as follows. In Section 2, we examine some of the previous
work on schema evolution. We also examine the three main approaches to schema change propagation,
and compare our approach to these. In Section 3, we give a brief overview of the TIGUKAT temporal
object model with an emphasis on how histories of objects are maintained. In Section 4, we describe the
schema changes that can occur in TIGUKAT, and how they are managed using a temporal object model. In
Section 5, we describe how behavior implementation changes are propagated to underlying object instances,
and provide algorithms that implement the semantics of our time-varying behavior dispatch process. In
Section 6, we show how the immediate object coercion is implemented in our approach. Concluding remarks
and results of the paper are summarized in Section 7.

2 Redated Work

The issue of schema evolution has been an area of active research in the context of ODBMSs [BKKK87,
KC88, PS87, NR89]. In much of the previous work, the usual approach is to define a set of invariants
that must be preserved over schema modifications in order to ensure consistency of the system. Orion
[BKKK87, KC88] is the first system to introduce the invariants and rules approach as a more structured
way of describing schema evolution in ODBMSs. Orion defines a complete set of invariants and a set
of accompanying rules for maintaining the invariants over schema changes. The work of Smith and Smith
[SS77] on aggregation and generalization sets the stage for defining invariants when subtypes and supertypes
are involved. Changes to schema in previous workscareective in that once the schema definitions are
changed, the old definitions of the schema are no longer traceable. In TIGUKAT, a set of invariants similar
to those given in [BKKK87] are defined. However, changes to the schema are not corrective. The provision
of time in TIGUKAT establishes a natural foundation for keeping track of the changes to the schema. This
allows applications, such as CAD, to trace their design over time, make revisions if necessary, and execute
historical queries.

There have been many temporal object model proposals (for example, [RS91, SC91, WD92, KS92,
CITB92, BFG97]). In handling temporal information, these models have focussed on managing the evolu-
tion of real-world entities. The implicit assumption in these models is that the schema of the object database
is static and remains unchanged during the lifespan of the object database. More specifically, the evolution of



schema objects (i.e., types, behaviors, etc) is considered to be orthogonal to the temporal model. However,
given the kinds of applications that an ODBMS is expected to support, we have exploited the underlying
temporal domain in the TIGUKAT temporal model as a means to support schema evolution.

In the context of relational temporal models, Ariav [Ari91] examines the implications of allowing data
structures to evolve over time, identifies the problems involved, and establishes a platform for their discus-
sion. McKenzie and Snodgrass [MS90] develop an algebraic language to handle schema evolution. The
language includes functions that help track the schema that existed at a particular time. Schema definitions
can be added, modified, or deleted. Apart from the addition and removal of attributes, the nature of the
modifications to the schema and their implications are not demonstrated. Roddick [Rod91] investigates the
incorporation of temporal support within the meta-database to accommodate schema evolution. In [Rod92],
SQL/SE, an SQL extension that is capable of handling schema evolution in relational database systems is
proposed using the ideas presented in [Rod91]. The approach used in the TIGUKAT temporal object model
is similar in the sense that temporal support of real-world objects is extended in a uniform manner to schema
objects, and then used to support schema evolution. Some of the ideas in [Rod91, Rod92, Rod95] have been
carried forward in the design of the TSQL2 temporal query language [Sn095].

Skarra and Zdonik [SZ86, SZ87] define a framework within the Encore object model for versioning types
as a support mechanism for changing type definitions. A type is organized as a set of individual versions.
This is known as thgersion set of the type. Every change to a type definition results in the generation of a
new version of the type. Since a change to a type can also affect its subtypes, new versions of the subtypes
may also be generated. This approach provides fine granularity control over schema changes, but may lead
to inefficiencies due to the creation of a new version of the versioned part of an object every time a single
attribute changes its value. In our approach, any changes in type definitions involve changing the history of
certain behaviors to reflect the changes. For example, adding a new behavior to a type changes the history
of the type's interface to include the new behavior. The old interface of the type is still accessible at a time
before the change was made. This alleviates the need of creating new versions of a type each time any
change is made to a type.

In addition to schema modifications, a system must define how schema changes are reflected in the
instances. In order for the instances to remain meaningful, either the relevant instances must be coerced into
the new definition of the schema or a new version of the schema must be created leaving the old version
intact. Three main approaches have been identified and employed in thénpaediate (conversion) and
deferred (lazy, screening) propagate changes to the instances - only at different times - filkéeng is a
solution for versioning that attempts to maintain the semantic differences between versions of schema. A
fourth approach is to combine the above three methods ihtdiad model. The various techniques are
summarized below.

e Immediate: Each schema change initiates an immediate conversion of all objects affected by the
change. This approach causes delays during the modification of schema, but no delays are incurred
during access to objects. GemStone [PS87]@adFMZ*95] systems report the use of immediate
conversion for schema change propagationOn immediate conversion is implemented using the
algorithm defined for deferred conversion.



e Deferred: Schema changes generate a conversion program that is capable of converting objects into
the new representation. The conversion is not immediate; but is delayed until an instance of the
modified schema is accessed. Object access is monitored and whenever an object is accessed, the
conversion program is invoked, if necessary, to convert the object into the new definition. The conver-
sion programs resulting from multiple independent changes to a type are composed, meaning access to
an object may invoke the execution of multiple conversion programs where each one handles a certain
change to the schema. Deferred conversion causes delays during object access. ORION [BKKK87]
uses this approach and OTGen [LH90] uses it for database reorganization[fviZ94, FMZ'95],
implementation strategies are defined for conversion functions implemented as deferred database up-
dates.

e Filtering: In the filtering approach, changes are never propagated to the instances. Instead, objects
become instances of particular versions of the schema. When the schema is changed, the old objects
remain with the old version of the schema and new objects are created as instances of the new one.
The filters define the consistency between the old and new schema versions and handle the problems
associated with behaviors written according to one version accessing objects of a different version.
Error handlers are one example of filters. They can be defined on each version of the schema to trap
inconsistent access and produce error and warning messages. The Encore model [SZ86] uses type
versioning with error handlers as a filtering mechanism. The Avance [BH89] system adopts a similar
approach to Encore. Exception handlers are defined as filters to cope with mismatches between differ-
ent versions. Both Encore and Avance use emulation to present old instances as if they are new ones.
It is not possible to associate additional storage with existing attributes since all objects are strictly
connected to the version in which they were created. As such additional attributes would necessarily
be read-only and have a fixed, default value. This problem is remedied in CLOSQL [MS92] where
objects are allowed to dynamically change the class version with which they are connected. Each
attribute of an object has update and backdate functions (provided by the user) for converting objects
into different formats. However, the overhead of the conversion process and the added responsibility
on the user are quite significantin CLOSQL.

e Hybrid: A hybrid approach combines two or more of the above methods. GemStone mentions an
effort to incorporate a hybrid approach, but currently we are unaware of such a system implementa-
tion. In Sherpa [NR89], schema changes are propagated to instances through conversion or screening,
which is selected by the user. However, only the conversion approach is discussed. Change propaga-
tion is assisted by the notion oflevant classes. A relevant classis a semantically consistent partial
definition of a complete class and is bound to the class. A relevant class is similar to a type version in
[SZ86] and a complete class resembles a version set.

Although numerous approaches have been proposed for propagating different schema changes to object
instances, the schema change that involves changing the implementation of a behavior, and how it affects the
underlying object structure has not been addressed comprehensively. In this work, a deferred approach that
uses a finer grained filtering based on behavior histories is used as the underlying mechanism for behavior



implementation change propagation. The approach also allows for immediate behavior coercion to reflect
the changed schema. This makes it feasible for the system to take a more active role by using deferred object
coercion as the default and switching to immediate object coercion whenever the system is idle.

In systems that use immediate or deferred object coercion, the entire object must be converted upon
coercion and in the systems that don't define versions of schema, the old state of the object is lost. The
approach in this paper differs in that the granularity of object coercion is based on individual behaviors.
That is, an individual behavior of an object's type can be coerced to a new definition for that object, leaving
the other behaviors to retain their old definitions. Furthermore, a historical record of the coerced behaviors is
maintained for each object so one can access the older definitions of the behaviors for each object. Complete
object conversion takes place only if all behaviors defined in the type of the object have been coerced. This
results in considerable savings of work.

3 TheTemporal Object Model

3.1 Basic Object Model

We work with an object model whose identifying characteristics arbétavioral nature and itsiniform
object semantics. The modellishavioral in the sense that all access and manipulation of objects is based
on the application of behaviors to objects. The modeinifgormin that every component of information,
including its semantics, is modeled afrat-class object with well-defined behavior. Other typical features
supported by the model include strong object identity, abstract types, strong typing, complex objects, full
encapsulation, multiple inheritance, and parametric types. This is the model of the TIGUKAT ODBMS
[Pet94,0PS 95] that is being implemented at the University of Alberta.

The primitive objects of the model includatomic entities (reals, integers, strings, etctypesfor defin-
ing common features of objectghaviorsfor specifying the semantics of operations that may be performed
on objectsfunctionsfor specifying implementations of behaviors over typasses for automatic classifi-
cation of objects based on tyhendcollectionsfor supporting general heterogeneous groupings of objects.
Figure 1 shows a simple type lattice that will be used to illustrate the concepts introduced in the rest of the
paper.

T_object

/

T_person T_taxSource T_bloodTest

SN

T_patient T_employee
T_null
Figure 1: Simple type lattice.

The access and manipulation of an object's state occurs exclusively through the application of behav-

Types and their extents are separate constructs in our model.



iors. We clearly separate the definition of a behavior from its possible implementations (functions). The
benefit of this approach is that common behaviors over different types can have different implementations
in each of the types. This provides direct support for behasterloading andlate binding of functions
(implementations) to behaviors.

In this paper, a reference prefixed by_" refers to a type, C_" to a class, B." to a behavior, and
“T_X(T.Y)” to the typeT_X parameterized by the typE.Y. For example,T_per son refers to a type,
C_person to its classB_ageto one of its behaviors anficol | ecti on(T_per son) to the type of collec-
tions of persons. A reference such@e, without a prefix, denotes some other application specific reference.
Types are instances of the primitive type ype and behaviors are instances of the t¥peehavi or . The
type T_obj ect binds the type lattice from the top (i.e., least defined type) while the Typal | binds
the lattice from the bottom (i.e., most defined type). The behdibaseTypéds defined on the parametric
type T_X(T_Y) to return the base (argument) typeY.

3.2 TheTemporal Extensions

The philosophy behind adding temporality to the basic object model is to accommodate multiple applications
that have different type semantics requiring various notions of timeJB87, GS97]. Consequently, the
temporal object model consists of an extensible set of primitive time types with a rich set of behaviors
to model time. The only part of the temporal model that is relevant to this paper is the management of
event histories. Therefore, we focus on history management and details of other aspects can be found in
[GLOS96].

Our model represents the temporal histories of real-world objects whose typ&X ias objects of
the T_hi st or y(T_X) type. For example, suppose a behausalaryis defined in thelT_enpl oyee
type. Now, to keep track of the changes in salary of employBesalarywould return an object of type
T_hi st or y(T_real) which would consist of the different salary objects of a particular employee and their
associated time periods.

A temporal history consists of objects and their associated timestamps (time intervals or time instants).
One way of modeling a temporal history would be to define a behavior that returns a collectitmestamp,
object> pairs. However, instead of structurally representing a temporal history in this manner, we use a
behavioral approach by defining the notion dfraestamped object. A timestamped object knows its time-
stamp (time interval or time instant) and its associated value at (during) the timestamp. A temporal history
is made up of such objects. The following behaviors are defined oh.ttiest or y (T X) type:

B_history:  T_collection(T_timeStampedObject(T.X))

B_timeline : T_timeline
B_insert : TX,TtimeStamp —
B_remove : TX,TtimeStamp —

B_validObjects:  T_timeStamp — T_collection(T_timeStampedObject(T X))
B_validObject:  T_timeStamp — T_timeStampedObject(T X)



Behavior B_history returns the set (collection) of all timestamped objects that comprise the history.
A history object also knows the timeline it is associated with and this timeline is returned by the behav-
ior B_timeline. The timeline basically orders the timestamps of timestamped object®$9B]. The
B_insertbehavior accepts an object and a timestamp as input and creates a timestamped object that is in-
serted into the history. Behavi@ removedrops a given object from the history at a specified timestamp.
The B_validObjectsbehavior allows the user to get the objects in the history that were valid at (during) a
given timestamp. Behavids_validObjectis derived fromB_validObjectsto return the timestamped object
that exists at a given time instant.

Each timestamped object is an instance of Thiei meSt anpedCbj ect (T_X) type. This type rep-
resents objects and their corresponding timestamps. TypeneSt anpedCbj ect defines behaviors
B_value and B_timeStampwhich return the value and the timestamp (time interval or time instant) of a
timestamped object, respectively.

Example 3.1 Suppose the typ&_pat i ent shown in Figure 1 represents different patients in a hospital.
To represent a patient's blood test history over the course of a particular illness, the bBhbidodTests

is defined onT_pat i ent to return an object of typ& _hi st or y(T_bloodTest). Each blood test is
represented by an object of the typebl oodTest. Therefore, the history of the different blood tests
undertaken byoe (an instance ofl _pati ent) would then be retrieved using the behavior application
joe.B_bloodTests Let us call this history objedtloodTestHistory. Now, supposgoe was suspected of
having septicemfaand had diagnostic hematology and microbiology blood tests on 15 January 1995. As
a result of a raised white cell courjne was given a course of antibiotics while the results of the tests
were pending. A repeat hematology test was ordered on 20 February 1995. To record these tests, three
objects with typdl bl oodTest were created and then entered into the object database using the following
TIGUKAT behavior applications:

blood TestHistory. B_insert(microbiology, 15 January 1995)
blood TestHistory. B_insert(hematologyl, 15 January 1995)
blood TestHistory. B_insert(hematology2, 20 F'ebruary 1995)

If subsequently there is a need to determine which blood jest®ok in January 1995, this would be
accomplished by the following behavior application:

blood TestHistory. B_validObjects([1 January 1995, 31 January 1995])

This would return a collection of the two timestamped objeldtmye StampedMicrobiology, timeStamped-
Hematologyl}, representing the blood tegte took in January 1995. The first timestamped object would
havemicrobiology as its value and the second would h&egnatology as its valué.

2An infection of the blood.
%It should be noted that although we have two different timestamped objects containing the midr@siology and

hematologyl, they both contain the same timestamp. That is, althdigeStampedMicrobiology.B_value = microbiology
andtimeStampedHematologyl.B_value= hematologyl, timeStampedMicrobiology.B_timestamp= timeStampedHematol-
ogyl.B_timestamp= 15 January 1995.



To assist in clarifying the contents and structure of a history object, we give a pictorial representation
of bloodTestHistory in Figure 2. In the figure, the boxes shaded in grey are objects. Objects have an
outgoing edge labeled by each applicable behavior that leads to the object resulting from the application
of the behavior. For example, applying the behaBotimelineto the objecbloodTestHistory results in
the objectloodTestTimeline. A circle labeled with the symbols} represents a collection object and has
outgoing edges labeled withke” to each member of the collection. For example, applyingBhkistory
behavior to the objediloodTestHistory results in a collection object whose members are the timestamped
objectstimeStampedMicrobiology, timeStampedHematologyl, andtimeStampedHematology?2. Fi-
nally, the B_insert behavior updates the blood test histobjopdTestHistory) when given an object of
typeT_bl oodTest and a timestamp. Similarly, th& validObjectsbehavior returns a collection of times-
tamped blood test objects when given a timestamp.

B_bloodTests i
bloodTestHistory

B_insert (aBloodTest,aTimeStamp )

B_timeline

bloodTestTimeline

B_validObjects (aTimeStamp )

@< timestamped blood tests

B_history

€ t

timeStampedHematology2 ‘

timeStampedHematology1 ‘

timeStampedMicrobiology ‘

B_timeStamp B_value

B_value B_value  B_timeStamp

hematology?2

B_timeStamp

microbiology 15 January 1995

Figure 2: A pictorial representation of a patient's blood test history.

hematology1 ‘ ‘ 20 February 1995 ‘

Another important behavior introduced by the temporal extensions iB thfespanbehavior defined
on T_obj ect. This behavior is applied to an object, accepts a collection as an argument, and returns a
timestamp (interval) representing the time in which the object exists in the given collection. For example,
the behavior applicatiojoe.B_lifespar(joe.B_mapstoB_classofB_shallowExten) returns the lifespan of
the objectoe in the class associated wihper son. The behaviolB_mapstois defined inT .obj ect
and returns the type of the receiver object. Bielassofbehavior is defined i _t ype and returns the
class associated with the receiver type object, and the behBnsballowExtenteturns all the elements of
T_per son excluding objects from the subtypesbiper son.



4 Management of Schema Evolution by the Temporal Object M odel

4.1 Schema Related Changes

There are different kinds of objects modeled by TIGUKAT, some of which are classified as schema objects.
Schema objects fall into one of the following categorigge, class, behavior, function, and collection.

There are three kinds of operations that can be performed on schema ddijdctsop andmodify. Table 1

shows the combinations between the various schema object categories and the different kinds of operations
that can be performed in TIGUKAT [Pet940R7]. Thebold entries represent combinations that imply
schema changes while tbaphasized entries denote non-schema changes.

Operation
Objects Add (A) Drop (D) Modify (M)
Type (T) subtyping typedeletion add behavior (AB)
drop behavior (DB)
add supertype link (ASL)
drop supertypelink(DSL)
Class (C) classcreation classdeletion extent change
Behavior (B) || behavior definition | behavior deletion | change association(CA)
Function (F) || function definition | function deletion implementation change
Collection (L) || collection creation | collection deletion extent change

Table 1: Classification of schema changes.

In the context of a temporal modeidding refers to creating the object and beginning its histdrgp-
ping refers to terminating the history of an object, anatlifying refers to updating the history of the schema
object. Since type-related changes form the basis of most other schema changes, we describe the modifica-
tions that affect the type schema objects. Type modification (depicted at the intersection of the (M) column
and (T) row in Table 1) includes several kinds of type changes. They are separated into changes in the
behaviors of a type (depicted &T-AB andM T-DB in Table 1) and changes in the relationships between
types (depicted asl T-ASL andM T-DSL in Table 1). Invariants for maintaining the semantics of schema
modifications in TIGUKAT are described in [Pet940B7]. The invariants are used to gauge the consis-
tency of a schema change in that the invariants must be satisfied both before and after a schema change is
performed. The semantics of the changes to a type are discussed in the following sections. The discussion
includes the neccessary behavior applications that would be needed to accomodate changes to a type. These
behavior applications would all be done by the system to manage the temporal schema information. They
are shown and described here to illustrate that changes to a type can be done through consistent behavioral
semantics of the TIGUKAT model itself.



4.2 Changing Behaviorsof a Type

Every type has amterface, which is a collection of behaviors that are applicable to the objects of that type.
A type's interface can be dichotomized into two disjoint subsets:

1. the collection ohative behaviors, which are those behaviors defined by the type and not defined on
any of its supertypes;

2. the collection ofnherited behaviors, which are those behaviors defined natively by some supertype
and inherited by the type.

There are three behaviors definedlahy pe to return the various components of a type's interf&aative
returns the collection of native behavioB,inheritedreturns the inherited behaviors, aBdinterfacere-
turns the entire interface of the type.

Types can evolve in different ways. One aspect of a type that can change over time is the behaviors
in its interface (i.e., adding or deleting behaviors). To keep track of this aspect of a type's evolution, we
define histories of interface changes by extending the interface behaviors with time-varying properties. The
definition of the extended behaviors are as follows:

B_native : Thistory(T_collection(T behavior))
B_inherited : T history(T_collection(T behavior))
B_inter face : T history(T_collection(T behavior))

Each behavior now returns a history consisting of a collection whose elements are timestamped collec-
tions of behaviors. Adding a new behavior to a type changes the history of the type's interface to include
the new behavior. The old interface of the type is still accessible at a time before the change was made.

Note that we do not need to explicitly maintain separate histories for each of these behaviors. For
example, in an implementation we can choose to only maintain the native behaviors of a type. The entire
interface of a type can be derived by unioning the native behaviors of all the supertypes of the type. The
inherited behaviors can be derived by taking the difference of the interface and the native behaviors of the
type. As another alternative, we may choose to maintain the interface of a type and derive the native and
inherited behaviors. In this approach, the native behaviors of a type can be derived by unioning the interfaces
of the direct supertypes and subtracting the result from the interface of the type. The inherited behaviors can
be derived in the same way as above.

With the time-varying interface extensions, we can determine the various aspects of a type's interface at
any time of interest. For example, Figure 3 shows the history of the entire interface for thie pygreson.

Attimet,, behaviordB_name B_birthDate andB_ageare defined ofi_per son and the initial history
of T_per son's interface i{<t ¢, { B_.name, B_birthDate, B_age}>}. Attime ts, behaviorB_spousas
added tar _per son. Toreflect this change, the interface history is updatdet@, { B_name, B_birthDate,
B_age}>, <ts,{B_name, B_birthDate, B_age, B_spouse}>}. This shows that between andts only
behaviorsB_name B_birthDate and B_ageare defined and at behaviorsB_name B_birthDate B_age
B_spouseexist. Next, at timety, behaviorB_ageis dropped from typel _per son and at the same
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Figure 3: Interface history of typE_per son.

‘ B_children

‘ B_spouse ‘ B_birthDate

time behaviorB_childrenis added. The final history of the interface Dfper son after this change is
{<to, { B-name, B_birthDate, B_age}>, <ts, { B_-name, B_birthDate, B_age, B_spouse}>, <tig,
{B_name, B_birthDate, B_spouse, B_children}>}*. The native and inherited behaviors would contain
similar histories. Using this information, we can reconstruct the interface of a type at any time of interest.
For example, at time; the interface of typd _per son was{B_name, B_birthDate, B_age}, at timets
itwas{B_name, B_birthDate, B_age, B_spouse}, and at time, (now) it is { B_name, B_birthDate,
B_spouse, B_children}.

The behavioral changes to types include ih&-AB and M T-DB entries of Table 1. These changes
affect various aspects of the schema and have to be properly managed to ensure consistency of the schema.

Modify Type- Add Behavior (MT-AB). This change adds a native behavido a typeT" at timet. The
MT-AB change has the following effects:

e The histories of the native and interface behaviors of fijpeeed to be updated. The behavior
applications?’. B_native.B_insert(b,t) andT.B inter face.B_insert(b,t) perform this up-
date. For example, the behavior applicatioper son.B_interfaceB_inser{B_spouségs) up-
dates the interface history ®fper son when behavioB_spousés added tdf per son attime
ts.

e The implementation history of behavibneeds to be updated to associate it with some function
f. This is achieved by the behavior applicatiofs implementation.B insert(f,t) (details

“Note that in Figure 3 objects that are repeated in the timestamped collections are actually the same object. For example, the
B_nameobject in all three timestamped collections is the same object. It is shown three times in the figure for clarity.



on implementation histories of behaviors are given in Section 4.3). For example, if the function
associated with behavi@_spousés the stored function 5,,,s., then the implementation his-
tory of B_spousés updated using the behavior applicat®spouseB implementatiorB _insert
(Sspousests).

e The history of inherited and interface behaviors of all subtypes of Typeeds to be adjusted.
That is,

vI' | T' subtype-ofl’, T".B_inherited. B_insert (b,t) andT . B_inter face. B_insert (b, t)

For example, the histories of inherited and interface behaviors of tYp=spl oyee and
T_patient (see Figure 1) need to be adjusted to reflect the addition of behBvsmouse
intypeT_per son at timets. For theT_enpl oyee type, this is accomplished using the behav-
ior applicationsT enpl oyee.B_interfaceB_inser{B_spousé:s) andT_enpl oyee.
B_inheritedB_inser{B_spousés). Similar behavior applications are carried outTopat i ent .

Modify Type- Drop Behavior (M T-DB). This change drops a native behavidirom a typeT" at timet.
When a behavior is dropped, its native definition is propagated to the subtypes unless the behavior is
inherited by the subtype through some other chain. In this way, as with the supertypes, the subtypes
of a type also retain their original behaviors. Thus, only the single type involved in the operation
actually drops the behavior and the overall interface of the subtypes and supertypes are not affected
by the change. Many behavior inheritance semantics are possible. One such semantics is that when a
native behavior is dropped from a type, all subtypes retain that behavior. This means that if another
supertype of the subtype defines this behavior, there is no change. Otherwise, the behavior in the
subtype moves from the inherited set to the native set. This is the semantics we are modeling in this
paper. If any other behavior inheritance semantics are used, appropriate changes can easily be made
to the temporal histories. THd T-DB change has the following effects:

e The native behaviors history of tyfféchanges. The behavior applicatibnB native.
B_remove(b, t) performs this update. For example, the behavior applicdtiper son.
B_native B_removéB_aget,,) updates the history of native behaviorsiaper son when the
behaviorB_ageis dropped from typd _per son.

e The native and inherited behavior histories of the subtyp&s(pbssibly) change. For example,
the behavior applicationk enpl oyee.B_nativeB_inser(B_aget,o) andT_enpl oyee.
B_inherited B_-removdB_aget,,) add behavioB_ageto the native behaviors df_enpl oyee,
and drop behavioB_age from the inherited behaviors of enpl oyee respectively, when
B_ageis dropped fronT_per son att,,. Thisis becausB_ageis notinherited byl _enpl oyee
through any other chain. B_agewas inherited byl _enpl oyee from some other supertype,
nothing would change. Similar behavior applications are carried out forTtypet i ent .

4.3 Changing Implementations of Behaviors

Each behavior defined on a type has a particular implementation for that type B Ithplementation
behavior defined off _behavi or is applied to a behavior, accepts a type as an argument and returns the



implementation (function) of the receiver behavior for the given type. In order to model the aspect of
schema evolution that deals with changing the implementations of behaviors on types, we maintain a history
of implementation changes by extending Bigmplementatiorbehavior with time-varying properties. The
definition of the extended behavior is as follows:

B_implementation : T_type — T history(T_function)

With this behavior we can determine the implementation of a behavior defined on a type at any time of inter-
est. For example, Figure 4 shows the history of the implementations for beBagigeon typeT per son.

There are two kinds of implementations for behaviors [Pet94ormputed function consists of runtime calls

to executable code andstored functionis a reference to an existing object in the object database.

B_age

B_implementation (T_person)

functionHistory

B_history

timeStampedFunctionA timeStampedFunctionB timeStampedFunctionC
B_ti meStaer B_value B_ti meStan:/ B_value B_ti meStanV B_value
to G t G U S1

Figure 4: Implementation history of behaviBrageon typeT per son.

In Figure 4, we use; to denote a computed functios;, to denote a stored function. At tinte, the
implementation oB_agechanged from the computed functiento the computed functioss. At time ¢4,
the implementation oB_agechanged from the computed functiefto the stored functior;. All these
changes are reflected in the implementation history of beh#®ziage which is{<tg, ¢y >, <tg,c3>,<
ty, 81>}

Using the results of this section and Section 4.2, we can reconstruct the behaviors, their implemen-
tations and the object representatidrisr any type at any time¢. For example, the interface of type
T_person at timets is given by the behavior applicatioh.per son.[ts5]B_interface which results in
{B_name, B_birthDate, B_age} as shownin Figure 3. We use the synitgX]b to denote the application of
behavior to objecto at timet. The implementation aB_ageatt; is given byB_age[ts]B_implementation
(T_per son), which iscs, as shown in Figure 4.

5Stored functions associated with behaviors allow us to reconstruct object representations (i.e., states of objects) for any type at
any timet. This is useful in propagating changes to the underlying object instances (see Section 5).



In this paper, we assume there is no implementation inheritance. That is, if the binding of a behavior to
a function changes in a type, the bindings of that behavior in the subtypes are unaffected. If implementation
inheritance is desired, it can easily be modeled by temporal histories similarly to behavioral inheritance.

4.4 Changing Subtype/Supertypesof a Type

In Section 4.2, we described how the changes in a type's interface was one aspect in which a type evolves.
Another aspect of a type that can change over time is the relationships between types. These include adding
a direct supertype link and dropping a direct supertype link. Blgipertypesnd B _subtypesehaviors

defined onT_t ype return the direct supertypes and subtypes of the receiver type, respectively. In order to
model the structure of the type lattice through time, we define histories of supertype and subtype changes of
a type by extending thB_supertypesandB_subtypedehaviors with time-varying properties:

B_supertypes : Thistory(T_collection(T type))
B_subtypes : Thistory(T_collection(T type))

Using theB_supertypesnd B_subtypesehaviors, we can reconstruct the structure of a type's super-
type and subtype lattice at any time of interest. To facilitate this, the derived behBviaugerlatticeand
B_sublatticeare defined o _t ype:

B_superlattice : Thistory(T_poset(T_type))
B_sublattice : T history(T poset(T_type))

The behavioB_superlatticas derived by recursively applying_supertypesintil T obj ect isreached,
while the behavioB_sublatticeis derived by recursively applying_subtypesuntil T nul | is reached. In
both cases, the intermediate results are partially ordered. Figure 5 shows the supertype lattice history for
typeT_enpl oyee.

Attimety, the superlattice history of tydeenpl oyee includedthe type$ per son, Tt axSour ce,
andT_obj ect . Attimets, the supertype link betweehenpl oyee andT_t axSour ce is dropped. To
reflect this change, the superlattice historyroénpl oyee is updated td <t, {T_person, T_taxSource,
T object}>, <t5,{T_person,T_object}>}.

The relationships between types include #h&-ASL andM T-DSL entries of Table 1. Similar to the
behavioral changes to types discussed in Section 4.2, the relationships between types affect various aspects
of the schema and have to be properly managed to ensure consistency of the schema.

Modify Type- Add Supertype Link (MT-ASL). Include a type, say, as a direct supertype of another
type, sayl’, attimet. TheMT-ASL change has the following effects:

e The history of the collection of supertypes of typeis updated. The behavior application
T.B_supertypes.B_insert(S,t) performs this update. The history of the super-latticé/ 'of
is adjusted accordingly. For example, adding the supertype link betWesrpl oyee and
T_t axSour ce atty necessitates an update to the history of supertypés &rpl oyee. This
is done by the behavior applicatidnenpl oyee.B_supertypes3 _insert
(T_t axSour ce,ty). The history of the direct supertypesdfenpl oyee would then be{<
to, {T_taxSource}>}.
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Figure 5: Supertype lattice history for typeenpl oyee.

e The history of the collection of subtypes of typeis updated. This is performed by the be-
havior applicatior. B _subtypes. B _insert(T', t). The history of the sub-lattice ¢f is adjusted
accordingly. In this case, the history of the collection of subtypebbaxSour ce has to be
updated using the behavior applicatibn axSour ce.B_subtypesB_inser(T enpl oyee,tq).
The history of the direct subtypes ®ft axSour ce would then be{<ty, {T_employee}>}.

e The behaviors of are inherited by/" and all the subtypes @f. Therefore, the inherited behavior
history of 7" and all subtypes df' is adjusted. The current behaviors%ére inherited by” and
all subtypes off’, and timestamped with- the creation time of the supertype link.

Vb € S.B_interface.B_history.B_last,VT/ | T subtype-off’, T/.B_inherited.B_insert(b, t)

BehaviorB_lastis defined on typd _hi st or y(T_X) and it returns the collection of behaviors
that are currently valid from the interface history.®f Let us assum@&_t axSour ce has the
behaviorB_taxBracketdefined at,. B_taxBrackethen has to be added to the history of inher-
ited behaviors off _enpl oyee. TheT_enpl oyee.B_inheritedB_inser(B_taxBrackett,) be-
havior application performs this update. The history of the inherited behaviors would tken be
to, { B_name, B_birthDate, B_age, B_tax Bracket }>}. Behavior88_nameB_birthDateB_age
are inherited from typ&_per son (see Figure 3), while behavié_taxBrackeis inherited from
typeT_t axSour ce.

Modify Type - Drop Supertype Link (MT-DSL). Drop a direct supertype link between two types at time
t (a direct supertype link td _obj ect cannot be dropped). Consider tygesand.S wheres' is the



direct supertype df'. Removing the direct supertype link betweéeand,S' at timet has the following
effects:

e Adjustthe history of supertypes @fand the history of subtypes 6f For example, dropping the
supertype link betweeh_enpl oyee andT_t axSour ce atts requires updating the history of
supertypes ol _enpl oyee and the history of subtypes @ft axSour ce. This is carried out
using the behavior applicatiofisenpl oyee.B_supertyped3_ removdT _t axSour ce,ts) and
T_t axSour ce.B_subtypesB_removdT_enpl oyee,ts).

e TheMT-ASL operation is carried out frorii’ to every supertype of, unlessr" is linked to the
supertype through another chain. This operation is not required when the supertype link between
T_enpl oyee andT_t axSour ce is dropped becauskenpl oyee is linked to the supertype
of T_t axSour ce (T_obj ect ) throughT _per son.

e TheMT-ASL operation is carried out from each subtypdaio .S, unless the subtype is linked
to S through another chain. This operation requires adding a supertype link betweeinl
andT_t axSour ce.

e The native behaviors of are dropped from the interface @t That is, the history of inher-
ited behaviors ofl’ is adjusted. This means the behavi®ttaxBracket defined natively on
T_t axSour ce, has to be dropped from the history of inherited behavior$ efrpl oyee.
The behavior applicatiom_enpl oyee.B_inherited B_removdB_taxBracketfts) performs this
update.

45 Queries

In this sub-section, we show how queries can be constructed using the TIGUKAT query language (TQL)
[PLOS93] to retrieve schema objects at any time in their evolution histories. This gives software designers a
temporal user interface that provides a practical way of accessing temporal information in their experimental
and incremental design phases. TQL incorporates reflective temporal access in that it can be used to retrieve
both objects and schema objects in a uniform manner. Hence, TQL does not differentiate between queries
(which are query objects) and meta-queries (which are query schema objects).

451 TheTIGUKAT Query Language

The TIGUKAT Query Language (TJ) is based on the SQL paradigm [Dat87] and its semantics is defined

in terms of an object calculus. Hence, every statement of the language corresponds to an equivalent object
calculus expression. The basic query statement of TQL isdleet statement, which operates on a set of

input collections and returns a new collection as the result:

select < object variable list >

[into < collection name > |
from < range variable list >

[ where < boolean formula > |

5TQL was developed before the release of OQL [Cat94]. It is quite similar to OQL in structure.



The select clause in this statement identifies the objects to be returned in a new collection. There can be
one or more object variables with different formats (constant, variables, path expressions or index variables)
in this clause. They correspond to free variables in object calculus formulasintbhelause declares a
reference to a new collection. If thieto clause is not specified, a new collection is created; however, there
is no reference to it. Thigom clause declares the ranges of object variables ingiect andwhere clauses.
Every object variable can range over an existing collection or a collection returned as a result of a subquery;
a subquery can be given explicitly or as a reference to a query objectfidne clause defines a boolean
formula that must be satisfied by objects returned by a query.

Having described TQL, we show in the next section how temporal objects can uniformly be queried
using behavior applications without changing any of the basic constructs of TQL.

45.2 Query Examples

Example 4.1 Return the time when the behaviBrchildrenwas added to the type per son.
select b.B_timestamp

from b in T_per son.B_interfaceB_history

where B_childrenin b.B_value

The result of this query would be the timg, as seen in Figure 3]

Example 4.2 Return the types that define behaviBrsigeand B_taxBracketas part of their interface.
select T
from 7T in C_type
where (b1 in T'.B_interfaceB_historyand B_agein b1.B_valué or

(b2 in T.B_interfaceB_historyand B_taxBracketin b2.B_value
This query would return the typeBper son, Tt axSour ce, T_enpl oyee, andT.nul | . The type
T_per son defines behavioB_agenatively (see Figure 3), while the tydet axSour ce defines behavior
B_taxBracketnatively. The behavior8_ageand B_taxBracketare inherited by type$_enpl oyee and
T_nul | since they are subtypes®fper son andT_t axSour ce as shown in Figure 1

Example 4.3 Return all implementations of behaviBragein typeT per son before or at time; .

select i.B_value

from ¢ in B_ageB_implementatiofT_per son).B_history

where :.B_timestampB_lessthaneqi)

The behavioB_lessthaneqtts defined on typd t i meSt anp and checks if the receiver timestamp is less
than or equal to the argument timestamp. The result of the query is the computed funamshown in
Figure 6.0

Example 4.4 Return all super-lattices of typeenpl oyee before or at times.
select r.B_value

from r in T_enpl oyee.B_super-latticeB_history

where r.B_timestampB_lessthaneqt@s)



The super-lattice of _enpl oyee att; consists of the types_per son, T_t axSour ce, andT _obj ect .
This is shown in Figure 51

Example4.5 Return the types that define behavBragewith the same implementation as one of their
supertypes at exactly the same time.
select T
from 7T in C_type, V in T.B_supertyped_history, S in V.B_value

¢ in B_ageB_implementatiofil’).B_history,

J in B_ageB_implementatioQS).B_history
where b in S.B_interfaceB_historyand B_agein b.B_valueand

1.B_value= j.B_valueand :.B_timestamp= j.B_timestamp

This query would return the typdsenpl oyee, T pati ent, andT_nul | , assuming the implementation
of behaviorB_ageis not changed when it is inherited by these types.

5 Schema Change Propagation

5.1 Changing I mplementations of Behaviors

There are two kinds of implementations for behaviors [Pet94]cosputed function consists of runtime

calls to executable code andsimred function is a reference to an existing object in the object database.
Thus, a behavior with a computed function implementation can be considered an abstraction of a method in
classical object models, whereas a behavior with a stored function implementation is an abstraction of an
attribute (with “set” and “get” operations). The valid implementation changes for behaviors are shown in
Table 2. The notationomputed; (¢;) andstored; (s;) refer to computed and stored functions respectively.
The subscriptg and; are used to denote distinct functions. The temdefined is for the case when

the behavior is undefined. The combinati@sputed; to computed; andstored; to stored; (which imply
changes to the function code) are not included in the table because these do not reflect changes in function
association. Themphasized entries represent user-level changes (i.e., by the schema designer) boldithe

entry is a system-level change for reorganizing the internal representation of objects.

Old Implementation New Implementation
CC' | computed; computed;
CS | computed; stored;
SS | stored; stored;
SC | stored; computed;
US | undefined stored;
UC' | undefined computed;

Table 2: Valid implementation changes of a behavior in a type.

With the B_implementatiorbehavior (defined in Section 4.3) we can determine the implementation of a
behavior defined on a type at any time of interest. For example, Figure 6 shows the history of the implemen-
tations for behavior8_birthDateandB_ageon typeT per son. A timeline representation and the result of



B_birthDateB_implementatiofT _per son).B_historyandB_ageB_implementatiofT_per son).B_history
are shown. The implementation historiedobirthDateandB_agereturn a collection of timestamped func-
tion objects. The value of each timestamped function is a computed or stored function. The timestamp of
each timestamped function denotes the time interval during which the particular implementation is valid.
The interface history of _per son is also shown for clarity. Th8_interfacebehavior is defined ifi .t ype
and returns a history of the evolution of behaviors in a type. Each timestamped object in the history consists
of a collection of behaviors that are valid during the associated time interval.

Inthe timeline representatioB, X :¢; or B_X:s; denotes the association of a computed or stored function
with behaviorB_X. Moreover, for stored functions the subscripefers to a location (e.g., a slot number)
in an object representation that the stored function accesses. Each association is valid at a cettairdtime
remains valid until it is modified or removed. An object representation (i.e., the state of an object) consists
of a number of slots for holding information carried by the object. The representations of objects at different
times according to the stored functions associated with behaviors at those times are depicted by the boxes
labeled with behaviors. For example, between timeandts, the object representation consists of two
slots — the first slot is for the stored implementation of behaBi@geand the second is fdB birthDate
Between timesg andty, the object representation consists of only one slot which i8fbirthDate since
during this interval B_ageis associated with the computed function,

ty t, t tg tg to t

12

B_birthDate: ¢, B_birthDate: Cq B_birthDate:s, B_birthDate: s, B_age:c, B_age:s, B_birthDate: Cs
B_age:s; B_age:s, B_age:s;
””””” I
B_age B_birthDate B_birthDate B_birthDate | |  B_age !
B_birthDate B_age B_age

Implementation history of behavior B_birthDate for type T_person:
<[ty .ty )iy > <Ity 1y ) e3> <kt ,t5 ). 8, > <ltg .y, )5 > <[y, ,now ] ¢ >}

Implementation history of behavior B_age for type T_person:

{<lty .tg ). sy > <ltg 1tg ). Sy > <ltg b5 ). ¢; > <ltjg 1135 ). S, > <[ty ,now ], sy >}

Interface history of type T_person:
{<[t, ,now ], {B_birthDate ,B_age}>}

Figure 6: Implementation histories of behavi@sbirthDate and B_agefor type T_per son and object
representations.

Figure 6 is used to describe how the implementation changes in Table 2 are maintained by implementa-
tion histories. Prior to time, both behaviors are undefined and at titmeB_ageis defined as stored/(S)
andB_birthDateis defined as computed’("). Attimet,, the implementation aB_birthDatechanges from
the computed function, to the computed functior; (C'C). Attimet4, the implementation oB_birthDate
changes from the computed functionto the stored functiors, (C'S). At time ¢, the implementation of



B_birthDatechanges from the stored functien to the stored functior; (55) andB_agechanges fromns;
to sy (99). At time tg, the implementation oB_agechanges from the stored functiep to the computed
functione, (SC).

Note that at time, the binding of the behaviaB_birthDatechanges from the stored functien to
the computed functions. Since all object representations at time require only one slot, the change to
B_birthDateforces a change tB_ageso that at time, behaviorB_ageaccesses slot one instead of slot
two. Furthermore, the implicitimplementation chang@ofgeis from a stored function to a stored function
(55) which is a system managed change and therefore is transparent to the user. The implicit implemen-
tation change oB_ageis reflected in its history by the two entrieg? 10, t12), s2> and<[t12, now], s;>.
In general, the slots of an object representation are reorganized (i.e., an implicit change occurs) whenever a
stored to computed implementation change removes a slot other than the last slot of an object's representa-
tion. The system can also rearrange slots as part of an implementation change, necessitating internal system
organization as at.

Using the results of this section, one can reconstruct the implementations of behaviors, and the object
representations for any type at any timelr'he implementation oB_birthDateat timet; (wherets < t; <
tg) is given byB_birthDate[t-] B_.implementatioiT _per son) which iss;. Similarly, the implementation
of B_ageat timet; is given by the behavior applicatidage[t;]B_implementatiofiT_per son) which is
s9. Since there are two stored functions, this implies a two slot representation for objects &t.tifteat
is, B_birthDateaccesses slot one using stored functipandB_ageaccesses slot two using stored function

59.

5.2 Change Propagation

The behaviors applicable to an object at its creation is the set of behaviors defined on the type of the object.
The implementations of these behaviors are those that exist in the implementation histories for the type at
creation time (which can be obtained by means ofBhereatedbehavior defined o _obj ect ).

When changes occur to the type definition and behavior implementations, we do not immediately prop-
agate them to the instances. Instead, the old version of the schema is maintained and the change is recorded
in the proper behavior histories. For adding and dropping behaviors, we make changes to the interface his-
tories (B_native B_inherited B_interface of the type [G®P97]. For changes in the implementation of a
behavior we make changes to the implementation his®rir{plementatiohpof the behavior (as described
in Section 5.1).

The propagation of changes to the instances is delayed until the instances are accessed. In our model
this occurs when a behavior is applied to an object. At that point in time, the behavior is coerced to reflect
the implementation changes that have occurred on the behavior since the last behavior application. These
changes are recorded in tBechangedehavior which is defined ili_t ype. The signature foB_changes
is as follows:

B_changes : T_1ist(T_timeStamp, T_behavior)

The result ofB_changess a list of timestamp, behavior) pairs. Each pair denotes the time at which the
implementation for the behavior has changed. Bhehangedist is used by our behavior dispatch routine



(defined in Section 5.3) to determine the most recent coercion time of the behavior that is applied to an
object. The time is used as a reference point for finding an appropriate implementation of the behavior.

A novel characteristic of our model is that the basic unit of object coercion is individual behaviors. More
specifically, objects from the older schema are coerced to the newer schema one behavior at a time. Thus,
portions of an object (i.e., some behaviors) may correspond to older schema, while other portions correspond
to newer schema.

In order to model the representations of an object over time (resulting from changes to its structure),
we use theT_hi st ory mechanism that is described in Section 3.2. For example, Typer son =
T_hi st ory(T_person’) is created to maintain the representations of a person over time. Therefore, if
joe is an object of typd _per son, thenjoe represents the history of its different structural changes over
time. The value of each timestamped object in an objeaft type T_X = T_hi st or y(TX') is called a
representation object of o, and is of typeT X'.

In this paper we are using the notatidrhi st or y(T X’) to denote a type whose schema changes we
wish to record. However, an actual user of the ODBMS would simply use the nofaffoand indicate at
type creation time that the schema changes should be recorded for this type. The ODBMS would then create
T_XasT_hi st ory(T_X') and the user would never deal directly wittk’. However, we will continue to
use the notatioff _hi st or y(T X’} in this paper since we wish to show how our model and algorithms for
schema changes can be defined using only our existing temporal model and without introducing any new
concepts. The user does not actually see offusest ory.

Whenever a change to the representation of an object occurs due to coercion of one of the behaviors
of its base typé the change is recorded by updating the history of its structural changes. Thus, an object
of typeT_hi st or y(T_X') is generic in the sense that it consists of all its representation objects over time.
This is called thegeneric instance of the object. The default representation object of a generic instance is
the most current representation object in the history of its structural changes. The individual representation
objects in the history denote how the object existed at certain times in the past. Each of these representation
objects is called atructural instance of the object and has typeX’. In essence, thB_changedist of the
typeT_X’ and the objects of typ&_hi st or y (T _X’) (potentially) “grow” with each behavior application if
that behavior has been modified since its last application to the object.

Example 5.1 Consider Figure 7, which contains the objpe created as an instance of typéhi st ory
(T_person’). Assuming no behavior application has occurred, the figure shows the created time and the
representation objects @fe. It also shows the changes list Bfper son®. The notatiorn@t; is used to
denote the structural instance of an objeat timet;. Objectjoe is created at tim&,. The default properties
and implementations for this object are those that exist attgneamely,B_birthDatec, andB_ages; (see
Figure 6). There are no entries in the changes Ilist gfer son since no coercion of any behaviors of
T_person’ has taken place yet. Therefojee has only one structural instangeeQt,, the representation
object that existed at the creation timejoé.

Now supposgoe is accessed at timg through the behavior applicatigoe.[t 7] B_birthDate. The
B_birthDatebehavior is coerced to a versionat andjoe is updated. These changes are shown in Figure 8.

"The base type of an objeetof type T_hi st or y<T_X > is the typel X' .
8Although we say the changes list Bfper son, it is actually computed from the base typeTaserson’.B_changes



joe.B_created = t
joe.B_history = {<[to, now], joeQty>}
T person’.B_changes = {}

Figure 7: Initial representation ¢§de and changes list of per son.

joe.B_created = t
joe.B_history = {<[to,t4), joeQty>, <[ts,ts), joeQt>, <[ts, now], joeQtg>}
T_person’.B_changes = {<ty, B_birthDate>, <ty, B_birthDate>, <t4, B_birthDate>,
<tg, B_birthDate>}

Figure 8: The representation objectgad and the changes list f per son after behavior application of
B_birthDateat timet.

Since this is the first behavior application®ibirthDateon objecfoe, the B_changedist of T per son
is updated with the times of all implementation changes that took place on beBabicthDateprior to
timet;. From Figure 6 we see thatthese timestare,, ¢4, andts. The behavior coercions at timesandzg
lead to changes in the representation of ohbjeet At ¢4, the implementation oB_birthDatechanges from
a computed to a stored function and gt the implementation changes from a stored to a stored function.
These changes in structural representation are recorded s shown in Figure 8. Note that changes to
B_ageare not yet recorded since we use deferred coerciorBaagehas not yet been applied@at O

5.3 Temporal Behavior Dispatch

The preceding sections establish mechanisms for maintaining the histories of behavior implementations and
the representations of temporal objects. We now illustrate the behavior dispatch process that occurs when
a behavion is applied to an object at a given timet. We denote this application as[t]b. The time
component is optional and if left out the current timev is assumed.

Figure 9 provides an overview of the dispatch process. Detailed explanations of the various steps are
given in the sections that follow. In general, a dispatch mechanism takes a type and a behavior and returns
the function associated with the behavior for the given type [HS97]. In this paper, the dispatch mechanism
is extended to take a third argument; namely, time.

A behavior application is first checked for temporal validity. It is considered valid if the objexists
at timet and behaviob is defined in the interface aefs base type at time A temporally invalid behavior
application generates the only possible error while dispatching. As illustrated in Figure 9, this error is caught
early in the dispatch process, which is a good feature of the design.

For a valid application, thé_changedlist of the base type ob is updated. A search is made in
b.B_implementationfor implementation changes that took place before or at the same time @ke
B_changedist of the base type 06 is then updated with all implementation changes that have not yet
been recorded iB_changesObjecto is then updated if neccssary.

The appropriate representation objegtt of o, and the appropriate implementatigrof 4 for the base
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Figure 9: Dispatch process for applying a behavitar an objecb at timet.

type of o at timet are then retrieved by indexing intoand theB_implementatiorhistory of b, respec-
tively. Finally, functionf is applied to the representation obje€i:. Examples of this process are given in
Section 5.3.2; after the algorithms for the dispatch semantics are discussed.

5.3.1 Dispatch Semantics

In order for a behavior application to be valid, objechust exist at time and behaviob must be defined in
the interface of the base type ot timet. The temporal validity check algorithm, Algorithm 5.1, performs
this test in the form of a logical expression.

Algorithm 5.1 TemporalValidity:

Input: An objecto, a behaviob and a time

Output: True if the application is valid, false otherwise
Procedure:

return  (t.B_within(o.Blifespan(o.B_mapsto.B_classof.B_shallowEztent)) (1)

A Jaz(z € o.B_mapsto.B_baseType.B_inter face.B_history (2)
A t.B_within(z.B_timeStamp) (3)
A b € z.B_value)) 4)

The first part of the expression (1) checks thekists at time by testing whether timelies within® the
lifespan ofo in the class of its associated type. In the second part of the expres@omapstoB _baseType

9The B_within behavior is defined ofi_t i meSt anp and checks whether one timestamp is within another timestamp.



B_interfaceB_historyreturns the interface history for the base type of objedthis history is searched for
an entryz that satisfies (3), which checks that timées within the timestamp of entry, and (4), which
checks that behavidris part of the collection of behaviors defined in the interface of the type at this time.
If all conditions are satisfied, the behavior application is valid.

If the validity test is satisfied, the next step is to coerce behavorthe implementation changes that
took place prior to time. Algorithm 5.2 performs this operation.

Algorithm 5.2 Coerce:
Input: An objecto, a behaviob and a time

Procedure;

o.B_mapsto.B_baseType.B_updateChanges(t,b.B_implementation(o.B_mapsto.B_baseType))
5)
o.B_updateRep(t, b. B_implementation(o.B_mapsto.B_baseType)) (6)

In step (5), theB_changedist of the base type aof is updated with the implementation changes that took
place on behavidf at or before time. The B_updateChangéasehavior, defined on thE t ype type, per-
forms this update by takingandB_implementatiorof b as arguments. It searchBsmplementatiorof b for
implementation changes that took place before or at the same titrandsupdates thB_changedist with
all implementation changes that have not yet been record8ddhanges For example, the behavior ap-
plication T person’. B_updateChanges(tz, B_birthDate.B_implementation(T_person’)) updates the
B_changedist of the base type obe (T_person’) during the behavior applicatigee.[t;]B_birth Date.
The updatedB_changedist is shown in Figure 8. The objeetis then updated if neccessary (6). The
B_updateRemehavior, defined on base type objects, performs this update. For each behavior implemen-
tation change at timg that leads to a change in the representation, @_updateRepipdates with the
appropriate representation object with respect to tipaad the time interval during which it was valid. The
behaviors applicable to the representation object are those that exist in the interface of it typEhat
implementations of these behaviors are those that exist in the implementation histories for the typheat

stored functions at; determine the initial state of the representation object.
Algorithm 5.3 performs the simple task of returning the appropriate representation objeatttirhet.

Algorithm 5.3 Representation:
Input: An objecto and timet
Output: An object with its representation at time

Procedure:
return o.B_validObject(t).B_value

The appropriate implementatiof of & for the base type ob at time ¢ is then retrieved from the
B_implementatiorhistory ofb. Algorithm 5.4 finds and returns this implementation.



Algorithm 5.4 Implementation:
Input: An objecto, a behaviob and a time
Output: The function that implements behavipofor objecte at timet

Procedure:
return b.B_implementation(o.B_mapsto.B_baseType).B_validObject(t). B_value

A final step of the dispatch mechanism is the execution of the function returned from Algorithm 5.4
to the representation object returned by Algorithm 5.3. We useBtlecutebehavior on functions to
accomplish this. The relationships between all the algorithms are shown in Algorithm 5.5.

Algorithm 5.5 Dispatch:
Input: An objecto, a behaviob and a time
Output: An object resulting from the applicatien[t]b

Procedure;

if Temporal Validity(o,b,t) then
Coerce(o,b,t)
0@t < Representation(o,t)
f < Implementation(o,b,t)
f.B_execute(oQt)
else
INVALID: objecto does not exist at time
or behaviot not defined in the interface ofs base type at time

5.3.2 Dispatch Examples

For the following examples, consider Figure 10, which extends the timeline offtyjer son in Figure 6
by adding a behavidB_spousewith the computed implementatieg at timet,4 and dropping the behavior
B_ageat timet,¢. Note that an object representation will not change by adding behBusmouseand the
representations will be empty after behavhageis dropped. For this exampleow > t4¢.

Several example behavior applications using time are presented to show how the dispatch process is
followed in order to determine the proper implementation and state instance that are appropriate at the given
time of interest. We assume the behavior applications take place in chronological order.

Example 5.2 Behavior applicatiofoe.[t7] B_birth Date (assuming no previous behavior application has
taken place)

Validity: Objectjoe was created at timg and exists at tim@ow. Therefore, the lifespan gbe is the
time interval[ty, now]. Sincet; in within this interval (i.e., lifespan), the object part of the behavior
application is valid. The base type jufe is T _person’. The interface off_person’ at timet¢; is
{B_birthDate, B_age}. SinceB_birthDateis part of this interface, the behavior part of the applica-
tion is valid and, thus, the validity test is satisfied.
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B_age:s,; B_age:s, B_age:s;

B_age B_birthDate B_birthDate B_birthDate L _Bage

B_birthDate B_age B_age

B_birthDate.B_implementation (T_person’).B_history
{<[ty .ty )¢y > <It, .t ). cy > <[t, .t5) s, > <[tg . ty, ) s > <[ty, ,now ], ¢ >}

B_age.B_implementation (T_person’).B_history

{<lty .tg ). sy > <ltg . tg ), s, > <ltg .tyg ). ¢y > <[tyy .ty )5, > <[ty .ty 1.5y >}

B_spouse.B_implementation (T_person’).B_history
{<[ty, ,now 1, ¢g >}

T_person’. B_interface.B_history

{<[ty .ty ). {B_birthDate ,B_age }><[t,, ,t,; ), {B_birthDate ,B_age ,B_spouse }>,<[t,; ,now ], {B_birthDate ,B_spouse }>}

Figure 10: Example showing effects on implementation histories of first adding and then dropping a behav-
ior.

Coerce: The next step is to update tBechangedist of the base type aof and the representation history of
o. These updates are performed by the behavior applications
T_person’. B_updateChanges(t7, B_birthDate.B_implementation(T_person’)) and
joe.B_updateRep(tz, B_birthDate.B_implementation(T person’)), respectively. The updaté®i changes
list and representation history afis shown in Figure 8.

Representation: The behavior applicatiojoe. B_validObject(t7).B_value returnsjoe@tg, which is the
appropriate representation objecf@é at timet; (see Figure 8).

Implementation: The behavior application
B_birthDate.B_implementation(T person’). BvalidObject(t7).B_value returns the appropriate
implementation oB_birthDatefor type T _per son at timet,, which is the stored functiosy .

Dispatch: To complete the dispatch of the behavior, the stored funetide executed using the represen-
tation objecoe@ty as an argument. This will access the first slot of the representatioe @it ¢ .
The represenation gbe at¢; is the same as the onefgt so the behavior application accesses the
appropriate birthdate slot gde at¢-.

a

Example 5.3 Behavior applicatiofjpe.[t5]B_birth Date

The validity test is satisfied. ThB_birthDatehas already been coerced to the implementations at tignes
andt, since the entriest,, B_birth Date> and<t,, B_birth Date>> existin the changes list df per son.
Therefore B_changesando remain unchanged. The representation objet istjoe@t,, (see Figure 8) and
the implementation chosentatis the computed functioss;. The functiones is then applied tgoe@t,. O



Example 5.4 Behavior applicatiofpe.[t 2] B_birth Date

The validity test is satisfied. In Algorithm 5.2, the implementation changB_bfrthDateat timet; is
recorded in theB_changedist, and the representation history for objgm¢ also changes since the im-
plementation forB_birthDatechanges from a stored function (timg) to a computed function (timg ;).
Figure 11 shows the changesBnchangesand the representation historyjot.

joe.B_created = t
joe.B_history {<[to, ta), joeQto>, <[ts,ls), joeQt >, <[ts, t12), joeQig>,
<[t12, now), joeQty5>}
T_person’.B_changes = {<ty, B_birthDate>, <ty, B_birthDate>, <t4, B_birthDate>,
<tg, B_birthDate>, <ty3, B_birthDate>}

Figure 11: The representation objectgad and the changes list df per son after behavior application
of B_birthDateat timet ;.

The appropriate implementation f&_birthDateat t,,, which is the computed functioss, is then
applied tojoe@t,5, which is the representation objectjot atz,,. O

Example 5.5 Behavior applicatiofpe.[t1o] B_age

Now suppose a different behavioB @ge is applied to objecjoe. The validity test is satisfied. The
B_changedist is updated with the times of all implementation changes that took place on beBagipe
prior to timet,o. From Figure 10 we see that these timestgré;, ts, andtyo. The behavior coercions at all
these times lead to changes in the structural representation of julgjeétt ¢, the implementation aB_age
changed from undefined to stordd(), atts the implementation changed from stored to storgd)( at
ts the implementation changed from stored to computgd)( and att,, the implementation changed from
computed to stored’(S). The new value oB_changesand the structural representation historya# are
shown in Figure 12.

joe.B_created = t
joe.B_history {<[to, ta), joeQto>, <[ts,ls), joeQty>, <[ts,ls), joeQts>,
<[t87 tlo),jOG@t8>, <[t107 t12)7j06@t10>, <[t12, now]7joe@t12>}
T_person’.B_changes = {<to, BbirthDate>, <to, B_age>, <ty, B_birthDate>,
<ty4, BbirthDate>, <tg, B_birthDate>, <tg, B_age>,
<ts, B_age>, <ty9, B_age>, <ty3, B_birthDate>}

Figure 12: The representation objectgad and the changes list df per son after behavior application
of B_ageat timetg.

Having updated th&_changedist ando, the representation objegte@t,, and the implementatios
are returned from Algorithms 5.3 and 5.4 at timg. We can now apply; to joe@to. O

Example 5.6 Behavior applicatiofpe.[now]B_age
This fails the validity test because behavibiageis not part of the interface af person’ at timenow. O



Example 5.7 Behavior applicatiofpe.[t5] B_spouse

The validity test is satisfied. An appropriate enttyt4, B_spouse > is added to the changes list of
T_per son. The representation history fe remains unchanged since the implementation change is from
an undefined function to a computed o&{). The representation object at timg is joe@t, (see Fig-

ure 12) and the implementation is the computed functignThe functioncg is then applied tgoe@t,.

0

Example 5.8 Behavior applicatiofane.[t7] B_age

Suppose the objefdne was created at timg. The validity test is satisfied. The changes lisTaber son
remains unchanged since it has already been updated with the implementation chaBgagegfior to

t7 (see Figure 12). The structural representation histojgreé however, is updated to reflect the behavior
coercions that took place at or affane was created and before ortat This is shown in Figure 13.

jane.B_created = {5
jane.B_history = {<[ts, now], janeQtg>}

Figure 13: The representation objectgasfe after behavior application d_ageat timet-.

The timet; is used to find the appropriate representation objegafte and the correct implementation
of B_agefor typeT_person’. The representation object chosendsec@ts and the implementation returned
is the stored function,. This function is then applied tpunetg. O

6 Immediate Object Conversions

The temporal infrastructure proposed in this paper is sufficiently powerful to support schema change ap-
proaches other than the deferred coercion strategy that we have developed. In this section, we show how the
immediate object coercion approach of schema change propagation can be implemented using the model
presented in Section 5. In this case, changes are immediately propagated to the instances. In our model,
this would mean that each time the implementation of a behavior changes, the behavior is coerced to the
newer implementation at that time and the structural representations of all objects of that type are updated,
if necessary. These changes are recorded iBtiteplementatiorand B_changedehaviors, respectively.

Figure 14 shows the changes listfoper son and the representation history of objge when immediate

object coercion is used for the behavior implementation changes shown in Figure 10.

The B_change$ehavior forT_person’ shows that each time the implementation of a behavior changes
after the object was created, the behavior is coerced to the newer implementation since immediate object
coercion is used. For example, afiee is created, the implementation of behavibmirthDatechanges
at timests, 14, tg, andt,, (see Figure 10). SubsequentB;,birthDateis also coerced to the newer imple-
mentations at these times. This is shown in the changes [isp&r son. The representation history of an
object is only updated when a change to the representation of an object occurs due to the coercion of one of
its behaviors. For example, although the behaBidrirthDateis coerced to a newer implementation at time
t2, the representation gde is unaffected since the implementation is changed from one computed function



joe.B_created = 1
joe.B_history = {<[to,t4), joeQto>, <[ts,ts), joeQts>, <[tg,ts), joeQtg>,
<[t87 tlo),jOG@t8>, <[t107 t12)7j06@t10>, <[t12, t16),j06@t12>,
<[t16, now), joeQt 5>}
jane.B_created = {5
jane.B_hiStory {<[t67 tg),jane@t6>, <[t8, tlo),jane@t8>, <[t107 tlg),jane@tl(p,
<[t12,t16), janeQtis>, <[t16, now], jane@t s>}
T_person’.B_changes = {<to, BbirthDate>, <ty, B_age>, <ty, B_birthDate>,
<ty4, BbirthDate>, <tg, B_birthDate>, <tg, B_age>,
<tg, B_age>, <tig, B_age>, <t12, B_birthDate>,
<t13, B_age>, <ty4, B_spouse>}

Figure 14: The representation objectg@é andjane, and the changes list @f_per son for immediate
object coercion.

to another computed function (see Figure 10). Therejoeeis unchanged &t. A similar situation occurs
att,4 for joe andjane when behavioB_spouses added to typ& person’.

With immediate coercion, if a behavior implementation change at tifioe a type7' necessitates an
update of the representation of an object, the change is recorded in the representation histbobgects
of type T that exist at time. This is exemplified in Figure 14 where the tuples in representation histories of
objectsjoe andjane (of type T_per son) are updated at the same time afare was created (from to
now).

In the immediate coercion approach, Algorithm 5.2 is carried out at the time of behavior implementation
change, and not during a behavior application process as was the case in deferred coercion. The only
difference to the dispatch algorithm is that invocation of coerce is not necessary. The example below shows
how the dispatch process is followed when immediate object coercion is used for the behavior application
given in Example 5.2.

Example 6.1 Behavior applicatiofjpe.[t7]B_birthDate

The validity test is satisfied. The appropriate representation objefidaat timet; is joeQtg, while the
appropriate implementation & birthDatefor typeT person’ is the stored functior,. We can now apply

sy to joe@ts. The function and representation are correctjéa since the implementation of behavior
B_birthDatechanged at time; for this object, andB_birthDatewas coerced to the new version at the same
time. O

From the above example, we note that the function and the representation object obtgjoed$img
immediate object coercion are the same as those obtained in Example 5.2, in which deferred object coercion
was used. The function chosen in both cases is the stored furgti@md the representation object chosen
for joe in both cases igoe@tg. This equivalence of deferred and immediate object coercion strategies is
neccessary.



7 Conclusion

In this paper, we present a new approach to schema evolution for ODBMS. This strategy is characterized by
four novel concepts:

1. The schema evolution strategy is based on a uniform temporal model. Consequently, no special
concepts are introduced for modeling schema changes that are expressed as changes to the behaviors
defined on types. These changes are tracked using theTsaingt or y mechanism that is used for
modeling temporal changes to hon-schema objects in the database.

2. In addition to schema changes, the strategy supports lossless recording of these changes, allowing
historical queries.

3. The strategy supports both deferred (lazy) object update semantics and immediate object update se-
mantics using the same basic algorithms. Only the application time of the algorithms is changed to
produce the desired update semantics.

4. The granularity of schema changes is finer than traditional approaches that require a complete type
change every time a single behavior changes. We handle behavior changes individually. This approach
has two distinct advantages depending on whether deferred orimmediate update semantics are used. If
deferred update semantics are used, the finer granularity results in an even “lazier” update semantics.
That is, when a modified behavior is applied to an object, only part of the object's structure needs to
be updated to reflect changes for only that particular behavior. Updates due to other behavior changes
are delayed until they are needed by other behavior applications. If immediate update semantics are
used, then the update can be done more quickly since the system knows that changes to the affected
type are localized to the single behavior that was just changed. This is important because a major
drawback of immediate update semantics is the speed of the update.

Support for historical queries potentially has a profound effect on ODBMS behavior dispatch. In traditional
behavior dispatch, each behavior on a type is bound to a single function (implementation) and dispatch is a
mapping of behavior-type pairs to functions. With recorded schema evolution, each behavior may be bound
to a different function at different times. Therefore, the dispatch process must map a three-tuple (behavior,
type, time) to a function. Unfortunately, the domain of the temporal argument is very large compared to the
domain of all behaviors (or all types), so standard dispatch techniques do not work very well. This paper
provides a temporal dispatch algorithm to demonstrate that no new concepts need to be added to the schema
evolution model to solve the temporal dispatch

To overcome the corrective nature of schema evolution, the concegteha versioningin ODBMSs
has been proposed [SZ86, SZ87, KC88, ALP91, MS92, MS93]. In most of these systems, a change to
a schema object may result in a neersion of the schema object, or the schema in general. However,
schema changes are usually of a finer granularity than definable versions. This implies that not every schema
change should necessarily result in a new version. Rather, one should be able to define a version during any
stable period in the evolutionary history of the schema. Within a particular version, the evolution of the
schema should be traceable. For example, in an engineering design application many components of an



overall design may go through several modifications in order to produce a final product. Furthermore, each
intermediate version of the component may have certain properties that need to be retained as a historical
record of that particular component (the different versions may have been used in other products). The
inter-connection of the various versions of components also gives rise to versions of the overall design. The
resulting designs may be part of others and so on. Our contention is that schema evolution using temporal
modeling sets the stage for full-fledged version control. We intend to use the schema evolution policies
reported in this paper as a basis for version control in ODBMSs.
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