MOQL: A Multimedia Object Query Language *

John Z. Li, M. Tamer Ozsu, Duane Szafron, and Vincent Oria
Department of Computing Science, University of Alberta
Edmonton, Canada T6G 2H1

Abstract

We describe a general multimedia query language, called MOQL, based on ODMG’s Object Query
Language (OQL). In contrast to previous multimedia query languages that are either designed for one
particular medium (e.g. images) or specialized for a particular application (e.g., medical imaging),
MOQL is general in its treatment of multiple media and different applications. The language includes
constructs to capture the temporal and spatial relationships in multimedia data as well as functions
for query presentation. We illustrate the language features by query examples. The language is imple-
mented for a multimedia database built on top of ObjectStore.

Keywords: multimedia, OQL, MOQL, Object-oriented, database, query, language

1 Introduction

One of the basic functionalities of a database management system (DBMS) is to be able to efficiently
process declarative user queries. The penetration of DBMS technology into multimedia information systems
necessitates the development of query languages appropriate for this domain. The complex spatial and
temporal relationships inherent in the wide range of multimedia data types make a multimedia query
language quite different from its counterpart in traditional DBMSs. For example, the query languages of
traditional DBMSs only deal with exact-match queries on conventional data types. Although this might
be sufficient to deal with queries posed against metadata or annotations of multimedia data, content-based
information retrieval requires non-exact-match (fuzzy) queries which go beyond the traditional approaches.

Powerful query languages significantly help simplify multimedia database access. These languages have
to provide constructs for querying, based on the structure of multimedia documents as well their context.
Furthermore, query presentation, which refers to the way query results are presented, is more complex in
multimedia systems than in traditional DBMSs. This is because multimedia presentations have to take
into account the synchronization of various media. In recent years, there have been many multimedia query
language proposals [BRG88, OMS88, RFF'S88, AB91, DG92, CITT93, Ege94, CIT94, HK95, KC96, ATS96,
MS96, MHM96]. These proposals can be classified into three categories:

e Entirely new and specialized languages: [CITT93, HK95, KC96, ATS96].
e Languages that are based on a logic or functional programming approach: [DG92, MS96].
e Languages that are extensions of SQL: [BRG88, OMS88, RFS88, AB91, 0193, Ege94, C1T94, MHM96].

One problem with a brand new multimedia query language is the lack of acceptance by users. In general,
it is difficult to convince users to learn and use a new language for each application. Another problem with
the current proposals is the lack of theoretical framework to reason about the soundness and expressive
power of the languages. In fact, none of the proposed new languages has ever addressed this problem.

*This research is supported by a grant from the Canadian Institute for Telecommunications Research (CITR) under the
Network of Centres of Excellence (NCE) program of the Government of Canada and by a strategic grant from the Natural
Science and Engineering Research Council (NSERC) of Canada.

Specifying queries using logic and functional programming approaches is relatively difficult for users.
Therefore, this method is not very attractive, despite the expressive power of these languages. They may
be suitable as formal multimedia query languages, but not as user languages. The majority of existing
approaches to designing multimedia query languages are based on extensions of SQL. This is generally
due to the popularity of SQL for traditional database applications. A common problem with all the
existing SQL-based multimedia query languages is that they are designed either for a particular medium
or for a specific application domain, not for general use. For example, VideoSQL [OT93] is used only for
video databases, SEQL [CIT94] is designed mainly for medical sequence image databases, ESQL [AB91]
is good only for image databases, and PSQL [RFS88] and SpatialSQL [Ege94] are suitable only for spatial
databases.

Are there any general query languages for multimedia databases? How can they be formally defined so
that they are independent of particular media and specific applications? These are the questions that this
paper addresses. It is well-known that object technology is a promising one for dealing with multimedia
data. As a result, most multimedia DBMSs are directly or indirectly (by extending relational models into
object-oriented models) based on object-oriented technology. Object Query Language (OQL) [Cat94] has
been proposed by Object Database Management Group (ODMG). OQL is currently supported by many
Object DBMS (ODBMS) vendors and its popularity should increase as the ODBMS market grows. To
the best of our knowledge, no multimedia extensions to OQL exist. In this paper, we propose an object-
oriented, general-purpose query language, which we call MOQL, based on OQL. The language includes
constructs to deal with spatial, temporal, and presentation properties. These extensions are introduced
through predicates and functions. We describe the language features and give examples of their use.

The rest of the paper is organized as follows. Section 2 reviews the related work in multimedia query
languages. Section 3 introduces ODMG’s OQL and our basic extensions. The extensions include spatial
primitives, temporal primitives, and the query presentation primitives. Section 4 briefly discusses the
current status of implementing MOQL as part of a full fledged multimedia DBMS. It also summarizes our
work and discusses possible future work.

2 Related Work

PSQL (Pictorial SQL) [RFS88] is designed for pictorial databases which require efficient and direct spatial
search, based on the geometric form of spatial objects and relationships. One feature of PSQL is the
introduction of many spatial operators, such as nearest and furthest for point objects, intersect and not-
intersect for segment objects, and cover, and overlap for region objects. Syntactically, there is not much
difference from the standard SQL.

EVA [DG92] is, an object-oriented language, based on functional language features with roots in con-
ventional set theory. It is formally defined using the mathematical framework of a many sorted algebra.
Although EVA has defined a set of spatio-temporal operators to support query presentation, it lacks some
useful presentation features, such as changing display speeds and time constraints (e.g., presenting some
object for 20 minutes). Furthermore, EVA does not support spatial queries or video data.

A knowledge-based object-oriented query language, called PICQUERY™, is proposed in [CITT93].
PICQUERYT is a high-level domain-independent query language designed for image and alphanumeric
database management. It allows users to specify conventional arithmetic queries as well as evolutionary and
temporal queries. The main PICQUERY™ operations include panning, rotating, zooming, superimposing,
color transforming, edge detecting, similarity retrieving, segmenting, and geometric operations. A template
technique has been used in PICQUERY™ to facilitate user queries. Such query templates are used in
PICQUERY™ to specify predicates to constrain the database view.

SEQL (Spatial Evolutionary Query Language) [CIT94], a direct extension of SQL, is proposed to
operate on the spatial evolutionary domains of medical images. In addition to alphanumeric predicates,
SEQL contains constructs to specify spatial, temporal, and evolutionary conditions. A when clause is
added to the language, which selects the appropriate snapshot of the data of interest at a particular point
in time. It supports temporal functions which manipulate time points (such as start time, end time etc.),
temporal ordering of an object history (such as first, last, next, etc.), and temporal intervals (such as

before, after, during, etc.). Another extension is the addition of a which clause which describes various
evolutionary processes on a set of evolving objects. Unfortunately, SEQL supports only image databases.

Marcus and Subrahmanian [MS96] have proposed a formal theoretical framework for characterizing
multimedia information systems. The framework includes a logical query language that integrates diverse
media. This is a first attempt at formally characterizing multimedia database systems. The model is
independent of any specific application domain and provides the possibility of uniformly incorporating
both query languages and access methods, based on multimedia index structures. The query language is
based on logic programming and it makes extensive use of predicates and functions. Such a query language
is suitable as an intermediate query language between a higher level language (such as OQL) and a lower
level language (such as an object algebra).

Two new query languages, MMQL (Multimedia Query Language) and CVQL (Content-based Video
Query Language), for video databases are described in [KC96] and [ATS96] respectively. A major problem
with MMQL is that it does not support spatial queries which are fundamental to a multimedia query
language. CVQL is defined based on video frame-sequences. Therefore, to query a video database using
CVQL, a user must have good knowledge about the video (or frame sequence) being queried. ESQL [AB91]
is an image domain query language for the relational model. The query language in [BRG88] is designed
for multimedia office documents.

3 Object Query Language and Its Extensions

OQL defines an orthogonal expression language, in the sense that all operators can be composed with each
other as long as the types of the operands are correct. It deals with complex objects without changing
the set construct and the select-from-where clause. It is close to SQL92 with object-oriented extensions
such as complex objects, object identity, path expressions, polymorphism, operation invocation, and late
binding. OQL has one basic statement for retrieving information:

select [distinct | projection_attributes

from query [[as] identifier | {, query [[as] identifier |}

[where query]
where projection_attributes is a list of attribute names whose values are to be retrieved by the query. In
the from clause, a variable has to be bound to a set of objects, an extent, or a query. In the where
clause, the query is a conditional search expression that identifies the objects to be retrieved by the
query. However, the conditional search expression can be any OQL query. In OQL, query is a very general
expression and only the select form of a query corresponds to an actual user query. We assume some
familiarity with OQL, but a detailed description can be found in [Cat94].

Most of the extensions that we introduce to OQL are in the where clause in the form of three new pred-
icate expressions: spatial_expression, temporal_expression, and contains_predicate. The spatial_expression
is a spatial extension which includes spatial objects (such as points, lines, circles etc.), spatial functions
(such as length, area, intersection, etc.), and spatial predicates (such as cover, disjoint, left etc.). A de-
tailed discussion of spatial extensions is given in Section 3.1. The temporal_expression deals with temporal
objects, temporal functions, and temporal predicates. The contains_predicate has the basic form:

contains_predicate ::= media_object contains salientObject
where, media_object represents an instance of a particular medium type, e.g., an image object or a video
object, while salientObject is a salient object which is defined as an interesting physical object in some
media object. Each media object has many salient objects, e.g. persons, houses, cars, etc. The contains
predicate checks whether a salient object is in a particular media object or not.

Query 1 Find all images in which a person appears.
select m

from Images m, Persons p
where m contains p

This simple query uses the contains predicate which checks whether a person p is in image m. The full

set of multimedia extensions to OQL that we propose is specified in [LéSQ?]. In the following sections, we
discuss these extensions and give examples to demonstrate them.

3.1 Spatial Primitives

Spatial data pertains to the space occupied by objects and includes points, lines, squares, regions, volumes,
etc. The special requirements of multimedia query languages in supporting spatial relationships have been
investigated. From a user’s point of view, the following requirements are necessary for supporting spatial
queries in a multimedia information system:

e Support should be provided for object domains which consist of complez (structured) spatial objects
in addition to simple (unstructured) points and alphanumeric domains. These spatial objects must
be accessible by pointing to them or describing the space they occupy, and not just by referencing
their encodings.

e Support should exist for direct spatial searches, which locate the spatial objects in given areas of
images.

e It should be possible to perform hybrid spatial searches, which select objects based on some attributes
and some associations between attributes and spatial objects.

e Support should exist for complex spatial searches, which locate spatial objects across the database
by using set-theoretic operations over spatial attributes.

e Support should be provided to perform direct spatial computations, which compute specialized simple
and aggregate functions from images.

3.1.1 Spatial Predicates

A spatial predicate compares the spatial properties of spatial objects and returns a boolean value as the
result. We define only three spatial primitives: point, line, and region. Although other constructors, such
as circle, rectangle etc., are provided, they are all special cases of region. A region may be represented by
a set of points, a set of lines, a set of polygons, or other forms (e.g. a point and a radius) in some universe.
The functions nearest and farthest are defined with respect to the set of points defined in a particular
media object, such as an image or map. Table 1 shows basic spatial predicates defined in MOQL.

H H point ‘ line ‘ region H
point || nearest, farthest | within, midpoint | centroid, inside
line Cross intersect inside, cross
region || cover cover, Cross topological _predicate,

directional_predicate

Table 1: Spatial Predicates

The operands of the spatial predicates must be the same or compatible object types. For example,
predicates nearest and farthest can apply only to two point objects, predicates within and midpoint can
apply only to a point and a line, and predicate cover may apply to a region and a point or to a region and
a line. We do not give exact definitions of spatial predicates (or for the temporal predicates in the next
subsection) since they are self-explanatory. The directional relations include left, right, above, below, front,
back, south, north, west, east, northwest, northeast, southwest, southwest, as well as the combinations
of front and back with other directional relations. For example we can have front_left, front_northwest,
etc. Precise definitions of directional relations are given in [LGSQG]. The topological predicates include
inside, covers, touch, overlap, disjoint, equal, coveredBy, and contains which are specified in [EF91] as
eight fundamental topological relations. However, two pairs of predicates are inverses: cover vs covered By
and inside vs contains.

Query 2 Select all the cities, from a map of Canada, which are within a 500km range of the longitude 60
and latitude 105 with populations in excess of 50000:
select c
from Maps m, m.cities ¢
where m.name=“Canada” and c.location inside circle(point(60,105), 500) and
c.population>50000

For each map, the method cities retrieves all the cities in this map. Then, a city’s location is checked to
see if it is within the required range. point is a constructor which accepts two values or three values to
create a 2D point or 3D point respectively. Here, point (60, 105) represents a 2D point; circle is a circle
object constructor which accepts a spatial point acting as the center of the circle and a radius; inside is
one of the spatial predicates from Table 1.

3.1.2 Spatial Functions

A spatial function computes attributes of an object or a set of spatial objects. The spatial functions are
shown in Table 2. The return type refers to the type of the object returned by a spatial function. The value
column contains some functions that return scalar values. Function mbr stands for minimum bounding
rectangle. In addition to these, there is a universal function distance, which returns a scale value when
applied to any two spatial objects. Function region for both point and line objects allows a point or line
to be converted to a region. Hence, all the predicates and functions for regions are applicable to points
and lines. For example, directly checking a directional relation between a line and a region is not allowed.
However, after the conversion of a line to a region, such a check can be made.

H Return Type H point ‘ line ‘ region H value H
point nearest, farthest region
line intersect intersect | region length, slope
region centroid interior, exterior, mbr || area, perimeter

Table 2: Spatial Functions

Query 3 Find the forests and their areas from the maritime region where each forest is covered by a single
province.
select forest, area(forest.region)
from Forests forest
where forest.region coveredBy any
select p.region
from Provinces p
where p.region coveredBy maritimeRegion

The above query illustrates the binding of two nested mappings combined with the spatial function area
and spatial predicate coveredBy. The provincial region is passed from the interior level and used to direct
the search in the exterior, to produce those forests in the maritime provinces which are completely covered
by individual provinces.

3.2 Temporal Primitives

The inclusion of temporal data in a multimedia query language is an essential requirement. Research in
temporal queries has focused more on historical (discrete) databases rather than on databases of temporal
media (e.g., [Sn095]). Thus, the focus has been on the reflections of changes of the representation of real
world objects in a database (e.g., President Clinton gave a speech at 2:00pm on July 4, 1996), rather than
changes in continuous and dynamic media action. Our interest is in temporal relationships among salient

objects in multimedia data, not the real world historical relationships. A typical temporal multimedia
query is “Find the last clip in which person A appears’. The specification of the temporal relationship last
needs special support from query languages to process this query. A time interval is identified as the basic
anchored specification of time. Allen [All83] introduces a set of 13 temporal interval relations which have
been widely accepted. The 13 relations are equal, before, after, meet, metBy, overlap, overlaped By, during,
include, start, startedBy, finish, finishedBy.

3.2.1 Temporal Functions

Our choice of functional abstractions for temporal objects is influenced by the work of [GL0896]. Interval
unary functions which return the lower bound, upper bound and length of the time interval are defined,
while binary functions contain set-theoretic operations viz wunion, intersection and difference. A time
interval can be expanded or shrunk by a specified time duration. A time instant is a specific anchored
moment in time. A time instant is modeled as a special case of a (closed) time interval which has the same
lower and upper bound, e.g., Jan 24,1996 = [Jan 24,1996, Jan 24,1996]. A wide range of operations
can be performed on time instants. A time instant can be compared with another time instant with the
transitive comparison operators < and >. A time span can be added to or subtracted from a time instant
to return another time instant. A time instant can be compared with a time interval to check if it falls
before, within or after the time interval. A time span is an unanchored relative duration of time. A time
span can be compared with another time span using the transitive comparison operators < and >. A time
span can be subtracted from or added to another time span to return a third time span. We consider the
following temporal granularity: year, month, day, hour, minute, second, ms (millisecond).

3.2.2 Continuous Media Functions

For continuous media, we consider only video data while audio will be considered in the future. We model
a video as a sequence of clips and a clip as a sequence of frames. A frame, the smallest unit of a video
object, can be treated as an image. Each frame is associated with a timestamp or time instant while a clip
or a video is associated with a time interval. This implies that frames, clips, and videos can be ordered.
Therefore, we can ask for the previous frame to a given frame or the last frame of a clip or a video. The
continuous media functions are shown in Table 3. A universal function timeStamp applies to frames, clips,
and videos and returns a time instant.

H Return Type H frame ‘ clip ‘ video ‘
frame prior, next clip
clip firstFrame, lastFrame, nth | prior, next video
video firstClip, lastClip, nth

Table 3: Continuous Media Functions

Since video data consists of sequences of images, they share all the attributes of image data such as
color, shape, objects, and texture. Unlike images, videos have temporal relations. Such temporal relations
introduce dynamicity, (e.g. motion) which does not exist in image data. The implied motion in video
data can be attributed to a camera (global) motion and an object (local) motion [ABL95]. In MOQL, an
object motion is modeled by the multimedia database and then queried by using temporal predicates or
functions. The definition of the abstract camera actions are based on [HK95]. A camera has six degrees
of freedom, representing translation along each axis (z: track, y: boom, z: dolly) and rotation about each
axis (x: tilt, y: pan, z: rotate). In addition, a change in the camera’s focal length produces scaling or
magnification of the image plane (zoom in and zoom out). To extract these features, each video stream
should be first segmented into logical units by locating cuts (camera breaks). Cuts can be classified into
different categories, such as fade, wipe, dissolve, etc. We define the following camera motion boolean
functions: zoomlin, zoomQut, panlLeft, panRight, tiltUp, tiltDown, cut, fade, wipe, and dissolve.

We assume that each continuous media object has a time interval associated with it that can be accessed
through a method, timestamp. Furthermore, we assume that each salient object has a set of timestamped
physical representations. The timestamped physical representation of a salient object indicates the physical
characteristics of the salient object at different times. Typical physical characteristics of a salient object
include geometric region, color, region approximation, etc. The set of physical representations of a salient
object is accessible through method prSet.

Query 4 Find the last clip in which person p appears in the video myVideo:
select lastClip (select ¢ from myVideo.clips ¢
where ¢ contains p
order by upperBound/(c.timestamp))

or
select c

from my Video.clips ¢

where ¢ contains p and (upperBound(c.timestamp) >= all
select upperBound(d.timestamp)
from myVideo.clips d where d contains p)

The first solution uses the features of the video function lastClip and OQL’s order by clause. It is simpler
than the second one. We assume that each video object has a method clips which returns a sequence of
clips and each clip has a method timestamp which returns the time interval associated with this clip. Since
two clips’ intervals may overlap, we cannot simply rely on temporal predicates after or meet to perform
the query. However, if we are sure that the upper bound of an interval is greater than or equal to all others,
then its associated clip must be the last clip in a video. Therefore, we used a nested MOQL statement to
express Query 4.

Query 5 List clips where person pp is at the left of person p; and later the two exchange their positions:

select c

from Clips ¢, p1.prSet priy, p1.prSet pris, pa.prSet proy, pe.prSet prog

where ¢ contains p; and ¢ contains ps and pryq.region left proj.region and
intersection(pry;.timestamp, proj.timestamp) during pri;.timestamp and
prig.region right pros.region and
intersection(priz.timestamp, pras.timestamp) during pris.timestamp and
(prii.timestamp before priz.timestamp or prij.timestamp meet pris.timestamp)

Suppose clip ¢ is the one we are looking for, then it contains both p; and p,. In this case, both p; and
po must have at least two different physical representations respectively: one is p; at the left of ps and
another one is p; at the right of p;. We use pri; and pris to represent the two states of py, and pry; and
prag to represent the two states of p;. The spatial constraints bind p; to the left of p; and py to the right
of py while the temporal constraints bind the intersection of priy and pro; (as well as priz and prag) to
be not empty. Such temporal constraints guarantee that p; and py appear together sometime in this clip.
Certainly, the timestamp of the relation py; at the left of pry; must be previous to the timestamp of the
relation pro; at the right of pros.

3.3 Presentation Functions

The query language has to deal with the integration of all retrieved objects of different media types
in a synchronized way. For example, consider displaying a sequence of video frames in which someone
is speaking, and playing a sequence of speech samples in a news-on-demand video system. The final
presentation makes sense only if the speaking person’s lip movement is synchronized with the starting time
and the playing speed of audio data. Because of the importance of delivering the output of query results,
query presentation has become one of the most important functions in a multimedia query system. Both
spatial and temporal information must be used to present query results for multimedia data. The spatial

information will tell a query system what the layout of the presentation is on physical output devices, and
the temporal information will tell a query system the sequence of the presentation along a time line (either
absolute time or relative time). We support presentation by adding a present clause as a direct extension
to OQL:

present layout { and layout }
where, layout consists of three components:

e spatial layout which specifies the spatial relationships of the presentation, such as the number of
windows, sizes and locations of the windows, etc.

e temporal layout which specifies the temporal relationships of the presentation, such as which media
objects should start first, how long the presentation should last, etc.

e scenario layout which allows a user to specify both spatial and temporal layout using other presen-
tation models or languages.

Detailed description of the presentation extensions can be found in [LéSQ?]. We give one example to
illustrate some of the features.

Query 6 Find all the image and video pairs such that the video contains all the cars in the image, show
the image in a window at ((0, 0), (300, 400)) and the video in a window at ((301, 401), (500, 700)), and
start the video 10 seconds after displaying the image; display the images for 20 seconds, but play the video

for 30 minutes:
select m, v

from Images m, Videos v

where for all ¢ in (select r from Cars r where m contains r)
v contains ¢

present atWindow(m, (0, 0), (300, 400)) and atWindow (v, (301, 401), (500, 700)) and
play (v, 10, normal, 30*60) parStart display(m, 0, 20)

Operator parStart starts both video and image media objects simultaneously. Therefore, the image object
will be displayed immediately. However, since the start offset time for the video is 10 seconds, the video
object will start 10 seconds after the image object starts. We use a default value (normal) for video
playing. This can be changed for faster or slower playing by choosing a number either bigger than one or
less than one respectively.

4 Conclusion

In this paper we describe a general-purpose multimedia query language called MOQL. Our approach is
to extend the current de facto standard query language, OQL, to facilitate the incorporation of MOQL
into existing ODBMSs. Users who are already familiar with OQL do not have to learn a new language.
MOQL extends OQL by including extensions related to spatial properties, temporal properties, and pre-
sentation properties. We have implemented a proof-of-concept prototype of MOQL. The language is being
implemented for a multimedia DBMS [OEMIT97] that is developed on top of ObjectStore [LLOW91]. A
MOQL interpreter which parses MOQL queries and generates an algebraic tree is implemented in C while
the rest is implemented based on ObjectStore using C++. This prototype is able to handle all the query
examples given in this paper. The query processing approach is depicted in Figure 1 where the compo-
nents that have been completed are shaded. Following the syntactic check, a semantic check is performed
on the query to validate types, classes and class extents. At this point, it is possible to perform some
semantic query optimization; however, our research has not yet fully addressed this issue. The correct
MOQL queries are translated into an object algebra [OPS+95] that is used as the basis of optimization.
The target object algebra that we use for this purpose is one that we developed for another project. This
algebra is sufficiently powerful to support OQL queries.

M OQL* Query

[Syntactic Check j

1

(semanticCheck

(Query Rewrite)

[Algebraic Translation j
ObjectStore Schema] ObjectStore

Generator (Query Optimization) Library

[C++ Compilation j

(Executa'ble Code)

Figure 1: MOQL Query Processing

One of our research objectives is to study algebraic primitives to support optimization of multimedia
queries. The target algebra that we currently use does not yet include these primitives so query optimization
will be a topic of future research. In our current prototype each algebraic operator is implemented in terms
of ObjectStore functions. This establishes a link between the query processor and the underlying object
repository while enabling independent development of the query processor.

Further work needs to be done to investigate the support for audio media and to establish the the
expressiveness of MOQL. Another important issue we are studying is the optimization of MOQL queries.
This work is ongoing and will be reported separately. A parallel ongoing work is the development of a
visual query interface built on top of MOQL. Even though MOQL provides powerful predicates, some
multimedia queries are easier to specify visually. In an ideal environment, MOQL will establish the basis
of a visual query interface and serve as the embedded query language for application development.

References

[AB91] R. Ahad and A. Basu. ESQL: A query language for the relational model supporting image
domains. In Proceedings of the 7th Int’l Conference on Data Fngineering, pages 550—559,
Kobe, Japan, 1991.

[ABL95] G. Ahanger, D. Benson, and T. D. C. Little. Video query formulation. In Proceedings of Stor-
age and Retrieval for Images and Video Databases 11, 1SET/SPIE Symposium on Electronic
Imaging Science and Technology, pages 280—291, San Jose, CA, February 1995.

[All83] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of ACM,
26(11):832—843, 1983.

[ATS96] H. Arisawa, T. Tomii, and K. Salev. Design of multimedia database and a query language
for video image data. In Proceedings of IFEFE Int’l Conference on Multimedia Computing and
Systems, pages 462—467, Hiroshima, Japan, June 1996.

[BRG8R] E. Bertino, F. Rabitti, and S. Gibbs. Query processing in a multimedia document system.
ACM Transactions on Office Information Systems, 6(1):1—41, January 1988.

[Cat94] R. Cattell, editor. The Object Database Standard: ODMG-93. Morgan Kaufmann, San Fran-
cisco, CA, 1994.

[CITT93] A. F. Cardenas, I. T. leong, R. K. Taira, R. Barker, and C. M. Breant. The knowledge-
based object-oriented PICQUERY™ language. IEEE Transactions on Knowledge and Data
FEngineering, 5(4):644—657, August 1993.

[CIT94]
[DGY2)
[EF91]
[Ege94]
[GLOSY6]

[HK95]

[KC96]

[LLOW91]

[LOS96]

[LOS97]

[MHM96]

[MS96]

[OEMI97]

[OMSS]

[OPS+95]
[0T93]
[RFS88]

[Sno95]

W. W. Chu, L. T. leong, and R. K. Taira. A semantic modeling approach for image retrieval
by content. The VLDB Journal, 3:445—A477, 1994.

N. Dimitrova and F. Golshani. EVA: A query language for multimedia information systems.
In Proc. of Multimedia Information Systems, Tempe, Arizona, February 1992.

M. Egenhofer and R. Franzosa. Point-set topological spatial relations. Int’l Journal of Geo-
graphical Information Systems, 5(2):161—174, 1991.

M. Egenhofer. Spatial SQL: A query and presentation language. IFEFE Transactions on
Knowledge and Data Engineering, 6(1):86—95, January 1994.

I. A. Goralwalla, Y. Leontiev, M. T. (52:3117 and D. Szafron. Modeling time: Back to basics.
TR-96-03, Department of Computing Science, University of Alberta, February 1996.

N. Hirzalla and A. Karmouch. A multimedia query specification language. In Proc. of Int’l
Workshop on Multimedia Database Management Systems, pages 73—81, Blue Mountain Lake,
New York, August 1995.

T.C. T. Kuo and A. L. P. Chen. A content-based query language for video databases. In Proc.
of IEEFE Int’l Conference on Multimedia Computing and Systems, pages 456—461, Hiroshima,
Japan, June 1996.

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore database system. Com-
munications of ACM, 34(10):19—20, 1991.

J. Z. Li, M. T. Ozsu, and D. Szafron. Modeling of video spatial relationships in an object
database management system. In Proc. of the Int’l Workshop on Multimedia Database Man-
agement Systems, pages 124—133, Blue Mountain Lake, NY, August 1996.

J. Z. Li, M. T. Ozsu, and D. Szafron. Moql: A multimedia object query language. Technical
Report TR-97-01, Department of Computing Science, University of Alberta, January 1997.

Elina Megalou, Thanasis Hadzilacos, and Nikos Mamoulis. Conceptual title abstractions:
Modeling and querying very large interactive multimedia repositories. In Proc. of the Int’l
Conference on Multimedia Modeling, pages 323—338, Toulouse, France, November 1996.

S. Marcus and V. S. Subrahmanian. Foundations of multimedia database systems. Journal of
ACM, 43(3):474—523, 1996.

M. T. Ozsu, S. El-Medani, P. Iglinski, M. Schone, and D. Szafron. An object-oriented
SGML/HyTime compliant multimedia database management system. accepted by ACM Mul-
timedia, 1997.

J. A. Orenstein and F. A. Manola. PROBE spatial data modeling and query processing in
an image database application. IEEFE Transactions on Software Engineering, 14(5):611—629,
May 1988.

M. T. Ozsu, R. J. Peters, D. Szafron, B. Irani, A. Lipka, and A. Munoz. TIGUKAT: A uniform
behavioral objectbase management system. The VLDB Journal, 4:100—147, 1995.

E. Oomoto and K. Tanaka. OVID: Design and implementation of a video-object database
system. [EEE Transactions on Knowledge and Data Engineering, 5(4):629—643, August 1993.

N. Roussopoulos, C. Faloutsos, and T. Sellis. An efficient pictorial database system for PSQL.
IEFEFE Transactions on Software Engineering, 14(5):639—650, May 1988.

R. T. Snodgrass. Temporal object-oriented databases: A critical comparison. In W. Kim,
editor, Modern Database Systems, pages 386—408. Addison-Wesley, 1995.

