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Abstract
Most of the database research on modeling time has

concentrated on the definition of a particular temporal
model and its incorporation into a (relational or object)
database management system. This has resulted in quite
a large number of different temporal models, each provid-
ing a specific set of temporal features. This paper presents
an object-oriented framework for temporal models which
supports multiple notions of time. The framework can be
used to accommodate the temporal needs of different appli-
cations, and derive existing temporal models by making a
series of design decisions through subclass specialization.
It can also be used to derive a series of new more general
temporal models that meet the needs of a growing number
of emerging applications.

1 Introduction
Time is an attribute of all real-world phenomena.

Events occur at specific points in time; objects and the re-
lationships among objects exist over time. The ability to
model the temporal dimension of the real world is essen-
tial for many applications such as econometrics, banking,
inventory control, medical records, real-time systems, mul-
timedia, airline reservations, versions in CAD/CAM appli-
cations, statistical and scientific applications, etc. Database
management systems (DBMSs) that support these applica-
tions have to be able to satisfy temporal requirements.

In order to accommodate the temporal needs of different
applications, there has been extensive research activity on
temporal data models in the last decade [18, 23, 22, 12, 25].
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The early research concentrated on extending the relational
data model to handle time in an appropriate manner. The
notion of time, with its multiple facets, is difficult (if not
impossible) to represent in one single relational model
since it does not adequately capture data or application se-
mantics. This is substantiated by most of the relational
temporal models only supporting a model of time that is
discrete and linear.

The general limitation of the relational model in sup-
porting complex applications has led to research into next-
generation data models, specifically object data models.
The research on temporal models has generally followed
this trend. Temporal object models can more accurately
capture the semantics of complex objects and treat time as
a basic component. There have been many temporal ob-
ject model proposals (for example, [16, 24, 26, 11, 5, 3]).
None of these models, with the exception of [26], reflects
on the capability of an object model in defining the diver-
sity of time. Wuu & Dayal [26] provide an abstracttime
type to model the most general semantics of time which
can then be subtyped (by the user or database designer) to
model the various notions of time required by specific ap-
plications. However, this requires significant support from
the user, including specification of the temporal schema.

Both (relational and object-oriented) approaches have
led to the definition and design of a multitude of temporal
models. Many of these assume a set of fixed notions about
time, and therefore do not incorporate sufficient function-
ality or extensibility to meet the varying temporal require-
ments of today's applications. Instead, similar functional-
ity is re-engineered every time a temporal model is created
for a new application.

Although most temporal models were designed to sup-
port the temporal needs of a particular application, or group
of similar applications, if we look at the functionality of-
fered by the temporal models at an abstract level, there are
notable similarities in their temporal features:



� Each temporal model has one or more temporal prim-
itives, namely,time instant, time interval, time span,
etc. Thediscrete or thecontinuous domain is used by
each temporal model as a temporal domain over the
primitives.

� Some temporal models require their temporal primi-
tives to have the same underlyinggranularity, while
others support multiple granularities and allow tem-
poral primitives to be specified in different granulari-
ties.

� Most temporal models support alinear model of time,
while some support abranching model of time. In the
former, temporal primitives are totally ordered, while
in the latter they have a partial order defined on them.

� All temporal models provide some means of modeling
historical information about real-world entities and/or
histories of entities in the database. Two of the most
popular types of histories that have been employed are
valid andtransaction time histories [21], respectively.

These commonalities suggest a need for combining the di-
verse features of the temporal domain under a single infras-
tructure that allows design reuse. In this paper, we present
an object-oriented framework [10] that provides such a uni-
fied infrastructure. An object-oriented approach allows us
to capture the complex semantics of time by representing
it as a basic entity. Furthermore, the typing and inheritance
mechanisms of object-oriented systems directly enable the
various notions of time to be reflected in a single frame-
work.

We can draw a parallel between our work and similar
(albeit on a much larger scale) approaches used inChoices
[4] and cmcc [1]. Choices is a framework for operating
system construction which was designed to provide a fam-
ily of operating systems that could be reconfigured to meet
diverse user/application requirements.cmcc is an opti-
mizing compiler that makes use of frameworks to facili-
tate code reuse for different modules of a compiler. Sim-
ilar to Choices andcmcc, the temporal framework can be
regarded as an attempt to construct a family of temporal
models. The framework can then be tailored to reflect a
particular temporal model which best suits the needs of an
application. A particular temporal model would be one of
the many “instances” of the framework.

The presentation of this paper is divided into four sec-
tions. Section 2 presents the temporal framework by iden-
tifying the design dimensions (key abstractions) for tem-
poral models and the interactions between them. Section 3
illustrates how the temporal framework can be tailored to
accommodate the temporal needs of different applications,

and the temporal features of temporal object models. Sec-
tion 4 summarizes the work presented in this paper and
outlines avenues for future research.

2 The Architecture of the Temporal Frame-
work

In order to accommodate the varying requirements that
many applications have for temporal support, we first iden-
tify the design dimensions that span the design space for
temporal models. Next, we identify the components or fea-
tures of each design dimension. Finally, we explore the in-
teractions between the design dimensions in order to struc-
ture the design space. These steps produce a framework
which consists of abstract and concrete object types, and
properties. The types are used to model the different de-
sign dimensions and their corresponding components. The
properties are used to model the different operations on
each component, and to represent the relationships (con-
straints) between the design dimensions. The framework
classifies design alternatives for temporal models by pro-
viding types and properties that can be used to define the
semantics of many different specific notions of time.
2.1 Design Dimensions

The design alternatives for temporal models can be clas-
sified along four design dimensions:

1. Temporal Structure

2. Temporal Representation

3. Temporal Order

4. Temporal History

These design dimensions span the design space of temporal
models. Temporal structures provide the underlying ontol-
ogy and domains for time. A temporal representation pro-
vides a means to represent time so that it is human read-
able. Temporal orders give an ordering to time. Temporal
histories allow events and activities to be associated with
time. In the rest of this section, we describe each design
dimension in detail.

We assume the availability of commonly used object-
oriented features� atomic entities (reals, integers, strings,
etc.);types for defining common features of objects;prop-
erties (which representmethods and instance variables)
for specifying the semantics of operations that may be
performed on objects;classes which represent the extents
of types; andcollections for supporting general heteroge-
neous groupings of objects. In this paper, a reference pre-
fixed by “T ” refers to a type, and “P ” to a property. A
type is represented by a rounded box. An abstract type is
shaded with a black triangle in its upper left corner, while
a concrete type is unshaded. In Figures 5 and 12 the rect-
angular boxes are objects. Objects have an outgoing edge



for each property applicable to the object which is labeled
with the name of the property and which leads to an object
resulting from the application of the property to the given
object. A circle labeled with the symbolsf g represents a
container object and has outgoing edges labeled with “2”
to each member object.

2.1.1 Temporal Structure

The first question about a temporal model is “what is its un-
derlying temporal structure?” More specifically, what are
the temporal primitives supported in the model, what tem-
poral domains are available over these primitives, and what
is the temporal determinacy of the primitives? Indeed, the
temporal structure dimension with its various constituents
forms the basic building block of the design space of any
temporal model since it is comprised of the basic temporal
features that underlie the model.

Figure 1 shows the building block hierarchy of a tempo-
ral structure. The basic building block consists of anchored
and unanchored temporal primitives. The next building
block provides a domain for the primitives that consists of
discrete or continuous temporal primitives. Finally, the last
building block of Figure 1 adds determinacy. Thus, a tem-
poral structure can be defined by a series of progressively
enhanced temporal primitives.

Primitives

Determinacy-Domain-based

Domain-based Temporal

Temporal Primitives

Temporal Primitives

+ determinacy/
indeterminacy

+ discrete/continuous
domain

Figure 1: Building a Temporal Structure

Figure 2 gives a detailed hierarchy of the different types
of temporal primitives that exist in each of the building
blocks of Figure 1. Based on the features of a temporal
structure, its design space consists of 11 different kinds of
temporal primitives. These are the determinacy-domain-
based temporal primitives shown in Figure 2 and described
below.

Continuous time instants and intervals Continuous in-
stants are just points on the (continuous) line of all
anchored time specifications. They are totally ordered
by the relation “later than.” Since in theory, continu-
ous instants have infinite precision, they cannot have
a period of indeterminacy. Therefore, continuous in-
determinate time instants do not exist in Figure 2.

However, continuous intervals can be determinate or
indeterminate. The difference between them is that a
continuous determinate interval denotes an event that

occurred during each instant of the interval whereas
a continuous indeterminate interval denotes an event
that occurs at one or more instants of the interval. Ev-
ery interval has lower and upper bounds which are
continuous instants.

Discrete time instants and intervals Assume that some-
body has been on a train the whole day of Jan-
uary 5th, 1987. This fact can be expressed us-
ing a determinate time instant5 January 1987det
(which meansthe whole day of). However, the
fact that somebody is leaving for Paris on Jan-
uary 5th, 1987 can be represented as an indeter-
minate time instant5 January 1987indet (which
meanssome time on that day). Hence, each dis-
crete time instant is eitherdeterminate or indeter-
minate, corresponding to the two different interpre-
tations. Essentially, a determinate (indeterminate)
discrete time instant behaves like a determinate (in-
determinate) continuous interval. For example, the
time instant5 January 1987det mentioned above
is analogous to the determinate continuous interval
[5 January 1987cont; 6 January 1987cont).

Discrete time instants can be used to formdiscrete
time intervals. Since we have determinate and inde-
terminate discrete instants, we also have determinate
and indeterminate discrete intervals. Determinate (in-
determinate) time instants can be used as boundaries
of determinate (indeterminate) time intervals.

Time spans Discrete and continuous determinate spans
represent complete information about a duration of
time. A discrete determinate span is a summation
of distinct granularities with integer coefficients e.g.,
5 days or 2 months + 5 days. Similarly, a con-
tinuous determinate span is a summation of distinct
granularities with real coefficients e.g.,0:31 hours or
5:2minutes + 0:15 seconds.

Discrete and continuous indeterminate spans repre-
sent incomplete information about a duration of time.
They have lower and upper bounds that are determi-
nate spans. For example,1 day � 2 days is a dis-
crete indeterminate span that can be interpreted as “a
time period between one and two days.”

The detailed inheritance hierarchy of a temporal struc-
ture is given in Figure 3 which shows the types and
generic properties that are used to model various kinds of
determinacy-domain-based temporal primitives.

Properties defined on time instants allow an instant to
be compared with another instant; an instant to be sub-
tracted from another instant to find the time duration be-
tween the two; and a time span to be added to or sub-
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Figure 2: Design Space of a Temporal Structure

tracted from an instant to return another instant. Further-
more, propertiesP calendarandP calElementsare used to
link time instants to calendars which serve as a representa-
tional scheme for temporal primitives (see Section 2.1.2).
P calendarreturns the calendar which the instant belongs
to andP calElementsreturns a list of the calendric ele-
ments in a time instant. For exampleP calendarapplied
to the time instant 15 June 1995 would returnGregorian,
while the application ofP calElementsto the same time
instant would return(1995; June; 15).

Similarly, properties defined on time intervals include
unary operations which return the lower bound, upper
bound and length of the interval; ordering operations which
define Allen's interval algebra [2]; and set-theoretic opera-
tions.

Properties defined on time spans enable comparison
and arithmetic operations between spans. Additionally,
propertiesP coefficient and P calGranularitiesare used
as representational properties and provide a link between

time spans and calendars (see Section 2.1.2).P coefficient
returns the (real) coefficient of a time span given a
specific calendric granularity. For example,(5 days)�
P coefficient(day) returns5:0. P calGranularitiesreturns
a collection of calendric granularities in a time span. For
example, the property application(1 month + 5 days)�
P calGranularitiesreturnsfday;monthg.

We note that (see Figure 3) the propertiesP succ and
P predare defined in all the types involving discrete prim-
itives. This problem can be eliminated by refactoring the
concerned types and using multiple inheritance. More
specifically, an abstract type calledT discrete can be
introduced, and the propertiesP succand andP pred de-
fined on it. All the types involving discrete primitives can
then be made subtypes ofT discrete. A similar ap-
proach can be used to factor the types that define properties
P lb andP ub. An abstract type calledT bounds can be
introduced. with the propertiesP lb andP ub defined on it.
TheT interval type and the types involving indetermi-
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Figure 3: The Inheritance Hierarchy of a Temporal Structure

nate spans can then be made subtypes ofT bounds. Al-
ternatively, the concept of multiple subtyping hierarchies
can be used to collect semantically related types together
and avoid the duplication of properties [9]. For example,
the unanchored primitives hierarchy can be re-structured as
shown in Figure 4.

P_lb, P_ub

T_detDiscSpan

T_indetContSpan

T_detContSpan

T_discSpan

T_indetSpan

T_contSpan

P_succ, P_pred

T_indetDiscSpan

Supertype Subtype

P_add, P_subtract

P_coefficient

P_calGranularities

T_unanchPrim

Figure 4: Multiple Subtyping Hierarchy for Unanchored
Temporal Primitives

2.1.2 Temporal Representation

For human readability, it is important to have a represen-
tational scheme in which the temporal primitives can be
made human readable and usable. This is achieved by
means of calendars. A calendar is composed of an ori-
gin, a set of calendric granularities, and a set of conversion
functions. The origin marks the start of a calendar. Cal-
endric granularities define the reasonable time units (e.g.,
minute, day, month) that can be used in conjunction with
this calendar to represent temporal primitives. A calendric
granularity also has a list ofcalendric elements. For ex-
ample in the Gregorian calendar, the calendric granularity
day has the calendric elementsSunday, Monday, : : : , Sat-
urday. Similarly in the Academic calendar, the calendric
granularitysemester has the calendric elementsFall, Win-
ter, Spring, andSummer. The conversion functions estab-
lish the conversion rules between calendric granularities of
a calendar.

Since all calendars have the same structure, a single
type, calledT calendar can be used to model differ-
ent calendars, where instances represent different calen-
dars. The basic properties of a calendar are,P origin,



P calGranularities, andP functions. These allow each cal-
endar to define its origin, calendric granularities, and the
conversion functions between different calendric granular-
ities.

Example 2.1 Figure 5 shows four instances of
T calendar � the Gregorian, Lunar, Academic,
and Fiscal calendars. The origin of the Gregorian cal-
endar is given as the span1582 years from the start of
time since it was proclaimed in 1582 by Pope Gregory
XIII as a reform of the Julian calendar. The calendric
granularities in the Gregorian calendar are the standard
ones,year, month, day, etc. The origin of the Academic
calendar shown in Figure 5 is assumed to be the span
1908 academicY ears having started in the year 1908,
which is the establishment date of the University of
Alberta. The Academic calendar has similar calendric
granularities as the Gregorian calendar and defines a new
calendric granularity ofsemester. The semantics of the
Lunar and Fiscal calendars could similarly be defined.2

{ }

{ }

ε

{ }

ε
ε

1908 years

{ }

εε ε

ε

ε

ε

ε

T_calendar

year month day

academicYear semester academicMonth

P_origin
P_calGranularities

P_functions

P_origin
P_calGranularities

P_functions

Fiscal Lunar

Academic

1582 years

Gregorian

Figure 5: Temporal Representational Examples

2.1.3 Temporal Order

We now have the means of designing the temporal structure
and the temporal representation of a temporal model. The
next step is to provide an ordering scheme for the temporal
primitives. This constitutes the third building block of our
design space.

A temporal order can be classified as beinglinear or
branching. In a linear order, time flows from past to future
in an ordered manner. In a branching order, time is linear
in the past up to a certain point, when it branches out into
alternate futures. The structure of a branching order can
be thought of as a tree defining a partial order of times.
The trunk (stem) of the tree is a linear order and each of
its branches is a branching order. The branching order is
useful in applications such as computer aided design and
planning or version control which allow objects to evolve
over a non-linear (branching) time dimension (e.g., multi-
ple futures, or partially ordered design alternatives).

The different types of temporal orders are dependent on
each other. Asub-linear order is one in which the temporal
primitives (time intervals) are allowed to overlap, while a
linear order is one in which the temporal primitives (time
intervals) are not allowed to overlap. Every linear order
is also a sub-linear order. A branching order is essentially
made up of sub-linear orders. The relationship between
temporal orders is shown in Figure 6.

Temporal Order

is-a

is-a
Branching Order

sub-Linear
Order

composed-of

Linear
is-a

Order

Figure 6: Temporal Order Relationships

The hierarchy in Figure 7 gives the various types and
properties which model different temporal orders.

T_temporalOrder

P_temporalPrimitives

Supertype Subtype

T_subLinearOrder

T_branchingOrder

P_branchingOrder

P_root
P_branches

T_linearOrder

P_in

Figure 7: The Hierarchy of Temporal Orders

2.1.4 Temporal History

So far we have considered the various features of time; its
structure, the way it is represented, and how it is ordered.
The final building block of the design space of temporal
models makes it possible to associate time with entities to
model different temporal histories.

One requirement of a temporal model is an ability to as-
sociate temporal primitives with real-world entities. More



specifically, the temporal model should adequately repre-
sent and manage real-world entities as they evolve over
time. An entity assumes different values over time. The
set of these values forms thetemporal history of the entity.

Two basic types of temporal histories are considered
in databases which incorporate time. These arevalid and
transaction time histories [20]. Valid time denotes the time
when an entity becomes effective (begins to model reality),
while transaction time represents the time when a transac-
tion is posted to the database. Usually valid and transaction
times are the same. Other temporal histories includeevent
time [16], anduser-defined time histories. Unlike valid and
transaction times the semantics of user-defined time is pro-
vided by the user, and not supported by the database man-
agement system. Since valid, transaction, event, and user-
defined histories can have different semantics, they are or-
thogonal.

T_history

T_validHistory

T_eventHistory

T_transactionHistory

P_getObjects
P_remove
P_insert
P_temporalOrder
P_history

Figure 8: The Types and Properties for Temporal Histories

Figure 8 shows the various types that could be used to
model these different histories. A temporal history consists
of objects and their associated timestamps.

PropertyP history defined inT history returns a
collection of alltimestamped objects that comprise the his-
tory. A history object also knows the temporal order of
its temporal primitives. The propertyP temporalOrder
returns the temporal order (which is an object of type
T temporalOrder) associated with a history object.
The temporal order basically orders the time intervals (or
time instants) in the history. Another property defined on
history objects,P insert, timestamps and inserts an object
in the history. TheP validObjectsproperty allows the user
to get the objects in the history that were valid at (during)
a given temporal primitive.

2.2 Relationships between Design Dimensions
In the previous section we described the building blocks

(design dimensions) for temporal models and identified the
design space of each dimension. We now look at the inter-
actions between the design dimensions. This will enable us
to put the building blocks together and structure the design
space for temporal models.

A temporal history is composed of entities which are
ordered in time. This temporal ordering is over a collec-
tion of temporal primitives in the history, which in turn are
represented in a certain manner. Hence, the four dimen-
sions can be linked via a “has-a” relationship as shown in
Figure 9.

Temporal Representation

Temporal Structure

Temporal Order

Temporal History

has-a

has-a

has-a

Figure 9: Relationships between the Temporal Design Di-
mensions

Basically, a temporal model can be envisioned as hav-
ing a notion of time, which has an underlying temporal
structure, a means to represent the temporal structure, and
different temporal orders to order the temporal primitives
within a temporal structure. This notion of time, when
combined with certain entities could be used to represent
certain temporal histories in the temporal model.

A temporal model can support one or more of valid,
transaction, event, and user-defined histories. Each history
in turn has a certain temporal order. This temporal order
has properties which are defined by the type of temporal
history (linear or branching). A linear history may or may
not allow overlapping of anchored temporal primitives that
belong to it. If it does not allow overlapping, then such a
history defines a total order on the anchored temporal prim-
itives that belong to it. Otherwise, it defines a partial order
on its anchored temporal primitives. Each order can then
have a temporal structure which can comprise of all or a
subset of the 11 different temporal primitives. Finally, dif-
ferent calendars can be defined as a means to represent the
temporal primitives.

The four dimensions are modeled by the respec-
tive types shown in Figure 10. The “has a” rela-
tionship between the dimensions is modeled using ap-
propriate properties and is represented in the figure
by dashed arrows between the respective types. An
object of T temporalHistory represents a tempo-
ral history. Its temporal order is obtained using the
P temporalOrderproperty. A temporal order is an object
of typeT temporalOrder and has a certain temporal
structure which is obtained using theP temporalPrimitives
property. The temporal structure is an object of type
T temporalStructure. The propertyP calendar



P_origin
P_calGranularities
P_functions

P_ub,P_lb, P_length

P_overlaps, P_during

P_starts, P_finishes, P_meets

P_union

P_intersection

P_difference

P_root
P_branches
P_in

T_validHistory

T_transactionHistory

T_eventHistory

P_history
P_temporalOrder
P_insert

P_getObjects
P_remove

T_history

Supertype Subtype

P_lb, P_ub

T_subLinearOrder

T_branchingOrder
P_temporalPrimitives

P_branchingOrder

T_linearOrder

T_temporalFramework

P_succ, P_pred

P_succ, P_pred

P_succ, P_pred

P_lb, P_ub, P_succ, P_pred

P_before

P_after

P_addDuration

P_subDuration

P_add, P_subtract

P_coefficient

P_calGranularities

P_leq, P_geq

P_elapsed

P_calendar

P_calElements

T_temporalStructure
T_interval

T_unanchPrim

T_anchPrim

T_instant

T_temporalOrder

T_indetDiscInstant

T_detDiscInstant

T_detContInstant

T_detDiscInterval

T_indetDiscInterval

T_detContInterval

T_indetContInterval

T_detDiscSpan

T_indetDiscSpan

T_detContSpan

T_indetContSpanT_calendar

Figure 11: The Inheritance Hierarchy for the Temporal Framework

gives the instance ofT calendarwhich is used to repre-
sent the temporal structure.

The relationships shown in Figure 10 provide us with a
temporal framework which encompasses the design space
for temporal models. The detailed inheritance hierarchy,
shown in Figure 11, is based on the design dimensions
identified in Section 2 and their various features which are
given in Figures 3, 7, and 8.

As we described in Section 2.1.1, refactoring of types
and multiple inheritance can be used to handle identical
properties that are defined over different types in the inher-
itance hierarchy shown in Figure 11. The framework can
now be tailored for the temporal needs of different applica-
tions and temporal models. This is illustrated in Section 3.

3 Tailoring the Temporal Framework
In this section, we illustrate how the temporal frame-

work that is defined in Section 2 can be tailored to accom-
modate applications and temporal models which have dif-
ferent temporal requirements. In the first two sub-sections,
we give examples of two real-world applications that have
different temporal needs. In the last sub-section, we give
an example of a temporal object model and show how the
model can be derived from the temporal framework.

3.1 Clinical Data Management
In this section we give a real-world example from clin-

ical data management that illustrates the four design di-
mensions and the relationships between them which were
discussed in Section 2.

During the course of a patient's illness, different blood
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tests are administered. It is usually the case that multiple
blood tests of the patient are carried out on the same day.
Suppose the patient was suspected of having an infection of
the blood, and therefore, had two different blood tests on
15 January 1995. These were the diagnostic hematology

and microbiology blood tests. As a result of a very raised
white cell count the patient was given a course of antibi-
otics while the results of the tests were awaited. A repeat
hematology test was ordered on 20 February 1995. Sup-
pose each blood test is represented by an object of the type
T bloodTest. The valid history of the patient's blood
tests can then be represented in the object database as an
object of typeT validHistory. Let us call this object
bloodTestHistory. To record the hematology and micro-
biology blood tests, the objectshematology andmicrobi-
ology whose type isT bloodTest are first created and
then entered into the object database using the following
property applications:

bloodTestHistory:P insert(microbiology; 15 January 1995)

bloodTestHistory:P insert(hematology1; 15 January 1995)

bloodTestHistory:P insert(hematology2; 20 February 1995)

If subsequently there is a need to determine which
blood tests the patient took in January 1995, this
would be accomplished by the property application
bloodTestHistory:P getObjects([1 January 1995;



31 January 1995]). This would return a collection of
timestamped objects ofT bloodTest representing all
the blood tests the patient took in January 1995. These
objects would be the (timestamped)hematology1 and the
(timestamped)microbiology.

Figure 12 shows the different temporal features that are
needed to keep track of a patient's blood tests over the
course of a particular illness. The figure also illustrates
the relationships between the different design dimensions
of the temporal framework.

The patient has a blood test history represented by
the object bloodTestHistory. The P history prop-
erty when applied tobloodTestHistory results in a
collection object whose members are the timestamped
objects timeStampedMicrobiology, timeStampedHe-
matology1, and timeStampedHematology2. The
P insert(bloodTestHistory) function object updates the
blood test history when given an object of type
T bloodTest and an anchored temporal primitive. Simi-
larly, theP getObjects(bloodTestHistory) function object
returns a collection of timestamped objects when given an
anchored temporal primitive.

Applying the property P temporalOrder to blood-
TestHistory results in the objectbloodTestOrder which
represents the temporal order on different blood tests
in bloodTestHistory. bloodTestOrder has a certain
temporal structure which is obtained by applying the
P temporalPrimitivesproperty. Finally, the primitives in
the temporal structure are represented using the Gregorian
calendar,Gregorian and the calendric granularitiesyear,
month, andday.

Let us now consider the various temporal features re-
quired to represent the different blood tests taken by a pa-
tient. Anchored, discrete, and determinate temporal prim-
itives are required to model the dates on which the patient
takes different blood tests. These dates are represented us-
ing the Gregorian calendar. Since the blood tests take place
on specific days, the temporal primitives during which the
patient took blood tests form a total order. Lastly, a valid
time history is used to keep track of the different times the
blood tests were carried out. To support these temporal
features, the temporal framework can be reconfigured with
the appropriate types and properties. These are given in
Figure 13.

3.2 Time Series Management
The management of time series is important in many

application areas such as finance, banking, and economic
research. One of the main features of time series man-
agement is extensive calendar support [6, 13]. Calen-
dars map time points to their corresponding data and pro-
vide a platform for granularity conversions and temporal
queries. Therefore, the temporal requirements of a time se-

ries management system include elaborate calendric func-
tionality (which allows the definition of multiple calendars
and granularities) and variable temporal structure (which
supports both anchored and unanchored temporal primi-
tives, and the different operations on them).

Figure 14 shows how the temporal requirements of a
time series management system can be modeled using
the types and properties of the temporal framework. We
note from the figure that only the temporal structure and
temporal representation design dimensions are used to
represent the temporal needs of a time series. This demon-
strates that it is not necessary for an application requiring
temporal features to have all four design dimensions in
order to be accommodated in the framework. One or more
of the design dimensions specified in Section 2.1 can be
used as long as the design criteria shown in Figures 9 holds.

3.3 TOODM - A Temporal Object-Oriented
Data Model

In this section, we illustrate how the temporal frame-
work can accommodate the temporal features of different
temporal object models. Due to space limitations, we con-
centrate on Rose & Segev's temporal object-oriented data
model (TOODM) [16] since it uses object types and in-
heritance to model temporality. We refer the reader to [8]
for details on how the temporal framework also accommo-
dates the temporal features of the rest of the temporal ob-
ject models [24, 11, 5, 15, 7, 3] that have appeared in the
literature.

3.3.1 Overview of Temporal Features

TOODM was designed by extending an object-oriented
entity-relationship data model to incorporate temporal
structures and constraints. The functionality of TOODM
includes: specification and enforcement of temporal con-
straints; support for past, present, and future time; support
for different type and instance histories; and allowance for
retro/proactive updates. The type hierarchy of the TOODM
system defined types used to model temporality is given in
Figure 15. The boxes with a dashed border represent types
that have been introduced to model time, while the rest of
the boxes represent basic types.

The Object type is the root of the type tree. The
typeV-Class is used to represent user-defined version-
able classes. More specifically, if the instance variables,
messages/methods, or constraints of a type are allowed to
change (maintain histories), the type must be defined as a
subtype ofV-Class.

ThePtypes type models primitive types and is used
to represent objects which do not have any instance vari-
ables.Ptypes usually serve as domains for the instance
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variables of other objects. TheTime primitive type is used
to represent temporal primitives. TheTP type represents
time points, while theTI type represents time intervals.
Time points can have specific different calendar granular-
ities, namelyYear, Month, Day, Week, Hour, Minute, and
Second.

The TS[T] type represents a time sequence which is
a collection of objects ordered on time.TS[T] is a para-
metric type with the typeT representing a user or system
defined type upon which a time sequence is being defined.
For every time-varying attribute in a (versionable) class, a
corresponding subclass (ofTS[T]) is defined to represent

the time sequence (history) of that attribute. For example,
if the salary history of an employee is to be maintained, a
subclass (e.g.,TS[Salary]) of TS[T] has to be defined
so that the salary instance variable in the employee class
(which is defined as a subclass ofV-Class) can refer to
it to obtain the salary history of a particular employee. The
history of an object of typeTS[T] is represented as a pair
<T,TL>, whereT is the data type andTL defines the dif-
ferent timelines and their granularities that are associated
with T . Three timelines are allowed in TOODM: valid
time, record (transaction) time, and event time (the time
an event occurred). Each timeline associated with an ob-
ject is comprised of time points or time intervals and has
an underlying granularity.

3.3.2 Representing the Temporal Features of
TOODM in the Temporal Framework

TOODM supports both anchored and unanchored prim-
itives. These are modeled by theAbsolute and
Relative types shown in Figure 15. The anchored tem-
poral primitives supported are time instants and time in-
tervals. A continuous time domain is used to perceive the
temporal primitives. Finally, the temporal primitives are
determinate.

Time points and time intervals are represented by us-
ing the Gregorian calendar with granularitiesYear, Month,
Day, Week, Hour, Minute, andSecond. Translations be-
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Structure Representation Order History

Primitives Domain Determinacy
Anchored Continuous Determinate Gregorian Calendar Total Linear Valid
Unanchored Transaction

Event

Table 1: Temporal Design Dimension Features of TOODM

tween granularities in operations are provided, with the de-
fault being to convert to the coarser granularity. A (presum-
ably total) linear order of time is used to order the primi-
tives in a temporal sequence. TOODM combines time with
facts to model different temporal histories, namely, valid,
transaction, and event time histories. Table 1 summarizes
the temporal features (design space) of TOODM accord-
ing to the design dimensions for temporal models that were
described in Section 2.1. Figure 16 shows the type system
instance of our temporal framework that corresponds to the
TOODM time types shown in Figure 15 and described in
Table 1.

The Time primitive type is represented using the
T temporalStructure type. TheTP andTI types
are represented using theT instant andT interval
types, respectively. Similarly, theRelative type
is represented using theT unanchPrim type. Since
TOODM supports continuous and determinate temporal
primitives, the (concrete) typesT detContInstant,
T detContInterval, andT detContSpan are used
to model continuous and determinate instants, intervals,
and spans, respectively.

The Gregorian calendar and its different calendric
granularities are modeled using theT calendar type.

Time points and time intervals are ordered using the
T linearOrder type. Time sequences represented by
the TS[T] type are modeled by the history types in the
temporal framework. More specifically, valid time (vt),
record time (rt), and event time (et) are modeled using the
T validHistory, T transactionHistory, and
T eventHistory types.

TOODM models valid, transaction and event histories
all together in one structure as shown by theTS[Salary]
type in the previous section. Our temporal framework,
however, provides different types to model valid, transac-
tion, and event histories to allow their respective semantics
to be modeled. Moreover, it uses properties to access the
various components of histories. For example, to represent
the valid history of an employee's salary an object of type
T validHistory is first created. TheP insert prop-
erty then inserts objects of typeT integer (representing
salary values) and objects of typeT interval (repre-
senting time intervals) into the salary valid history object.
The transaction and event time histories of the salary are
similarly represented, except in these histories theP insert
property inserts timestamps which are time instants (i.e.,
objects of typeT instant).
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4 Discussion and Conclusions

In this paper the different design dimensions that span
the design space of temporal object models were identified.
Object-oriented techniques were then used in designing an
infrastructure which supports the diverse notions of time
under a single framework. We also demonstrated the ex-
pressiveness of the framework by showing how it can be
used to accommodate the temporal needs of different real-
world applications, and also reflect different temporal ob-
ject models that have been reported in the literature.

This temporal framework subsumes the work of Wuu &
Dayal [26] in that it provides the user or database designer
with explicit types and properties to model the diverse fea-
tures of time. Wuu & Dayal provide an abstracttime type to
model the most general semantics of time which can then
be subtyped (by the user or database designer) to model the
various notions of time required by specific applications.
However, their approach requires significant support from
the user, including specification of the temporal schema.
We contend that specifying a schema for modeling time is
complex, and certainly not trivial. It is therefore impera-
tive for temporal object models to have a temporal infras-
tructure from which users can choose the temporal features
they need.

Using the object-oriented inheritance hierarchy to struc-
ture the design space of temporal object models and iden-
tify the dependencies within and among the design dimen-
sions helped us simplify the presentation of the otherwise
complex domain of time. The focus in this work has been
on the unified provision of temporal features which can be
used by temporal object models according to their temporal
needs. Once these are in place, the model can then define
other object-oriented features to support its application do-
main.

The diverse features of the temporal domain are also
identified in [19]. The focus however, is on comparing var-
ious temporal object models and query languages based on
their ability to support valid and transaction time histories.
In this paper we show how the generic aspects of temporal
models can be captured and described in a single frame-
work. In [14] a temporal reference framework for multi-
media synchronization is proposed and used to compare
existing temporal specification schemes and their relation-
ships to multimedia synchronization. The focus however,
is on different forms of temporal specification, and not on
different notions of time. The model of time used concen-
trates only on temporal primitives and their representation
schemes.



The temporal framework has been implemented in C++.
Furthermore, a toolkit has been developed in Perl/Tk in
order to allow users/temporal model designers to interact
with the framework at a high level and generate specific
framework instances for their own applications. The tem-
poral framework also gives a means to compare tempo-
ral objects models according to the design dimensions that
were identified in Section 2. This will help identify the
strengths and weaknesses of the different temporal objects
models. A research direction worth pursuing would be
to compare the temporal framework with frameworks for
time representation developed in the field of artificial intel-
ligence (for example, [17]).
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