
Pattern{based Object{Oriented Parallel

Programming

Steve MacDonald, Jonathan Schae�er, and Duane Szafron

University of Alberta, Edmonton, Alberta CANADA T6G 2H1
Email: fstevem,jonathan,duaneg@cs.ualberta.ca

1 Introduction and Motivation

Over the past �ve years there have been several attempts to produce template{

based (or, as they are now called, pattern{based [4]) parallel programming sys-
tems (PPS). By observing the progression of these systems, we can clearly see
the evolution of pattern{based computing technology. Our �rst attempt, Frame-
Works [9], allowed users to graphically specify the parallel structure of a pro-
cedural program in much the same way they would solve a puzzle, by piecing
together di�erent components. The programming model of FrameWorks was
low{level and placed the burden of correctness on the user. This research led to
Enterprise [7], a PPS that provided a limited number of templates that could be
composed in a structured way. The programming model in Enterprise was at a
much higher level, with many of the low{level details handled by a combination
of compiler and run{time technology.

In this progression, we can see more emphasis placed on the usability of the
tools rather than raw performance gains, as shown by Szafron and Schae�er
[12]. Each successive system reduced the probability of introducing program-
mer errors. However, since performance considerations cannot be ignored, each
successive systems also supported incremental application tuning. A related per-
formance issue identi�ed by Singh et al. [10] is openness, where a user is able to
access low{level features in the PPS and use them as necessary. This work led
to a critical evaluation of pattern{based systems that provides the motivation
for our new system, CO2P3S (Correct Object{Oriented Pattern{based Parallel
Programming System, pronounced \cops").

In this paper, we present an architecture and model for CO2P3S in which we
address some of the shortcomings of FrameWorks and Enterprise. Our continu-
ing goal is to produce usable parallel programming tools. The �rst shortcoming
we address is the loose relationship between the user's code and the graphi-
cal speci�cation of the program structure. Enterprise improved on FrameWorks
by verifying a correspondence between the parallel structure and the code at
compile{time. However, we feel that forcing the user to write a program that
conforms to an existing diagram is redundant. If the structure of the application
is already known, then the basic framework can be generated automatically. This
reduces the amount of e�ort required to write programs, while simultaneously
reducing programmer errors even further. The CO2P3S architecture also sup-
ports improved incremental tuning. The architecture is novel in that it provides

several user{accessible layers of abstraction. At any given time during perfor-
mance tuning, a programmer can work at the appropriate level of abstraction,
based on what is being tuned. This can range from modifying the basic parallel
pattern at the highest level, to modifying synchronization techniques at the mid-
dle layer, to modifying which communication primitives are used at the lowest
level. Our goal is an open system where the performance of an application is
directly commensurate with programmer e�ort.

2 The Architecture of CO2P3S

The architecture of CO2P3S consists of three layers: Patterns, Intermediate
Code, and Native Code. These layers represent di�erent levels of abstraction,
where the abstraction of each layer is implemented by the one underneath.

Each layer is transformed during compilation to the layer underneath. At the
pattern layer, the developer selects a pattern using a graphical tool. The PPS
then generates a template for the parallel application and the user is restricted
to providing sequential application{speci�c code at particular locations in the
generated template. At the pattern level, the PPS guarantees the correctness of
the generated program by using conservative synchronization mechanisms that
may not yield peak parallel performance.

Unlike Enterprise, CO2P3S provides programmer access to the second layer
where the templates can be edited. From this layer down, the programmer is re-
sponsible for the correctness of the resulting program. To simplify this task, we
provide a high{level parallel programming language that is an extension of ex-
isting OO languages (Java or C++). This superset includes keywords to denote
parallel classes, specify concurrent activities and express necessary synchroniza-
tion (using constructs such as asynchronous methods, threads, and futures).

Finally, the third layer is the native programming language augmented with
a library that provides the services required by the �rst two layers. Users are
given full access to all language features and library code.

We believe that providing intermediate levels of abstraction can provide sev-
eral bene�ts. First, by generating correct template code at the �rst level, we
can ensure that a user has a working parallel program before the tuning process
begins. Second, it eases the tuning process by introducing the run{time system
in smaller increments. These smaller increments provide better opportunities for
novice or intermediate users to �nd a comfortable level of abstraction while still
providing full access to the run{time system for experienced users. Lastly, it
should always be possible to improve the performance of a program by using the
abstraction of a lower level. If so, then the performance of an application should
be more directly commensurate with programmer e�ort.

3 The Model

In this section, we more fully specify the model and demonstrate it using an ex-
ample program. Our example shows some details of a generic mesh computation.

Code

GUI

this.notDoneCondition()
this.prologue() ;

this.whilePrefix() ;

this.epilogue() ;

this.whileSuffix(leftState, rightState,
 upState, downState) ;

public void meshMethod()
{

 while() {

 MeshState leftState = left.getState() ;
 MeshState rightState = right.getState() ;
 MeshState upState = up.getState() ;
 MeshState downState = down.getState() ;

 } /* while */

 this.setResult() ;
} /* meshMethod */

public void prologue()
{
} /* prologue */

public void epilogue()
{
} /* epilogue */

public void whilePrefix()
{
} /* whilePrefix */

public boolean notDoneCondition()
{
 return(false) ;
} /* notDoneCondition */

public void whileSuffix(MeshState leftState,
 MeshState rightState,
 MeshState upState,
 MeshState downState)
{
} /* whileSuffix */

Fig. 1. The �rst layer of CO2P3S. Shaded code is generated by the system and cannot
be modi�ed. Italicized methods are null and must be implemented by the user. Skeleton
implementations are shown on the right.

The �rst layer speci�cation is shown in Figure 1. This layer consists of both
a graphical representation of the pattern and the accompanying generated code.
The pattern itself has several parameters that must be given. The parameters
include the width and height of the mesh and its boundary conditions. The
boundary conditions are the most interesting of these parameters since they
can a�ect the user code. The reason for this can be seen in the accompanying
code fragment. It shows the main loop in the evaluation of the mesh, with the
shaded part representing the generated code and italicized code representing
hook methods that the user must implement. In the hooks, the code uses all
four mesh neighbours. However, if the mesh is not fully toroidal, then not all the
neighbours will exist and the supplied code is not applicable. To correct this,
we allow the user to specify di�erent code for the di�erent special cases. In this
paper, for simplicity, we will assume the mesh is fully toroidal.

One critical feature of the �rst layer is that the generated code encapsulates
the communication and only allows the user to operate on the data. This feature
allows our PPS to make certain correctness guarantees, such as ensuring that
each element of the mesh is referenced. The code in Figure 1 demonstrates this
property by getting the state from the mesh neighbours and communicating
the results of the computation to a collector object responsible for collecting
the results (encapsulated within setResult()). Another critical aspect of this
code is that we provide su�cient hooks for users to completely implement their
programs. This requirement must be evaluated on a pattern{by{pattern basis.
For the portion of the mesh in Figure 1, we provide �ve hooks. prologue()
and epilogue() are executed before and after the mesh computation and can
be used for initialization and cleanup, such as implementing instrumentation.

whilePrefix() and whileSuffix() are executed for every iteration of the mesh
and can be used to preprocess local data and perform the desired mesh operation.
Finally, notDoneCondition() speci�es the terminating condition for an element
of the mesh. The mesh stops executing when all the elements are �nished. The
default implementation of these methods is given on the right side of Figure 1.

From the �rst layer code, we generate the intermediate code of the second
layer shown in Figure 2. The �gure also contains an example of a method oper-
ating on data in the mesh, which would have been added by the user at the �rst
level. For the mesh, the keywords left, right, up, down are de�ned to refer to
the neighbours. The keyword barrier is also required to de�ne the necessary
synchronization for the mesh and is automatically inserted in the transforma-
tion of the mesh code from the �rst to the second layer. Other, more general
keywords are also supported by CO2P3S.

barrier ;

left right
up down

public void meshMethod()
{
 this.prologue() ;
 while (this.notDoneCondition()) {
 this.whilePrefix() ;
 MeshState leftState = .getState() ; MeshState rightState = .getState() ;
 MeshState upState = .getState() ; MeshState downState = .getState() ;

 this.whileSuffix(leftState, rightState, upState, downState) ;
 } /* while */
 this.epilogue() ;
 this.setResult() ;
} /* meshMethod */

public void whileSuffix(MeshState leftState, MeshState rightState,
 MeshState upState, MeshState downState)
{
 // Take the average ol four neighbours and gather timing information.
 this.value = (this.value + leftState.getValue() + rightState.getValue() +
 upState.getValue() + downState.getValue()) / 5.0 ;
 this.stopTimer() ;
 this.gatherStatistics() ;
} /* whileSuffix */

Fig. 2. The second layer of CO2P3S. The italicized code are keywords inserted by the
transformation between layers.

A feature of the generated code is that it is fully functional even if the
user does not implement any of the hooks. In the mesh example, the default
implementation for notDoneCondition() returns false so the mesh immediately
exits. The main body of the mesh, if invoked, will retrieve the state from each of
its neighbours and perform a null operation. By producing code that is capable
of executing, we can verify that our patterns are correct and that the user will
start with a parallel program that does not contain any communication errors.

The user can also edit the generated code at this level, which allows the
structure of the mesh to be extended or modi�ed. For example, we can add new
neighbours not de�ned in the original mesh pattern. We can use this feature to
de�ne an arbitrary stencil to be convolved over the mesh.

Finally, from the second layer code of Figure 2, we generate the native code
given in Figure 3. Native code replaces the keywords inserted in the second layer

with library calls implemented by our run{time library. This replacement may
simply replace the keyword with an accessor, as with the accessing the neighbours
of the mesh. Others may be more complex, such as replacing barrier with a
call to the thread group for the threads executing the mesh. Users can also use
any available library call or language feature.

this.getMeshThreadGroup().barrier() ;

this.getLeft()
this.getUp() this.getDown()

this.getRight()

public void meshMethod()
{
 this.prologue() ;
 while (this.notDoneCondition()) {
 this.whilePrefix() ;
 MeshState leftState = .getState() ; MeshState rightState = .getState() ;
 MeshState upState = .getState() ; MeshState downState = .getState() ;

 this.whileSuffix(leftState, rightState, upState, downState) ;
 } /* while */
 this.epilogue() ;
 this.setResult() ;
} /* meshMethod */

Fig. 3. The third layer of CO2P3S. The italicized code represents replaced keywords.
The code for other methods is accessible but not shown.

4 Evaluating the Model

In this section, we examine the 13 desirable characteristics of pattern{based
PPSs described by Singh et al. and apply them to CO2P3S. Like Singh et al.,
we break the characteristics into three categories. We also use their short names
which are shown in bold in this text.
Structuring the ParallelismThis category examines how users can structure
the parallelism in their programs. There should be as few restrictions as possible.

CO2P3S addresses separation by expressing the parallelism diagrammati-
cally and allowing application{speci�c code to be inserted into the pattern. In our
case, the diagram is some form of collaboration diagram. Further, the CO2P3S
approach of generating code that invokes user hooks provides more opportunity
to re{use the hooks when the user changes the pattern. Since the hook code does
not a�ect the communication ow of the program (because the communication
code is generated and cannot be edited by the user), there is a greater possibility
that this code can be used in another pattern.

We can allow the parallelism in a program to be hierarchically speci�ed
by allowing patterns to be substituted for the sequential components in a pro-
gram. This composition can be compared to the Composite design pattern [4].
It provides a structured way of building complex program elements.

We can only address independenceand utility once the set of templates has
been decided upon. Typically, independence has been addressed by rigourously
de�ning the inputs and outputs of each design pattern or by creating separate

processes so that each pattern has only one input and one output. Either strategy
is applicable here.

Currently, this research has not focused on how to provide a way of extend-
ing the set of existing patterns. There has been other work in this area, such as
DPnDP [11]. We hope to use and continue the work started by this system.

Our architecture addresses the problems of openness and correctness. The
pattern layer addresses correctness by generating template code from the design
patterns. Since the generated code cannot be modi�ed, we can strictly enforce
the structure of the program. Combined with a run{time library, this code can
o�er a high{level model that frees the user from the low{level details of parallel
programming and guarantees the correctness of the parallel structures.

The subsequent layers of the system are intended to address the problem of
openness by providing successively more access to both the generated code and
the run{time system. The intermediate layer provides more control over the user
program by providing access to the generated code of the �rst layer, but still
provides a high{level programming model for easier programming. The user can
optimize the generated code, but is then responsible for its correctness. Finally,
the last layer provides access to the complete programming system.

Programming This category evaluates the style and structure of the applica-
tion code written by the user.

In examining the language characteristics, we should emphasize that the
CO2P3S architecture is intended to be independent of language. As such, it
should be possible to use the architecture for a variety of languages, satisfying the
goal of using an existing, familiar programming language. The de�nition of
this characteristic also includes the ideal of preserving the semantics and syntax
of this programming language. We purposefully stray from this ideal, though, as
we feel that preserving the semantics of a sequential language unnecessarily limits
the potential concurrency. As a small example, consider programming languages
that support run{time exceptions. To fully preserve the sequential semantics, it
is necessary to execute every statement in order. However, concurrent execution
could execute code that would not be executed in the event of an exception [14].
Without concurrent execution, computational parallelism is useless. A limited
set of new keywords can provide a usable abstraction for parallel programming
without greatly disturbing the rest of the language. We feel that the bene�ts
of a well{planned abstraction that is properly integrated into the language can
outweigh the risks of modifying a programming language. Nevertheless, we are
only proposing these modi�cations at the intermediate code layer of our PPS
with the understanding that at the native code layer, they will be translated to
a standard programming language; in this case, Java or C++.

Finally, we anticipate that CO2P3S will fail to meet the non{intrusiveness
characteristic. As noted by Singh et al., the only way to fully address this problem
is to implement a compiler that automatically generates a parallel program from
sequential code (which also solves the language objective). Unfortunately, current
compiler technology cannot create coarse{grained parallel programs.

User Satisfaction This last category focuses on a combination of performance
and usability concerns.

Without an implemented and mature system, most of the characteristics in
this last category cannot be evaluated. In particular, we cannot address the sup-
port and usability objectives. The performance objective is dealt with by our
architecture for incremental tuning. Portability can be addressed by providing
di�erent implementations of the Native Code layer for each architecture.

5 Related Work

In addition to FrameWorks and Enterprise, there are several other graphical par-
allel programming systems. Mentat [5] and HeNCE [2] both represent programs
as directed graphs. The programmingmodel of Mentat is similar to that of Enter-
prise with some extensions for C++. However, neither system is pattern{based
and neither supports incremental tuning. The parallel programming language
P3L [1] provides a set of design patterns that are composed to create programs.
The programming model involves explicit communication that is type{checked
at compile{time. Unfortunately, new languages impose a steep learning curve on
new users. Also, the language is not object{oriented and does not support mul-
tiple abstractions. The DPnDP system mentioned in Section 4 is similar to the
Mentat system except that the nodes in the graph may be implemented using
design patterns. This project also provides an interface for adding new patterns.

There has also been some work done in verifying code based on design pat-
terns. Se�ka et al. [8] proposed a model for verifying a program's adherence to a
design pattern using a combination of static and dynamic program information,
and also suggest generating code from a pattern. The generation of code from
a design pattern has been done for the patterns in [4] by Budinsky et al. [3]
This project delivers the source code that implements each design pattern. This
code is then modi�ed by the user for its intended application. In contrast, we
do not allow the user to immediately edit the generated code, so we can more
rigourously enforce the constraints of the selected pattern.

6 Preliminary Results and Current Status

We have some preliminary results based on a hand{coded implementation of a
mesh similar to that in Section 3. The example program we use is a reaction{
di�usion texture generator [13]. The algorithm can be described as two interact-
ing LaPlace equations, which simulate the reaction and di�usion of two chemicals
over a surface. The result is a texture map that approximates zebra stripes. We
solve the problem using straightforward convolution.

The program was executed on a SUN Ultra{SPARC 2 with 2 200MHz Super-
SPARC processors and 128M of main memory. The program was a hand written
Java program based that implements the mesh pattern described in this paper.
We did not perform any optimizations on the communication structure itself, al-
though we made some optimizations at the user code layer to reduce the amount

of state moved between threads. The sequential program is a modi�ed version
of the mesh code tuned for the case where there is only one mesh element. The
threaded version was run using native threads (multiple threads using both pro-
cessors) and achieved a wall clock speed{up of 1.26. Although this speed{up is
not very good, Java native thread interpreters are new technology and it should
improve in the future.

We are currently implementing CO2P3S in Java. However, we are being care-
ful to keep the architecture and model independent of any speci�c language. We
will support a rich set of patterns for the �rst layer of the system, including
meshes, trees, pipelines, master/slave, and iterators. The target architecture is a
multiprocessor machine with shared memory executing threads in parallel. This
is currently supported for Solaris 2.5.1. We may also investigate using networks
of workstations with a message{passing package such as Voyager [6].

References

1. B. Bacci et al. P3L: A structured high level parallel language and its structured
support. Concurrency: Practice and Experience, 7(3):225{255, May 1995.

2. A. Beguelin et al. HeNCE: A hetergeneous network computing environment. Tech-
nical Report UT-CS-93-205, University of Tennessee, August 1993.

3. F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu. Automatic code
generation from design patterns. IBM Systems Journal, 35(2):151{171, 1996.

4. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object{Oriented Software. Addison{Wesley, Reading, Mass., 1994.

5. A. S. Grimshaw. Easy to use object{oriented parallel programming with Mentat.
IEEE Computer, 26(5):39{51, May 1993.

6. ObjectSpace, Inc. Voyager Version 1.0 Beta 2.1. http://www.objectspace.com.
7. J. Schae�er, D. Szafron, G. Lobe, and I. Parsons. The Enterprise model for develop-

ing distributed applications. IEEE Parallel & Distributed Tech., 1(3):85{96, 1993.
8. M. Se�ka, A. Sane, and R. H. Campbell. Monitoring compliance of a software

system with its high{level design models. In Proceedings of the 18th International
Conference on Software Engineering (ICSE-18), pages 387{396, March 1996.

9. A. Singh, J. Schae�er, and M. Green. A template{based approach to the generation
of distributed applications using a network of workstations. IEEE Transactions on
Parallel and Distributed Systems, 2(1):52{67, January 1991.

10. A. Singh, J. Schae�er, and D. Szafron. Experience with template{based parallel
programming. Concurrency: Practice and Experience, 1997. To appear.

11. S. Siu, M. De Simone, D. Goswami, and A. Singh. Design patterns for parallel
programming. In Proceedings of the 1996 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA'96), August 1996.

12. D. Szafron and J. Schae�er. An experiment to measure the usability of parallel
programming systems. Concurrency: Practice and Experience, 8(2):147{166, 1996.

13. Andrew Witkin and Michael Kass. Reaction{di�usion textures. Computer Graph-
ics (SIGGRAPH '91 Proccedings), 25(4):299{308, July 1991.

14. A. Zubiri. An assessment of Java/RMI for object{oriented parallelism. Master's
thesis, Department of Computing Science, University of Alberta, 1997.

