
Managing Schema Evolution using a Temporal Object Model

Iqbal A. Goralwalla, Duane Szafron, M. Tamer �Ozsu

Laboratory for Database Systems Research

Department of Computing Science

University of Alberta

Edmonton, Alberta, Canada T6G 2H1

fiqbal,duane,ozsug@cs.ualberta.ca

and

Randal J. Peters

Department of Computer Science

University of Manitoba

Winnipeg, Manitoba, Canada R3T 2N2

randal@cs.umanitoba.ca

Abstract

The issues of schema evolution and temporal object models are generally considered to
be orthogonal and are handled independently. This is unrealistic because to properly model
applications that need incremental design and experimentation (such as CAD, software design
process), the evolutionary histories of the schema objects should be traceable. In this paper we
propose a method for managing schema changes by exploiting the functionality of a temporal
object model. The result is a uniform treatment of schema evolution and temporal support for
many object database management systems applications that require both.

1 Introduction

In this paper we address the issue of schema evolution and temporal object models. These two

issues are generally considered to be orthogonal and are handled independently. However, many

object database management systems (ODBMS) applications require both. For example:

� The results reported in [Sj�93] illustrate the extent to which schema changes occur in real-

world database applications such as health care management systems. Such systems also

require a means to represent, store, and retrieve the temporal information in clinical data

[KFT91, DM94, CPP95].

� The engineering and design oriented application domains (e.g., CAD, software design process)

require incremental design and experimentation [KBCG90, GTC+90]. This usually leads to

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 1

frequent changes to the schema over time which need to be retained as historical records of

the design process.

We propose a method for managing schema changes by exploiting the functionality of a temporal

object model. The provision of time in an object model establishes a platform from which tempo-

rality can be used to investigate advanced database features such as schema evolution. Given that

the applications supported by ODBMSs need support for incremental development and experimen-

tation with changing and evolving schema, a temporal domain is a natural means for managing

changes in schema and ensuring consistency of the system. The result is a uniform treatment of

schema evolution and temporal support for many ODBMS applications that require both.

Schema evolution using time is the process of allowing changes to schema without loss of in-

formation. Typical schema changes include adding and dropping behaviors (properties) de�ned on

a type, adding and dropping subtype relationships between types, to name a few. Using time to

maintain and manage schema changes gives substantial
exibility in the software design process.

It enables the designers to retrieve the interface of a type that existed at any time in the design

phase, reconstruct the super(sub)-lattice of a type as it was at a certain time (and subsequently

the type lattice of the object database at that time), and trace the implementations of a certain

behavior in a particular type over time.

A typical schema change can a�ect many aspects of a system. There are two fundamental

problems to consider:

1. Semantics of Change. The e�ects of the schema change on the overall way in which the

system organizes information (i.e., the e�ects on the schema). The traditional approach to

solving this problem is to de�ne a set of invariants that must be preserved over schema

modi�cations.

2. Change Propagation. The e�ects of the schema change on the consistency of the underlying

objects (i.e., the propagation of the schema changes to the existing object instances). The

traditional approach of solving this is to coerce objects to coincide with the new de�nition of

the schema.

In this paper we primarily consider the consistent handling of the problem of semantics of change

using a temporal ODBMS. We describe the necessary modi�cations that could occur on the schema,

and show how the implications of the modi�cations are managed. Our work is conducted within the

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 2

context of the TIGUKAT1 temporal ODBMS [�OPS+95, GL�OS95, G�OS97] that is being developed

at the University of Alberta. However, the results reported here extend to any ODBMS that uses

time to model evolution histories of objects.

The remainder of the paper is organized as follows. In Section 2, we examine some of the

previous work on schema evolution. In Section 3, we give a brief overview of the TIGUKAT

temporal object model with an emphasis on how histories of objects are maintained. In Section 4,

we describe the schema changes that can occur in TIGUKAT, and how they are managed using a

temporal object model. In Section 5, we give examples of queries that allow software designers to

retrieve schema objects at any time in their evolution histories. Concluding remarks and results of

the paper are summarized in Section 6.

2 Related Work

The issue of schema evolution has been an area of active research in the context of ODBMSs

[BKKK87, KC88, PS87, NR89]. In many of the previous work, the usual approach is to de�ne a set

of invariants that must be preserved over schema modi�cations. Changes to schema are corrective

in that once the schema de�nitions are changed, the old de�nitions of the schema are no longer

traceable. In TIGUKAT, a set of invariants similar to those given in [BKKK87] is de�ned. However,

changes to the schema are not corrective. The provision of time in TIGUKAT establishes a natural

foundation for keeping track of the changes to the schema. This allows applications, such as CAD,

to trace their design over time and make revisions, if necessary.

There have been many temporal object model proposals (for example, [RS91, SC91, WD92,

KS92, CITB92, BFG96]). In handling temporal information, these models have focussed on man-

aging the evolution of real-world entities. The implicit assumption in these models is that the

schema of the object database is static and remains unchanged during the lifespan of the object

database. More speci�cally, the evolution of schema objects (i.e., types, behaviors, etc) is con-

sidered to be orthogonal to the temporal model. However, given the kinds of applications that

an ODBMS is expected to support, we have exploited the underlying temporal domain in the

TIGUKAT temporal model as a means to support schema evolution.

In the context of relational temporal models, Ariav [Ari91] examines the implications of allowing

1TIGUKAT (tee-goo-kat) is a term in the language of Canadian Inuit people meaning \objects." The Canadian
Inuits, commonly known as Eskimos, are native to Canada with an ancestry originating in the Arctic regions of the
country.

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 3

data structures to evolve over time in a temporal data model, identi�es the problems involved, and

establishes a platform for their discussion. McKenzie and Snodgrass [MS90] develop an algebraic

language to handle schema evolution. The language includes functions that help track the schema

that existed at a particular time. Schema de�nitions can be added, modi�ed, or deleted. Apart from

the addition and removal of attributes, the nature of the modi�cations to the schema and their

implications are not demonstrated. Roddick [Rod91] investigates the incorporation of temporal

support within the meta-database to accommodate schema evolution. In [Rod92], SQL/SE, an

SQL extension that is capable of handling schema evolution in relational database systems is

proposed using the ideas presented in [Rod91]. The approach used in the TIGUKAT temporal

object model is similar in the sense that temporal support of real-world objects is extended in a

uniform manner to schema objects, and then used to support schema evolution. Some of the ideas

in [Rod91, Rod92, Rod95] have been carried forward in the design of the TSQL2 temporal query

language [Sno95].

Skarra and Zdonik [SZ86, SZ87] de�ne a framework within the Encore object model for ver-

sioning types as a support mechanism for changing type de�nitions. A type is organized as a set of

individual versions. This is known as the version set of the type. Every change to a type de�nition

results in the generation of a new version of the type. Since a change to a type can also a�ect

its subtypes, new versions of the subtypes may also be generated. This approach provides �ne

granularity control over schema changes, but may lead to ine�ciencies due to the creation of a

new version of the versioned part of an object every time a single attribute changes its value. In

our approach, any changes in type de�nitions involve changing the history of certain behaviors to

re
ect the changes. For example, adding a new behavior to a type changes the history of the type's

interface to include the new behavior. The old interface of the type is still accessible at a time

before the change was made. This alleviates the need of creating new versions of a type each time

any change is made to a type.

3 The TIGUKAT Temporal Object Model

3.1 Fundamentals of TIGUKAT Object Model

The TIGUKAT object model [Pet94, �OPS+95] is purely behavioral with a uniform object semantics.

The model is behavioral in the sense that all access and manipulation of objects is based on the

application of behaviors to objects. The model is uniform in that every component of information,

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 4

including its semantics, is modeled as a �rst-class object with well-de�ned behavior. Other typical

object modeling features supported by TIGUKAT include strong object identity, abstract types,

strong typing, complex objects, full encapsulation, multiple inheritance, and parametric types.

The primitive objects of the model include: atomic entities (reals, integers, strings, etc.); types

for de�ning common features of objects; behaviors for specifying the semantics of operations that

may be performed on objects; functions for specifying implementations of behaviors over types;

classes for automatic classi�cation of objects based on type2; and collections for supporting general

heterogeneous groupings of objects. Figure 1 shows a simple type lattice that will be used to

illustrate the concepts introduced in the rest of the paper.

T_person T_taxSource

T_employee

T_null

T_patient

T_bloodTest

T_object

Figure 1: Simple type lattice.

In this paper, a reference pre�xed by \T " refers to a type, \C " to a class, \B " to a behavior,

and \T X< T Y >" to the type T X parameterized by the type T Y. For example, T person refers

to a type, C person to its class, B age to one of its behaviors and T collection< T person >

to the type of collections of persons. A reference such as David, without a pre�x, denotes some

other application speci�c reference. The type T null in TIGUKAT binds the type lattice from the

bottom (i.e., most de�ned type), while the T object type binds it from the top (i.e., least de�ned

type). T null is introduced to provide, among other things, error handling and null semantics for

the model.

The access and manipulation of an object's state occurs exclusively through the application

of behaviors. We clearly separate the de�nition of a behavior from its possible implementations

(functions). The bene�t of this approach is that common behaviors over di�erent types can have a

di�erent implementation in each of the types. This provides direct support for behavior overloading

and late binding of functions (implementations) to behaviors.

2Types and their extents are separate constructs in TIGUKAT.

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 5

3.2 The Temporal Extensions

The philosophy behind adding temporality to the TIGUKAT object model is to accommodate

multiple applications that have di�erent type semantics requiring various notions of time [LG�OS97,

G�OS97]. Consequently, the TIGUKAT temporal object model consists of an extensible set of

primitive time types with a rich set of behaviors to model time. The only part of the temporal

model that is relevant to this paper is the management of event histories. Therefore, we focus on

history management and details of other aspects can be found in [GL�OS95, GL�OS96].

Our model represents the temporal histories of real-world objects whose type is T X as objects of

the T history<T X> type. For example, suppose a behavior B salary is de�ned in the T employee

type. Now, to keep track of the changes in salary of employees, B salary would return an object

of type T history<T real> which would consist of the di�erent salary objects of a particular

employee and their associated time periods.

A temporal history consists of objects and their associated timestamps (time intervals or time

instants). One way of modeling a temporal history would be to de�ne a behavior that returns a

collection of <timestamp, object> pairs. However, instead of structurally representing a temporal

history in this manner, we use a behavioral approach by de�ning the notion of a timestamped object.

A timestamped object knows its timestamp (time interval or time instant) and its associated value

at (during) the timestamp. A temporal history is made up of such objects. The following behaviors

are de�ned on the T history<T X> type:

B history : T collection < T timeStampedObject < T X >>

B timeline : T timeline

B insert : T X; T timeStamp!

B remove : T X; T timeStamp!

B validObjects : T timeStamp! T collection < T timeStampedObject< T X >>

Behavior B history returns the set (collection) of all timestamped objects that comprise the

history. A history object also knows the timeline it is associated with and this timeline is returned

by the behavior B timeline. The timeline basically orders the timestamps of timestamped objects

[GL�OS96]. The B insert behavior accepts an object and a timestamp as input and creates a

timestamped object that is inserted into the history. Behavior B remove drops a given object from

the history at a speci�ed timestamp. The B validObjects behavior allows the user to get the objects

in the history that were valid at (during) a given timestamp.

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 6

Each timestamped object is an instance of the T timeStampedObject<T X> type. This type

represents objects and their corresponding timestamps. Behaviors B value and B timeStamp de-

�ned on T timeStampedObject return the value and the timestamp (time interval or time instant)

of a timestamped object, respectively.

B value : T X

B timeStamp : T timeStamp

Example 3.1 Suppose the type T patient shown in Figure 1 represents di�erent patients in a

hospital. To represent a patient's blood test history over the course of a particular illness, the be-

havior B bloodTests is de�ned on T patient to return an object of type T history<T bloodTest>.

Each blood test is represented by an object of the type T bloodTest. Therefore, the history of the

di�erent blood tests undertaken by joe (an instance of T patient) would then be retrieved using

the behavior application joe.B bloodTests. Let us call this history object bloodTestHistory. Now,

suppose joe was suspected of having septicemia3 and had diagnostic hematology and microbiology

blood tests on 15 January 1995. As a result of a raised white cell count, joe was given a course of

antibiotics while the results of the tests were pending. A repeat hematology test was ordered on 20

February 1995. To record these tests, three objects with type T bloodTest were created and then

entered into the object database using the following TIGUKAT behavior applications:

bloodTestHistory:B insert(microbiology; 15 January 1995)

bloodTestHistory:B insert(hematology1; 15 January 1995)

bloodTestHistory:B insert(hematology2; 20 February 1995)

If subsequently there is a need to determine which blood tests joe took in January 1995, this

would be accomplished by the following behavior application:

bloodTestHistory:B validObjects([1 January 1995; 31 January 1995])

This would return a collection of the two timestamped objects, ftimeStampedMicrobiology, timeS-

tampedHematology1g, representing the blood tests joe took in January 1995. The �rst timestamped

object would have microbiology as its value and the second would have hematology1 as its value4.

3An infection of the blood.
4It should be noted that although we have two di�erent timestamped objects containing the values microbiology

and hematology1, they both contain the same timestamp . That is, although timeStampedMicrobiology.B value =
microbiology and timeStampedHematology1.B value = hematology1, timeStampedMicrobiology.B timestamp = timeS-

tampedHematology1.B timestamp = 15 January 1995.

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 7

To assist in clarifying the contents and structure of a history object, we give a pictorial repre-

sentation of bloodTestHistory in Figure 2.

hematology2

joe

{ }

{ } timestamped blood tests

aTimeStamp(B_validObjects)
B_insert aBloodTest,aTimeStamp()

B_timeline

B_history

bloodTestHistory bloodTestTimeline

B_value

timeStampedMicrobiology

microbiology

B_value

timeStampedHematology1 timeStampedHematology2

ε ε ε

B_timeStamp

hematology1

B_valueB_timeStamp

B_timeStamp

B_bloodTests

20 February 199515 January 1995

Figure 2: A pictorial representation of a patient's blood test history.

In the �gure, the boxes shaded in grey are objects. Objects have an outgoing edge labeled by

each applicable behavior that leads to the object resulting from the application of the behavior.

For example, applying the behavior B timeline to the object bloodTestHistory results in the object

bloodTestTimeline. A circle labeled with the symbols f g represents a collection object and has

outgoing edges labeled with \2" to each member of the collection. For example, applying the

B history behavior to the object bloodTestHistory results in a collection object whose members are

the timestamped objects timeStampedMicrobiology, timeStampedHematology1, and timeStampedHe-

matology2. Finally, the B insert behavior updates the blood test history (bloodTestHistory) when

given an object of type T bloodTest and a timestamp. Similarly, the B validObjects behavior

returns a collection of timestamped blood test objects when given a timestamp. 2

4 Management of Schema Evolution by the Temporal Object Model

4.1 Schema Related Changes

There are di�erent kinds of objects modeled by TIGUKAT, some of which are classi�ed as schema

objects. These objects fall into one of the following categories: type, class, behavior, function, and

collection. There are three kinds of operations that can be performed on schema objects: add, drop

and modify . Table 1 shows the combinations between the various schema object categories and

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 8

the di�erent kinds of operations that can be performed in TIGUKAT [Pet94, P�O97]. The bold

entries represent combinations that implicate schema changes while the emphasized entries denote

non-schema changes.

Operation

Objects Add (A) Drop (D) Modify (M)

Type (T) subtyping type deletion add behavior(AB)
drop behavior(DB)

add supertype link(ASL)
drop supertype link(DSL)

Class (C) class creation class deletion extent change

Behavior (B) behavior de�nition behavior deletion change association(CA)

Function (F) function de�nition function deletion implementation change

Collection (L) collection creation collection deletion extent change

Table 1: Classi�cation of schema changes.

In the context of a temporal model, adding refers to creating the object and beginning its

history, dropping refers to terminating the history of an object, and modifying refers to updating

the history of the schema object. Since type-related changes form the basis of most other schema

changes, we describe the modi�cations that a�ect the type schema objects. Type modi�cation

(depicted at the intersection of the M column and T row in Table 1) includes several kinds of type

changes. They are separated into changes in the behaviors of a type (depicted as MT-AB and

MT-DB in Table 1) and changes in the relationships between types (depicted as MT-ASL and

MT-DSL in Table 1).

The meta-model of TIGUKAT is uniformly represented within the object model itself, providing

re
ective capabilities [P�O93]. One result of this uniform approach is that types are objects and

they have a type (called T type) that de�nes their behaviors. T type de�nes behaviors to access a

type's interface (B interface), its subtypes (B subtypes), its supertypes (B supertypes), plus many

others that are not relevant for the scope of this paper. Since types are objects with well-de�ned

behaviors, the approach of keeping track of the changes to a type is the same as that for keeping

track of the changes to objects discussed in Section 3.2. This is one of the major advantages of

the uniformity of the object model. The semantics of the changes to a type are discussed in the

following sections.

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 9

4.2 Changing Behaviors of a Type

Every type has an interface which is a collection of behaviors that are applicable to the objects of

that type. A type's interface can be dichotomized into two disjoint subsets:

1. the collection of native behaviors which are those behaviors de�ned by the type and are not

de�ned on any of its supertypes;

2. the collection of inherited behaviors which are those behaviors de�ned natively by some

supertype and inherited by the type.

There are three behaviors de�ned on T type to return the various components of a type's interface:

B native returns the collection of native behaviors, B inherited returns the inherited behaviors and

B interface returns the entire interface of the type.

Types can evolve in di�erent ways. One aspect of a type that can change over time is the

behaviors in its interface (i.e., adding or deleting behaviors). To keep track of this aspect of a

type's evolution, we de�ne histories of interface changes by extending the interface behaviors with

time-varying properties. The de�nition of the extended behaviors are as follows:

B native : T historyhT collectionhT behaviorii

B inherited : T historyhT collectionhT behaviorii

B interface : T historyhT collectionhT behaviorii

Each behavior now returns a collection of a collection of timestamped behaviors. Adding a new

behavior to a type changes the history of the type's interface to include the new behavior. The old

interface of the type is still accessible at a time before the change was made.

Note that we do not need to explicitly maintain separate histories for each of these behaviors.

For example, in an implementation we can choose to only maintain the native behaviors of a type.

The entire interface of a type can be derived by unioning the native behaviors of all the supertypes

of the type. The inherited behaviors can be derived by taking the di�erence of the interface and

the native behaviors of the type. As another alternative, we may choose to maintain the interface

of a type and derive the native and inherited behaviors. In this approach, the native behaviors of a

type can be derived by unioning the interfaces of the direct supertypes and subtracting the result

from the interface of the type. The inherited behaviors can be derived in the same way as above.

With the time-varying interface extensions, we can determine the various aspects of a type's

interface at any time of interest. For example, Figure 3 shows the history of the entire interface for

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 10

the type T person.

{ }

timeStampedBhvCollA

{ } { }{ }

B_birthDate

B_age B_age

B_birthDate

B_name

ε
ε ε

ε

B_spouse B_birthDate

B_interface

B_history

ε εε

behaviorHistory

timeStampedBhvCollB timeStampedBhvCollC

B_timeStamp B_valueB_timeStamp B_value B_timeStamp B_value

t0 t5 t10

T_person

B_name

ε
ε ε

B_name

ε
ε ε

ε

B_spouse

B_children

Figure 3: Interface history of type T person.

At time t0, behaviors B name, B birthDate, and B age are de�ned on T person and the initial

history of T person's interface is f< t0; fB name;B birthDate; B ageg>g. At time t5, behav-

ior B spouse is added to T person. To re
ect this change, the interface history is updated to

f< t0; fB name;B birthDate; B ageg>;< t5; fB name;B birthDate; B age; B spouseg>g. This

shows that between t0 and t5 only behaviors B name, B birthDate, and B age are de�ned and

at t5 behaviors B name, B birthDate, B age, B spouse exist. Next, at time t10, behavior B age

is dropped from type T person and at the same time behavior B children is added. The �nal

history of the interface of T person after this change is f<t0; fB name;B birthDate; B ageg>;<

t5; fB name;B birthDate; B age; B spouseg>;<t10; fB name;B birthDate; B spouse; B childreng>

g5. The native and inherited behaviors would contain similar histories. Using this information, we

can reconstruct the interface of a type at any time of interest. For example, at time t3 the interface of

type T person was fB name;B birthDate; B ageg, at time t5 it was fB name;B birthDate; B age;

B spouseg, and at time t10 (now) it is fB name;B birthDate; B spouse; B childreng.

5Note that in Figure 3 objects that are repeated in the timestamped collections are actually the same object. For

example, the B name object in all three timestamped collections is the same object. It is shown three times in the

�gure for clarity.

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 11

The behavioral changes to types include the MT-AB and MT-DB entries of Table 1. These

changes a�ect various aspects of the schema and have to be properly managed to ensure consistency

of the schema.

Modify Type - Add Behavior (MT-AB). This change adds a native behavior b to a type T

at time t. The MT-AB change has the following e�ects:

� The histories of the native and interface behaviors of type T need to be updated. The be-

havior applications T:B native:B insert(b; t) and T:B interface:B insert(b; t) perform

this update. For example, the behavior application T person.B interface.B insert(B spouse,t5)

updates the interface history of T person when behavior B spouse is added to T person

at time t5.

� The implementation history of behavior b needs to be updated to associate it with some

function f . This is achieved by the behavior application b:B implementation:B insert(f; t)

(details on implementation histories of behaviors are given in Section 4.3). For exam-

ple, if the function associated with behavior B spouse is the stored function sspouse,

then the implementation history of B spouse is updated using the behavior application

B spouse.B implementation.B insert(sspouse ,t5).

� The history of inherited and interface behaviors of all subtypes of type T needs to be

adjusted. That is,

8T
0

j T
0

subtype-of T; T
0

:B inherited:B insert(b; t) and T
0

:B interface:B insert(b; t)

For example, the histories of inherited and interface behaviors of types T employee and

T patient (see Figure 1) need to be adjusted to re
ect the addition of behavior B spouse

in type T person at time t5. For the T employee type, this is accomplished using the

behavior applications T employee.B interface.B insert(B spouse,t5) and T employee.

B inherited.B insert(B spouse,t5). Similar behavior applications are carried out for

T patient.

Modify Type - Drop Behavior (MT-DB). This change drops a native behavior b from a type

T at time t. When a behavior is dropped, its native de�nition is propagated to the subtypes

unless the behavior is inherited by the subtype through some other chain. In this way, as

with the supertypes, the subtypes of a type also retain their original behaviors. Thus, only

the single type involved in the operation actually drops the behavior and the overall interface

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 12

of the subtypes and supertypes are not a�ected by the change. Many behavior inheritance

semantics are possible. One such semantics is that when a native behavior is dropped from a

type, all subtypes retain that behavior. This means that if another supertype of the subtype

de�nes this behavior, there is no change. Otherwise, the behavior in the subtype moves from

the inherited set to the native set. This is the semantics we are modeling in this paper. If

any other behavior inheritance semantics are used, appropriate changes can easily be made

to the temporal histories. The MT-DB change has the following e�ects:

� The native behaviors history of type T changes. The behavior application T:B native:

B remove(b; t) performs this update. For example, the behavior application T person.

B native.B remove(B age,t10) updates the history of native behaviors of T person when

the behavior B age is dropped from type T person.

� The native and inherited behavior histories of the subtypes of T (possibly) change.

For example, the behavior applications T employee.B native.B insert(B age,t10) and

T employee.B inherited.B remove(B age,t10) add behavior B age to the native behav-

iors of T employee, and drop behavior B age from the inherited behaviors of T employee

respectively, when B age is dropped from T person at t10. This is because B age is not

inherited by T employee through any other chain. If B age was inherited by T employee

from some other supertype, nothing would change. Similar behavior applications are

carried out for type T patient.

4.3 Changing Implementations of Behaviors

Each behavior de�ned on a type has a particular implementation for that type. The B implementation

behavior de�ned on T behavior is applied to a behavior, accepts a type as an argument and returns

the implementation (function) of the receiver behavior for the given type. In order to model the

aspect of schema evolution that deals with changing the implementations of behaviors on types, we

maintain a history of implementation changes by extending the B implementation behavior with

time-varying properties. The de�nition of the extended behavior is as follows:

B implementation : T type! T historyhT functioni

With this behavior we can determine the implementation of a behavior de�ned on a type at any time

of interest. For example, Figure 4 shows the history of the implementations for behavior B age on

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 13

type T person. There are two kinds of implementations for behaviors [Pet94]. A computed function

consists of runtime calls to executable code and a stored function is a reference to an existing object

in the object database.

{ }

c1 c3 s1

B_timeStamp B_value

t4

timeStampedFunctionC

B_implementation

B_history

ε εε

functionHistory

B_timeStamp B_valueB_timeStamp B_value

t0 t2

timeStampedFunctionA timeStampedFunctionB

B_age

(T_person)

Figure 4: Implementation history of behavior B age on type T person.

In Figure 4, we use ci to denote a computed function, si to denote a stored function. At time

t2, the implementation of B age changed from the computed function c1 to the computed function

c3. At time t4, the implementation of B age changed from the computed function c3 to the stored

function s1. All these changes are re
ected in the implementation history of behavior B age, which

is f<t0; c1>;<t2; c3>;<t4; s1>g.

Using the results of this section and Section 4.2, we can reconstruct the behaviors, their imple-

mentations and the object representations6 for any type at any time t. For example, the interface

of type T person at time t3 is given by the behavior application T person.[t3]B interface which

results in fB name;B birthDate; B ageg, as shown in Figure 3. We use the syntax o:[t]b to denote

the application of behavior b to object o at time t. The implementation of B age at time t3 is given

by B age.[t3]B implementation(T person) which is c3, as shown in Figure 4.

In this paper we are assuming that there is no implementation inheritance. That is, if the

binding of a behavior to a function changes in a type, the bindings of that behavior in the subtypes

are una�ected. If implementation inheritance is desired, it can easily be modeled by temporal

6Stored functions associated with behaviors allow us to reconstruct object representations (i.e., states of objects)

for any type at any time t. This is useful in propagating changes to the underlying object instances. In this paper

however, we are concerned primarily with the e�ects of schema changes on the schema itself.

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 14

histories similarly to behavioral inheritance.

4.4 Changing Subtype/Supertypes of a Type

In Section 4.2 we described how the changes in a type's interface was one aspect in which a

type evolves. Another aspect of a type that can change over time is the relationships between

types. These include adding a direct supertype link and dropping a direct supertype link. The

B supertypes and B subtypes behaviors de�ned on T type return the direct supertypes and sub-

types of the receiver type, respectively. In order to model the structure of the type lattice through

time, we de�ne histories of supertype and subtype changes of a type by extending the B supertypes

and B subtypes behaviors with time-varying properties:

B supertypes : T historyhT collectionhT typeii

B subtypes : T historyhT collectionhT typeii

Using the B supertypes and B subtypes behaviors, we can reconstruct the structure of a type's

supertype and subtype lattice at any time of interest. To facilitate this, the derived behaviors

B superlattice and B sublattice are de�ned on T type:

B superlattice : T historyhT posethT typeii

B sublattice : T historyhT posethT typeii

The behavior B superlattice is derived by recursively applying B supertypes until T object

is reached, while the behavior B sublattice is derived by recursively applying B subtypes until

T null is reached. In both cases, the intermediate results are partially ordered. Figure 5 shows the

supertype lattice history for type T employee.

At time t0, the superlattice history of type T employee included the types T person, T taxSource,

and T object. At time t5, the supertype link between T employee and T taxSource is dropped. To

re
ect this change, the superlattice history of T employee is updated to f<t0; fT person; T taxSource;

T objectg>;<t5; fT person; T objectg>g.

The relationships between types include theMT-ASL andMT-DSL entries of Table 1. Similar

to the behavioral changes to types discussed in Section 4.2, the relationships between types a�ect

various aspects of the schema and have to be properly managed to ensure consistency of the schema.

Modify Type - Add Supertype Link (MT-ASL). Add a type, say S, as a direct supertype

of another type, say T at time t. The MT-ASL change has the following e�ects:

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 15

{ }

{ } T_person

T_object

T_taxSource

t5{ }

B_history

T_employee

B_superlattice

superlatticeHistory

ε ε

timeStampedSLCollB

B_timeStamp B_value

t0

timeStampedSLCollA

ε
ε

ε ε

ε

B_value B_timeStamp

Figure 5: Supertype lattice history for type T employee.

� The history of the collection of supertypes of type T is updated. The behavior appli-

cation T:B supertypes:B insert(S; t) performs this update. The history of the super-

lattice of T is adjusted accordingly. For example, adding the supertype link between

T employee and T taxSource at t0 necessitates an update to the history of supertypes for

T employee. This is done by the behavior application T employee.B supertypes.B insert

(T taxSource,t0). The history of the direct supertypes of T employee would then be

f<t0; fT taxSourceg>g.

� The history of the collection of subtypes of type S is updated. The behavior ap-

plication S:B subtypes:B insert(T; t) performs this update. The history of the sub-

lattice of S is adjusted accordingly. In this case, the history of the collection of sub-

types of T taxSource has to be updated. This is done by the behavior application

T taxSource.B subtypes.B insert(T employee,t0). The history of the direct subtypes of

T taxSource would then be f<t0; fT employeeg>g.

� The behaviors of S are inherited by T and all the subtypes of T . Therefore, the inherited

behavior history of T and all subtypes of T is adjusted. The current behaviors of S are

inherited by T and all subtypes of T , and timestamped with t - the creation time of the

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 16

supertype link.

8b 2 S:B interface:B history:B last; 8T
0

j T
0

subtype-of T; T
0

:B inherited:B insert(b; t)

Behavior B last returns the collection of behaviors that are currently valid from the

interface history of S. Let us assume T taxSource has the behavior B taxBracket de-

�ned at t0. B taxBracket then has to be added to the history of inherited behaviors of

T employee. This is done by the behavior application T employee.B inherited.B insert

(B taxBracket,t0). The history of the inherited behaviors would then be f<t0; fB name;

B birthDate; B age; B taxBracketg>g. Behaviors B name,B birthDate,B age are in-

herited from type T person (see Figure 3), while behavior B taxBracket is inherited

from type T taxSource.

Modify Type - Drop Supertype Link (MT-DSL). Drop a direct supertype link between two

types (a direct supertype link to T object cannot be dropped) at time t. Consider types T

and S where S is the direct supertype of T . Then, removing the direct supertype link between

T and S at time t has the following e�ects:

� Adjust the history of supertypes of T and the history of subtypes of S. For example,

dropping the supertype link between T employee and T taxSource at t5 requires updat-

ing the history of supertypes of T employee and history of subtypes of T taxSource. This

is carried out using the behavior applications T employee.B supertypes.B remove(T taxSource,t5)

and T taxSource.B subtypes.B remove(T employee,t5).

� The MT-ASL operation is carried out from T to every supertype of S, unless T is

linked to the supertype through another chain. This operation is not required when the

supertype link between T employee and T taxSource is dropped because T employee is

linked to the supertype of T taxSource (T object) through T person.

� The MT-ASL operation is carried out from each subtype of T to S, unless the subtype

is linked to S through another chain. This operation requires adding a supertype link

between T null and T taxSource.

� The native behaviors of S are dropped from the interface of T . That is, the history of

inherited behaviors of T is adjusted. This means the behavior B taxBracket, de�ned

natively on T taxSource, has to be dropped from the history of inherited behaviors of

T employee. The behavior application T employee.B inherited.B remove(B taxBracket,t5).

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 17

5 Queries

In this section we show how queries can be constructed using the TIGUKAT query language (TQL)

[PL�OS93] to retrieve schema objects at any time in their evolution histories. This gives software

designers a temporal user interface which provides a practical way of accessing temporal information

in their experimental and incremental design phases. TQL incorporates re
ective temporal access

in that it can be used to retrieve both objects, and schema objects in a uniform manner.

5.1 The TIGUKAT Query Language

In this section, we brie
y discuss the TIGUKAT Query Language (TQL). TQL7 is based on the

SQL paradigm [Dat87] and its semantics is de�ned in terms of the object calculus. Hence, every

statement of the language corresponds to an equivalent object calculus expression. The basic query

statement of TQL is the select statement which operates on a set of input collections, and returns

a new collection as the result:

select < object variable list >

[into < collection name >]
from < range variable list >

[where < boolean formula >]

The select clause in this statement identi�es the objects to be returned in a new collection. There

can be one or more object variables with di�erent formats (constant, variables, path expressions

or index variables) in this clause. They correspond to free variables in object calculus formulas.

The into clause declares a reference to a new collection. If the into clause is not speci�ed, a new

collection is created; however, there is no reference to it. The from clause declares the ranges of

object variables in the select and where clauses. Every object variable can range over either an

existing collection, or a collection returned as a result of a subquery, where a subquery can be

either given explicitly, or as a reference to a query object. The where clause de�nes a boolean

formula that must be satis�ed by objects returned by a query.

Having described TQL, we show in the next section how temporal objects can uniformly be

queried using behavior applications without changing any of the basic constructs of TQL.

7TQL was developed before the release of OQL [Cat94]. It is quite similar to OQL in structure.

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 18

5.2 Query Examples

Example 5.1 Return the time when the behavior B children was added to the type T person.

select b.B timestamp

from b in T person.B interface.B history

where B children in b.B value

The result of this query would be the time t10 as seen in Figure 3. 2

Example 5.2 Return the types that de�ne behaviors B age and B taxBracket as part of their

interface.

select T

from T in C type

where (b1 in T .B interface.B history and B age in b1.B value) or

(b2 in T .B interface.B history and B taxBracket in b2.B value)

This query would return the types T person, T taxSource, T employee, and T null. The type

T person de�nes behavior B age natively (see Figure 3), while the type T taxSource de�nes

behavior B taxBracket natively. The behaviors B age and B taxBracket are inherited by types

T employee and T null since they are subtypes of T person and T taxSource as shown in Fig-

ure 1. 2

Example 5.3 Return the implementation of behavior B age in type T person at time t1.

select i.B value

from i in B age.B implementation(T person).B history

where i.B timestamp.B lessthaneqto(t1)

The behavior B lessthaneqto is de�ned on type T timeStamp and checks if the receiver timestamp

is less than or equal to the argument timestamp. The result of the query is the computed function

c1 as shown in Figure 4. 2

Example 5.4 Return the super-lattice of type T employee at time t3.

select r.B value

from r in T employee.B super-lattice.B history

where r.B timestamp.B lessthaneqto(t3)

The super-lattice of T employee at t3 consists of the types T person, T taxSource, and T object.

This is shown in Figure 5. 2

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 19

Example 5.5 Return the types that de�ne behavior B age with the same implementation as one

of their supertypes.

select T

from T in C type, S in T .B supertypes.B history ,

i in B age.B implementation(T).B history ,

j in B age.B implementation(S.B value).B history

where b in S.B value.B interface.B history and B age in b.B value and

i.B value = j.B value and i.B timestamp = j.B timestamp

This query would return the types T employee, T patient, and T null, assuming the implemen-

tation of behavior B age is not changed when it is inherited by these types. 2

6 Conclusion

In this paper a uniform treatment of schema evolution and temporal support for object database

management systems (ODBMS) is presented. Schema evolution is managed by exploiting the

functionality of a temporal object model. The evolution history of the interface of types, which

includes the inherited and native behaviors of each type, describes the semantics of types through

time. Using the interface histories the interface of a type can be reconstructed at any time of

interest. The evolution histories of the supertype and subtype links of types describe the structure

of the lattice through time. Using these histories, the structure of the lattice can be reconstructed

at any time of interest. The implementation histories of behaviors give us the implementations

of behaviors on types at any time of interest. From these, we can reconstruct the representation

of objects by examining the stored functions associated with behaviors at a given time. The

TIGUKAT query language gives designers a practical way of accessing temporal information in

their experimental and incremental design phases.

Our next step is to give a comprehensive treatment to the change propagation problem during

schema evolution. That is, devising methods to propagate schema changes to the existing object

instances in the TIGUKAT temporal ODBMS. In order for the instances to remain meaningful

after the schema has changed, either the relevant instances must be coerced into the new de�nition

of the schema or a new version of the schema must be created leaving the old version intact.

Conversion of objects can be optional in our model. Since the evolution history of schema objects

is maintained, all the information for older objects is available and we can use this information to

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 20

continue processing these objects in the old way. Since our model is time based, the old information

of the object is available. Thus, even if objects are coerced to a newer schema de�nition, historical

queries can be run by giving an appropriate time point in the history of the object.

To overcome the corrective nature of schema evolution, the concept of schema versioning in

ODBMSs has been proposed [SZ86, SZ87, KC88, ALP91, MS92, MS93]. In most of these systems,

a change to a schema object may result in a new version of the schema object, or the schema

in general. However, schema changes are usually of a �ner granularity than de�nable versions.

This implies that not every schema change should necessarily result in a new version. Rather,

one should be able to de�ne a version during any stable period in the evolutionary history of the

schema. Within a particular version, the evolution of the schema should be traceable. For example,

in an engineering design application many components of an overall design may go through several

modi�cations in order to produce a �nal product. Furthermore, each intermediate version of the

component may have certain properties that need to be retained as a historical record of that

particular component (the di�erent versions may have been used in other products). The inter-

connection of the various versions of components also gives rise to versions of the overall design.

The resulting designs may be part of others and so on. Our contention is that schema evolution

using temporal modeling sets the stage for full-
edged version control. We intend to use the schema

evolution policies reported in this paper as a basis for version control in ODBMSs.

References

[ALP91] J. Andany, M. Leonard, and C. Palisser. Management of Schema Evolution in Data-
bases. In Proc. 17th Int'l Conf. on Very Large Data bases, pages 161{170, September
1991.

[Ari91] G. Ariav. Temporally oriented data de�nitions: Managing schema evolution in tempo-
rally oriented databases. Data & Knowledge Engineering, (6):451{467, 1991.

[BFG96] E. Bertino, E. Ferrari, and G. Guerrini. A Formal Temporal Object-Oriented Data
Model. In Proc. 5th Int'l Conf. on Extending Database Technology, March 1996.

[BKKK87] J. Banerjee, W. Kim, H-J. Kim, and H.F. Korth. Semantics and Implementation of
Schema Evolution in Object-Oriented Databases. In Proc. ACM SIGMOD Int'l. Conf.
on Management of Data, pages 311{322, May 1987.

[Cat94] R. Cattell. The Object Database Standard: ODMG-93. Morgan Kaufmann Publishers,
1994.

[CITB92] W.W. Chu, I.T. Ieong, R.K. Taira, and C.M. Breant. A Temporal Evolutionary Object-
Oriented Data Model and Its Query Language for Medical Image Management. In Proc.
18th Int'l Conf. on Very Large Data Bases, pages 53{64, August 1992.

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 21

[CPP95] C. Combi, F. Pinciroli, and G. Pozzi. Managing Di�erent Time Granularities of Clinical
Information by an Interval-Based Temporal Data Model. Methods of Information in
Medicine, 34(5):458{474, 1995.

[Dat87] C.J. Date. A Guide to SQL Standard. Addison Wesley, 1987.

[DM94] A.K. Das and M.A. Musen. A Temporal Query System for Protocol-Directed Decision
Support. Methods of Information in Medicine, 33:358{370, 1994.

[GL�OS95] I.A. Goralwalla, Y. Leontiev, M.T. �Ozsu, and D. Szafron. A Uniform Behavioral Tem-
poral Object Model. Technical Report TR-95-13, University of Alberta, May 1995.

[GL�OS96] I.A. Goralwalla, Y. Leontiev, M.T. �Ozsu, and D. Szafron. Modeling Time: Back to
Basics. Technical Report TR-96-03, University of Alberta, February 1996.

[G�OS97] I.A. Goralwalla, M.T. �Ozsu, and D. Szafron. Modeling Medical Trials in Pharmacoeco-
nomics using a Temporal Object Model. Computers in Biology and Medicine - Special
Issue on Time-Oriented Systems in Medicine, 1997. In Press.

[GTC+90] S. Gibbs, D.C. Tsichritzis, E. Casais, O.M. Nierstrasz, and X. Pintado. Class Manage-
ment for Software Communities. Communications of the ACM, 33(9):90{103, Septem-
ber 1990.

[KBCG90] W. Kim, J. Banerjee, H.T. Chou, and J.F. Garza. Object-oriented database support
for CAD. Computer Aided Design, 22(8):469{479, 1990.

[KC88] W. Kim and H-J. Chou. Versions of Schema for Object-Oriented Databases. In Proc.
14th Int'l Conf. on Very Large Data Bases, pages 148{159, 1988.

[KFT91] M.G. Kahn, L.M. Fagan, and S. Tu. Extensions to the Time-Oriented Database Model
to Support Temporal Reasoning in Medical Expert Systems. Methods of Information
in Medicine, 30:4{14, 1991.

[KS92] W. Kafer and H. Schoning. Realizing a Temporal Complex-Object Data Model. In
Proc. ACM SIGMOD Int'l. Conf. on Management of Data, pages 266{275, 1992.

[LG�OS97] J.Z. Li, I.A. Goralwalla, M.T. �Ozsu, and Duane Szafron. Modeling Video Temporal
Relationships in an Object DatabaseManagement System. In Proceedings of Multimedia
Computing and Networking (MMCN97), February 1997.

[MS90] Edwin McKenzie and Richard Snodgrass. Schema evolution and the relational algebra.
Information Systems, 15(2):207{232, 1990.

[MS92] S.R. Monk and I. Sommerville. A Model for Versioning of Classes in Object-Oriented
Databases . In 10th British National Conference on Databases (BNCOD '92), Aberdeen,
Scotland July 1992, pages 42{58, July 1992.

[MS93] Simon Monk and Ian Sommerville. Schema Evolution in OODBs using Class Versioning.
ACM SIGMOD Record, 22(3):16{22, September 1993.

[NR89] G.T. Nguyen and D. Rieu. Schema evolution in object-oriented database systems. Data
& Knowledge Engineering, 4:43{67, 1989.

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 22

[�OPS+95] M.T. �Ozsu, R.J. Peters, D. Szafron, B. Irani, A. Lipka, and A. Munoz. TIGUKAT: A
Uniform Behavioral Objectbase Management System. The VLDB Journal, 4:100{147,
August 1995.

[Pet94] R.J. Peters. TIGUKAT: A Uniform Behavioral Objectbase Management System. PhD
thesis, University of Alberta, 1994.

[PL�OS93] R.J. Peters, A. Lipka, M.T. �Ozsu, and D. Szafron. An Extensible Query Model and
Its Languages for a Uniform Behavioral Object Management System. In Proc. Second
Int'l. Conf. on Information and Knowledge Management, November 1993.

[P�O93] R.J. Peters and M.T. �Ozsu. Re
ection in a Uniform Behavioral Object Model. In Proc.
12th Int'l Conf. on the Entity Relationship Approach, pages 37{49, December 1993.

[P�O97] R.J. Peters and M.T. �Ozsu. An Axiomatic Model of Dynamic Schema Evolution in
Objectbase Systems. ACM Transactions on Database Systems, March 1997. To appear.

[PS87] D.J. Penney and J. Stein. Class Modi�cation in the GemStone Object-Oriented DBMS.
In Proc. of the Int'l Conf on Object-Oriented Programming: Systems, Languages, and
Applications, pages 111{117, October 1987.

[Rod91] J.F. Roddick. Dynamically Changing Schemas within Database Models. Australian
Computer Journal, 23(3):105{109, 1991.

[Rod92] J.F. Roddick. SQL/SE- A Query Language Extension for Databases Supporting Schema
Evolution. ACM SIGMOD Record, 21(3):10{16, 1992.

[Rod95] J.F. Roddick. A Survey of Schema Versioning Issues for Database Systems. Information
and Software Technology, 37(7):383{393, 1995.

[RS91] E. Rose and A. Segev. TOODM - A Temporal Object-Oriented Data Model with
Temporal Constraints. In Proc. 10th Int'l Conf. on the Entity Relationship Approach,
pages 205{229, October 1991.

[SC91] S.Y.W. Su and H.M. Chen. A Temporal Knowledge Representation Model OSAM*/T
and its Query Language OQL/T. In Proc. 17th Int'l Conf. on Very Large Data bases,
1991.

[Sj�93] Dag Sj�berg. Quantifying Schema Evolution. Information and Software Technology,
35(1):35{44, January 1993.

[Sno95] R. Snodgrass. The TSQL2 Temporal Query Language. Kluwer Academic Publishers,
1995.

[SZ86] A.H. Skarra and S.B. Zdonik. The Management of Changing Types in an Object-
Oriented Database. In Proc. of the Int'l Conf on Object-Oriented Programming: Sys-
tems, Languages, and Applications, pages 483{495, September 1986.

[SZ87] A.H. Skarra and S.B. Zdonik. Type Evolution in an Object-Oriented Database. In Re-
search Directions in Object-Oriented Programming, pages 393{415. M.I.T. Press, 1987.

[WD92] G. Wuu and U. Dayal. A Uniform Model for Temporal Object-Oriented Databases. In
Proc. 8th Int'l. Conf. on Data Engineering, pages 584{593, February 1992.

Submitted to the Sixteenth International Conference on Conceptual Modeling (ER'97). 23

