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Abstract. This paperpresents the DT Framework, a collection of object-oriented 
classes representing a generalized framework for inheritance management and 
table-based method dispatch. It demonstrates how most existing table-based dis- 
patch techniques can be generalized and made incremental, so that relevant en- 
tries in the dispatch table are modified each time a selector or class hierarchy 
link is added or removed. The incremental nature makes the framework highly 
efficient, with low millisecond average modification time, and supports table- 
based dispatch even in schema-evolving languages. During table maintenance, 
the framework detects and records inheritance conflicts, and maintains informa- 
tion useful during compile-time optimizations. 

1 Introduction 

Object-oriented programming languages have become popular due to the abstraction 
and information hiding provided by inheritance and polymorphism. However, these 
same properties pose difficulties for efficient implementation, necessitating (among oth- 
ers) algorithms for inheritance management and method dispatch. In this paper, we 
present an object-oriented solution to an object-oriented problem. 

Object-oriented languages provide code-reuse at two levels. At the first level are 
generic libraries of basic data structures like sets and growable arrays. Rich libraries for 
collections, graphics and other specialized a r m  provide object-oriented languages with 
much of their power. At a second level, upplicufiunframavorkr capture the collabora- 
tions of a group of objects, leaving the specific details to be implemented ([GHJV95]). 
These details are implemented by framework clients, who subclass on the classes pro- 
vided by the framework. These subclasses provide implementations of the abstract func- 
tionality to represent client-specific behavior. In other cases, the user merely chooses 
between concrete leaf classes to obtain the desired functionality. Thus, in the same way 
that templates generalize the implementation of a particular class,framaoorks general- 
ize the implementation of an entire group of interacting classes. Templates are instan- 
tiated by providing parameters to the template class. Frameworks are instantiated by 
providing concrete implementations of abstract functions. 

This paper presents the DT Framework; a general framework for both compile-time 
and run-time inheritance management and method dispatch that applies to a broad class 
of object-oriented languages: schema-evolving, dynamically typed, single-receiver lan- 
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guages with type/implementation-paired multiple inheritance. A schema-evolving lan- 
guage is one with the ability to define new methods and classes at run-time. A dynam- 
ically typed language is one in which some (or all) variables and method return values 
are unconstrained, in that they can be bound to instances of any class in the entire 
environment. A single-receiver language is one in which a single class, together with 
a selector, uniquely establishes a method to invoke (as opposed to multi-method lan- 
guages, discussed in Section 7). Typdimplementation-paired inheritance refers to the 
traditional form of inheritance used in most object-oriented languages, in which both 
the definition and implementation of inherited selectors are propagated together (as 
opposed to inheritance in which these two concepts are separated, as discussed in Sec- 
tion 7). Finally, multiple inheritance refers to the ability of a class to inherit selectors 
from more than one direct superclass. Within this paper, we will refer to this collection 
of languages as 9. 

The primary benefit of the DT Framework is its ability to incrementally modify dis- 
patch table information. Table-based dispatch techniques have traditionally been static, 
and efficient implementations usually rely on a complete knowledge of the environ- 
ment before the dispatch table is created. However, dispatch techniques that rely on 
complete knowledge of the environment have two disavantages: 1) they cannot be used 
by schema-evolving languages that can modify the environment at run-time, and 2) they 
preclude the ability of the language to perform separate compilation of source code. One 
of the fundamental contributions of the DT Framework is a collection of algorithms that 
provide incremental dispatch table updating in all table-based dispatch techniques. An 
implementation of the DT Framework exists, and detailed run-time measurements of 
the algorithms are presented in Section 6. 

Any compiler or run-time system for a language in 9 can obtain a substantial 
amount of code-reuse by being a client of the DT Framework, since the framework 
provides functionality that such compilers and run-time systems must implement. In 
this paper, we will refer to compilers and run-time systems as DT Framework clients. 
For our purposes, a language that can be compiled is inherently non-schema-evolving, 
and compilers can be used on such languages (i.e. C++). By run-time sysfem we mean 
support existing at run-time to allow schema-evolution in the language (i.e. Smalltalk). 

The DT Framework makes a variety of research contributions besides the identifi- 
cation of the framework itself. It extends research in each of these areas: 

1. Data Structures: The framework identifies the method-set data structure, a critical 
structure that allows inheritance management to be made incremental, allows de- 
tection and recording of inheritance conflicts, and maintains information useful in 
compile-time optimizations. 

2. Algorithms: The framework demonstrates how inheritance management and main- 
tenance of dispatch infoxmation can be made incremental. A critical recursive algo- 
rithm is designed that handles both of these issues and recomputes only the infor- 
mation necessary for a particular environment modification. As well, the similari- 
ties and differences between adding information to the environment and removing 
information from the environment are identified, and the algorithms are optimized 
for each. 
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3 .  Table-Bused Dispatch: The framework identifies the similarities and differences 
between the various table-based dispatch techniques. It shows how the method-set 
data-structure and inheritance management algorithms can be used to allow incre- 
mental modification of the underlying table in any table-based dispatch technique. 
It also introduces a new hybrid dispatch technique that combines the best aspects 
of two existing techniques. 

The method-set data structure, the incremental algorithms, and their ability to be 
used in conjunction with any table-based dispatch technique results in a complete frame- 
work for inheritance management and maintenance of dispatch information that is us- 
able by both compilers and run-time systems. The algorithms provided by the frame- 
work are incremental at the level of individual environment mud@cations, consisting of 
any of the following: 

1. Adding a selector to a class. 

2. Adding one or more class inheritance links, including the adding of a class between 
two or more existing classes. 

3. Removing a selector from a class 

4. Removing one or more class inheritance links. 

The following capabilities are provided by the framework: 

1. Inheritance Confict Detection: In multiple inheritance, it is possible for inheritance 
conflicts to occur when a selector is visible in a class from two or more superclasses. 
The Framework detects and records such conflicts as they occur. 

2. Dispatch Technique Independence: Clients of the framework provide to end-users 
the capability to choose at compile-time or run-time the dispatch technique to use. 
Thus, an end-user could compile a C++ program using virtual function tables, or 
selector coloring, or any other table-based dispatch technique. 

3.  Schema-Evolving Languages: Dispatch tables have traditionally been created by 
compilers and are usually not extendable at run-time. This implies that schema- 
evolving languages can not use such table-based dispatch techniques. By mak- 
ing dispatch table modification incremental, the DT Framework allows schema- 
evolving languages to use any table-based dispatch technique, maintaining the dis- 
patch table at run-time as the environment is dynamically altered. 

4. Dynamic Schema Evolution: The DT Framework provides efficient algorithms for 
arbitrary environment modification, including adding a class between classes al- 
ready in an inheritance hierarchy. Even more important, the algorithms handle both 
additions to the environment and deletions from the environment. 

5 .  Separate Compilation: Of the five table-based dispatch techniques discussed in Sec- 
tion 2, three of them require knowledge of the complete environment. In situations 
where library developers provide object files, but not source code, these techniques 
are unusable. Incremental dispatch table modification allows the DT Framework to 
provide separate compilation in all five dispatch techniques. 
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6. Compile-time Method Determination : It is often possible (especially in statically 
typed languages) for a compiler to uniquely determine a method address for a spe- 
cific message send. The more refined the static typing of a particular variable, the 
more limited is the set of applicable selectors when a message is sent to that vari- 
able. If only one method applies, the compiler can generate a function call or inline 
the method, avoiding runtime dispatch. The method-set data structure maintains 
information to allow efficient determination of such uniqueness. 

The rest of this paper is organized as follows. Section 2 summarizes the various 
method dispatch techniques. Section 3 presents the DT Framework. Section 4 discusses 
how the table-based method dispatch techniques can be implemented using the DT 
Framework. Section 5 discusses details specific to compilers and details specific to run- 
time systems. Section 6 reports execution performance results when the DT Framework 
is applied to various real-world class hierarchies. Section 7 discusses related and future 
work, and Section 8 summarizes the results. Acknowledgements and references com- 
plete the paper. 

2 Method Dispatch Techniques 

In object-oriented languages, it is often necessary to compute the method address to be 
executed for a clasdselector pair, < C, u > , at run-time. Since message sends are so 
prevalent in object-oriented languages, the dispatch mechanism has a profound effect 
on implementation efficiency. Two general dispatch classifications exist: dynamic tech- 
niques, which compute (and cache) dispatched messages at runtime, and static tech- 
niques, which precompute all addresses before execution so that dispatch becomes a 
simple table access. In the discussion that follows, C is the receiver class and u is the se- 
lector at a particular call-site. The notation < C, u > is shorthand for the clasdselector 
pair. It is assumed that each class in the environment maintains a dictionary mapping 
native selectors to their method addresses, as well as a set of immediate superclasses. 
We give a very brief summary of the dispatch techniques. For detailed descriptions, see 
[Dri93], and for a comparison of relative dispatch performance, see [DHV95]. 

2.1 Dynamic Dispatch Techniques 

1. ML: Method Lookup' (Smalltalk-80 [GR831). Method dictionaries are searched for 
selector u starting at class C, going up the inheritance chain, until a method for CT 
is found or no more parents exist (in which case a messugeNot Understood method 
is invoked to warn the user). This technique is space efficient but time inefficient. 

2. LC: GlobaZLookup Cache ([GR83, Kra831) uses < C, u > as a hash into a global 
cache, whose entries store a class C, selector u, and address A. During a dispatch, 
if the entry hashed to by < C, u > contains a method for the clasdselector pair, 
it can be executed immediately, avoiding ML. Otherwise, ML is called to obtain an 
address and the resulting class, selector and address are stored in the global cache. 

In [DHV95, Dri931, and others, this is referred to as Dispatch Table Search (DTS). However, 
to avoid confusion with our dispatch tables, we refer to it as Method Lookup 
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3 .  IC: Inline Cache ([DS94]) stores addresses at each call-site. The initial address at 
each call-site invokes ML, which modifies the call-site once an address is obtained. 
Subsequent executions of the call-site invoke the previously computed method. 
Within each method, a method prologue exists to ensure that the receiver class 
matches the expected class (if not, ML is called to recompute and modify the call- 
site address). 

4. PIC: Polymorphic Inline Caches ([HCU9 11) store multiple addresses, modifying a 
special call-site specific stub-routine. On the first invocation of a stub-routine, ML 
is called. However, each time ML is called, the stub is extended by adding code 
to compare subsequent receiver classes against the current class, providing a direct 
function call (or even code inlining) if the test succeeds. 

2.2 Static Dispatch Techniques 

The static dispatch techniques are all table-based, in that a mapping from every legal 
class/selector pair to the appropriate executable address is precomputed before dispatch 
occurs. These techniques have traditionally been used at compile-time, but the DT 
Framework shows how they can be supported at run-time. In all of these techniques, 
classes and selectors are assigned numbers which serve as indices into the dispatch 
table. Whether these indices are unique or not depends on the dispatch technique. 

1. STZ: Selector Table Indexing  C COX^^]) uses a a two-dimensional table in which 
both class and selector indices are unique. This technique is not practical from a 
space perspective and is never used in implementations. 

2. SC: Selector Coloring ([DMSV89, AR921) compresses the two-dimensional STI 
table by allowing selector indices to be non-unique. Two selectors can share the 
same index as long as no class recognizes both selectors. The amount of com- 
pression is limited by the largest complete behavior (the largest set of selectors 
recognized by a single class). 

3.  RD: Row Displacement ([DH95]) compresses the two-dimensional STI table into 
a one-dimensional master array. Selectors are assigned unique indices in such a 
way that when all selector rows are shifted to the right by the index amount, the 
two-dimensional table has only one method in each column. 

4. VTBL: Mrtual Function Tables ([ES90]) have a different dispatch table for each 
class, so selector indices are class-specific. However, indices are constrained to be 
equal across inheritance subgraphs. Such uniqueness is not possible in multiple 
inheritance, in which case multiple tables are stored in each multi-derived class. 

5 .  CR Compact Selector-Indexed Dispatch Tables ([VH96]) separate selectors into 
one of two groups: standard selectors have one main definition and are only over- 
ridden in subclasses, and any selector that is not standard is a conflict selector. 
Two different tables are maintained, one for standard selectors, the other for con- 
flict selectors. The standard table can be compressed by selector aliasing and class 
sharing, and the conflict table by class sharing alone. Class partitioning is used to 
allow class sharing to work effectively. 
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3 The DT Framework 

The DT Framework provides a collection of abstract classes that define the data and 
functionality necessary to modify dispatch information incrementally during environ- 
ment modification. Recall that, from the perspective of the DT Framework, environment 
mod$cation occurs when selectors or class hierarchy links are added or removed. 

The DT Framework consists of a variety of special purposes classes '. Figure 1 
shows the class hierarchies. We describe the data and functionality that each class hier- 
archy needs from the perspective of inheritance management and dispatch table modi- 
fication. Clients of the framework can specify additional data and functionality by sub- 
classing some or all of the classes provided by the framework. 

I 

NonSharedCIS SharedClS 
2DS'S ShiftedSlS OuterSIS ClassSpedficSIS 

/\ 
PlainSIS 1 b d S l S  PartitionedSlS SeparatedSlS 

PartitionedClS SeparatedCIS 

ColoredSIS J U  

Fig. 1. The DT Framework Class Hierarchy 

The Methodset hierarchy represents the different kinds of address that can be as- 
sociated with a class/selector pair (i.e. messageNotUnderStood, inheritanceconflict, or 
user-specified method). The Table hierarchy describes the data-structure used to rep- 
resent the dispatch table, and provides the functionality needed to access, modify and 
add entries. The SIS and CIS hierarchies implement methods for determining selector 
and class indices. Although these concepts are components of Tables, they have been 
separated out into classes in their own right so as to allow the same table to use different 
indexing strategies. 

3.1 The DT Classes 

The Environment, Class and Selector classes are not subclassed within the DT Frame- 
work itself, but the Methodset, Table, SIS and CIS classes are subclassed (clients of 
the Framework are free to subclass any DT class they choose). A detailed figure of 

In this discussion, we present the conceptual names of the classes, rather than the exact class 
names used in the C++ implementation 
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the internal state of the fundamental DT classes is provided in Section 6.2: Effects on 
Dispatch Performance. 

Environment, Class and Selector: The DT Environment class acts as an interface be- 
tween the DT Framework client and the framework itself. However, since the client can 
subclass the DT Framework, the interface is a white box, not a black one. Each client 
creates a unique instance of the DT Environment and as class and method declarations 
are parsed (or evaluated at run-time)? the client informs the Environment instance of 
these environment modifications by invoking its interface operations. These interface 
operations are: Add Selector, Remove Selector, Add Class Links, and Remove Class 
Links. The environment also provides functionality to register selectors and classes with 
the environment, save extended dispatch tables, convert extended dispatch tables to dis- 
patch tables, merge extended dispatch tables together and perform actual dispatch for a 
particular class/selector pair. 

Within the DT Framework, instances of Selector need to maintain a name. They do 
not maintain indices, since such indices are table-specific. Instances of Class maintain 
a name, a set of native selectors, a set of immediate superclasses (parent classes), a set 
of immediate subclasses (child classes), and a pointer to the dispatch table (usually, a 
pointer to a certain starting point within the table, specific to the class in question). Fi- 
nally, they need to implement an efficient mechanism for determining whether another 
class is a subclass. 

Method-sets: The MethodSet hierarchy is in some ways private to the DT Frame- 
work, and language implementors that use the DT Framework will usually not need to 
know anything about these classes. However, method-sets are of critical importance in 
providing the DT Framework with its incremental efficiency and compile-time method 
determination. For a given selector, a method-set implicitly represents the set of all 
classes that share the same method for that selector. Only one class in each of these 
sets natively defines the selector, and this class is referred to as the dejining class of the 
method-set. 

The Table class and its subclasses represent extended dispatch tables, which store 
Methodset pointers instead of addresses. By storing method-sets in the tables, rather 
than simple addresses? the following capabilities become possible: 

1. Localized modification of the dispatch table during environment modification so 

2. Efficient inheritance propagation and inheritance conflict detection. 

3. Detection of simple recompilations (replacing a method for a selector by a different 

4. Compile-time method determination. 

that only those entries that need to be will be recomputed. 

method) and avoidance of unnecessary computation in such situations. 

Every entry of an extended dispatch table represents a unique class/selector pair, 
and contains a Methodset instance, even if no user-specified method exists for the 
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classhelector pair in question. Such empty entries usually contain a unique instance 
of EmptyMethodSet, but one indexing strategy uses FreeMethodSet instances, which 
represent contiguous blocks of unused table entries. Instances of both of these classes 
have a special methoflototunderstood address associated with them. Non-empty table 
entries are StandardMethodSets, and contain a defining class, selector, address and a 
set of child method-sets. The NomlMethodSet subclass represents a user-specified 
method address, and the ConjZictMethodSet subclass represents an inheritance conflict 
that occurred due to multiple inheritance. 

Associated with each standard Methodset is the concept of its dependent classes. 
For a method-set M representing class/selector pair < C, u > , the dependent classes 
of M consist of all classes which inherit selector u from class C. Furthermore, each se- 
lector u defined in the environment generates a method-set inheritance graph, which is 
an induced subgraph of the class inheritance hierarchy, formed by removing all classes 
which do not natively define o. Method-set hierarchy graphs are what allow the DT 
Framework to perform compile-time method determination. These graphs can be main- 
tained by having each method-set store a set of child method-sets. For a method-set M 
with defining class C and selector u, the childmethod-sets of M are the method-sets for 
selector u and classes C; immediately below C in the method-set inheritance graph for 
u. Figure 2 shows a small inheritance hierarchy and the method-set hierarchies obtained 
from it for selectors (Y and B. 

I FFrn 
D:a 

W 

class hierarchy method-set hierarchies for a and f3 

Fig. 2. An inheritance hierarchy and its associated method-set hierarchies 

The concept of dependent classes is what decided us to name our fundamental datas- 
tructure a method-set, since the inheritance hierarchy can be divided into a set of mu- 
tually exclusive classes (where these sets are selector-dependent). However, note that a 
method-set does not explicitly store its dependent classes; instead, the defining class and 
selector stored in the method-set provide enough information to compute the dependent 
classes by looking at appropriate entries in the dispatch table. 

Tables: Each Table class provides a fundamental structure for storing method-sets, and 
maps the indices associated with a class/selector pair to a particular entry in the table 
structure. Each of the concrete table classes in the DT Framework provides a different 



underlying table structure. The only functionality that subclasses need to provide is that 
which is dependent on the structure. This includes table access, table modification, and 
dynamic extension of the selector and class dimensions of the table. 

The 2DTable class is an abstract superclass for tables with orthogonal class and 
selector dimensions. Rows represent the selector dimension, and columns represent 
the class dimension. The Extendable2DTable class can dynamically grow in both se- 
lector and class dimensions as additional elements are added to the dimensions. The 
FixedRow2DTable dynamically grows in the class dimension, but the size of the selec- 
tor dimension is established at time of table creation, and cannot grow larger. 

The concrete lDTable class represents tables in which selectors and classes share 
the same dimension. Selector and class indices are added together to establish an entry 
within this one dimensional table. 

The OuterTable class is an abstract superclass for tables which contain subtables. 
Most of the functionality of these classes involves requesting the same functionality 
from a particular subtable. For example, requesting the entry for a classhelector pair 
involves determining (based on selector index) which subtable is needed, and request- 
ing table access from that subtable. Individual selectors exist in at most one subtable, 
but the Same class can exist in multiple subtables. For this reason, class indices for 
these tables are dependent on selector indices (because the subtable is determined by 
selector index). For efficiency, selector indices are encoded so as to maintain both the 
subtable to which they belong, as well as the actual index within that subtable. The Par- 
titionedTable class has a dynamic number of FixedRow2DTable instances as subtables. 
A new FixedRow2DTable instance is added when a selector cannot fit in any existing 
subtable. The SeparatedTable class has two subtables, one for standard selectors and 
one for conflict selectors. A standard selector is one with only one root method-set (a 
new selector is also standard), and a conflict selector is one with more than one root 
method-set. A root method-set for < C, u > is one in which class C has no su- 
perclasses that define selector u. Each of these subtables can be an instance of either 
Extendable2DTable or PartitionedTable. Since PartitionedTables are also outer tables, 
such implementations express tables as subtables containing subsubtables. 

Selector Index Strategy (SIS): Each table has associated with it a selector index strat- 
egy, which is represented as an instance of some subclass of SIS. The OuterTable and 
lDTable classes have one particular selector index strategy that they must use, but the 
2DTable classes can choose from any of the 2D-SIS subclasses. 

Each subclass of SIS implements Algorithm Determine Selector I&, which pro- 
vides a mechanism for determining the index to associate with a selector. Each SIS class 
maintains the current index for each selector, and is responsible for detecting selector 
index conflicts. When such conflicts are detected, a new index must be determined that 
does not conflict with existing indices. Algorithm Determine Selector Index is respon- 
sible for detecting conflicts, determining a new index, storing the index, ensuring that 
space exists in the table for the new index, moving method-sets from the old table loca- 
tions to new table locations, and returning the selector index to tbe caller. 

The abstract 2D-SIS class represents selector index strategies for use with 2D- 
Tables. These strategies are interchangeable, so any 2D-Table subclass can use any con- 



285 

Crete subclass of 2D-SIS in order to provide selector index determination. The PlainSIS 
class is a naive strategy that assigns a unique index to each selector. The ColoredSIS 
and AliasedSIS classes allow two selectors to share the same index as long as no class 
in the environment recognizes both selectors. They differ in how they determine which 
selectors can share indices. AliasedSIS is only applicable to languages with single in- 
heritance. 

The ShiftedSIS class provides selector index determination for tables in which se- 
lectors and classes share the same dimension. This strategy implements a variety of 
auxiliary functions which maintain doubly-linked freelists of unused entries in the one- 
dimensional table. These freelists are used to efficiently determine a new selector index. 
The selector index is interpreted as a shift offset within the table, to which class indices 
are added in order to obtain a table entry for a class/selector pair. 

The ClassSpecificSIS assigns selector indices that depend on the class. Unlike in the 
other strategies, selector indices do not need to be the same across all classes, although 
two classes that are related in the inheritance hierarchy are required to share the index 
for selectors understood by both classes. 

The PartitionedSIS class implements selector index determination for Partitioned- 
Table instances. When selector index conflicts are detected, a new index is obtained 
by asking a subtable to determine an index. Since FixedRow2D subtables of Parti- 
tionedTable instances are not guaranteed to be able to assign an index, all subtables 
are asked for an index until a subtable is found that can assign an index. If no subtable 
can assign an index, a new subtable is dynamically created. 

The SeparatedSIS class implements selector index determination for SeparatedTable 
instances. A new index needs to be assigned when a selector index conflict is detected 
or when a selector changes status from standard to conflicting, or vice-versa. Such index 
determination involves asking either the standard or conflict subtable to find a selector 
index. 

Class Index Strategy (CIS): Each table has associated with it a class index strat- 
egy, which is represented as an instance of some subclass of CIS. The OuterTable and 
lDTable classes have one particular class index strategy that they must use, but the 
2DTable classes can choose from either of the 2D-CIS subclasses. 

Each subclass of CIS implements Algorithm Determine Class Index, which pro- 
vides a mechanism for determining the index to associate with a class. Each CIS class 
maintains the current index for each class, and is responsible for detecting class index 
conflicts. When such conflicts are detected, a new index must be determined that does 
not conflict with existing indices. Algorithm Determine Class Index is responsible for 
detecting conflicts, determining a new index, storing the index, ensuring that space ex- 
ists in the table for the new index, moving method-sets from old table locations to new 
table locations, and returning the class index to the caller. 

The NonSharedCIS class implements the standard class index strategy, in which 
each class is assigned a unique index as it is added to the table. The SharedCIS class 
allows two or more classes to share the same index if all classes sharing the index have 
exactly the same method-set for every selector in the table. 

The PartitionedCIS and SeparatedCIS classes implement class index determination 



for PartitionedTable and SeparatedTable respectively. In both cases, this involves estab- 
lishing a subtable based on the selector index and asking that subtable to find a class 
index. 

3.2 The DT Algorithms 

Although the class hierarchies are what provide the DT Framework with its flexibility 
and the ability to switch between different dispatch techniques at will, it is the high-level 
algorithms implemented by the framework which are of greatest importance. Each of 
these algorithms is a template method describing the overall mechanism for using in- 
heritance management to incrementally maintain a dispatch table, detect and record 
inheritance conflicts, and maintain class hierarchy information useful for compile-time 
optimizations. They call low-level, technique-specific functions in order to perform fun- 
damental operations like table access, table modification and table dimension extension. 
In this paper, we provide a high-level description of the algorithms. A detailed discus- 
sion of the algorithms and how they interact can be found in [HS96]. 

The Interface Algorithms: Framework clients do not need to know anything about 
the implementation details of the framework. Instead, they create an instance of the 
DT Environment class and send messages to this instance each time an environment 
modification occurs. Four fundamental interface algorithms for maintaining inheritance 
changes exist in the Environment class: Algorithms Add Selector, Remove Selector, Add 
Class Links, and Remove Class Links. In all four cases, calling the algorithm results in 
a modification of all (and only) those table entries that need to be updated. Inheritance 
conflict recording, index conflict resolution and method-set hierarchy modification are 
performed as the table is updated. Most of this functionality is not provided directly 
by the interface algorithms; instead these algorithms establish how two fundamental 
inheritance management algorithms (Algorithms Manage Inheritance and Manage In- 
heritance Removal) should be invoked. 

Algorithm Add Selector is invoked each time a selector u is defined in a particular 
class C ,  and Algorithm Remove Selector is invoked each time a selector is removed 
from a class3. Algorithm Add Class Links could be implemented as a simple algorithm 
that adds a single inheritance link between two classes, but a more efficient implemen- 
tation is possible when it is extended to allow the adding of an arbitrary number of 
parent and child class links at the same time. Algorithm Remove Class Links is equally 
general with respect to removing class hierarchy links. 

In addition to the four interface routines for modifying the inheritance hierarchy, 
there are also registration routines for creating or finding instances of classes and selec- 
tors. Each time the language parser encounters a syntactic specification for a class or 
selector, it sends a Register Class or Register Selector message to the DT environment, 
passing the name of the class or selector. The environment maintains a mapping from 
name to instance, returning the desired instance if already created, and creating a new 

We assume that inheritance exceptions are handled as special method declarations. Removing 
a selector from a class without a native definition for that class can be interpreted as a request 
for an inheritance exception. 
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instance if no such instance exists. Note that the existence of a selector or class does not 
in itself affect the inheritance hierarchy; in order for the dispatch tables to be affected, 
a selector must be associated with a class (Algorithm Add Selector) or a class must be 
added to the inheritance hierarchy (Algorithm Add Class Links). 

Algorithms for Inheritance Management: Algorithm Manage Inheritance, and its in- 
teraction with Algorithms Add Selector and Add Class Links, form the most important 
part of the DT Framework. AlgorithmManage Inheritance is responsible for propogat- 
ing a MethodSet instance provided to it from Algorithms Add Selector or Add Class 
Links to all dependent classes of the method-set. During this propagation, the algorithm 
is also responsible for maintaining inheritance conflict information and managing se- 
lector index conflicts. Algorithm Manage Inheritance Removal plays a similar role with 
respect to Algorithms Remove Selector and Remove Class Links. 

Algorithms Manage Inheritance and Manage Inheritance Removal are recursive 
algorithms that are applied to a class, then invoked on each child class of that class. 
Recursion terminates when a class with a native definition is encountered, or no child 
classes exist. During each invocation, tests are performed to determine which of three 
possible scenarios is to be executed: method-set insertion, method-set child updating, 
or conjict creation (conjict removal, in Manage Inheritance Removal). Each scenario 
either identifies a method-set to propagate to children of the current class, or establishes 
that recursion should terminate. Due to inheritance conflicts, a recursive call may not 
necessarily propagate the incoming method-set. 

These algorithms have gone through many refinements, and the current implemen- 
tations provide extremely efficient inheritance management, inheritance conflict detec- 
tion, index conflict resolution and method-set hierarchy maintenance. An indepth dis- 
cussion of how these algorithms are implemented, the optimal tests used to establish 
scenarios, and how the method-set data structure provides these tests, is available in 
[HS96]. 

These algorithms are implemented in the abstract Table class, and do not need to 
be reimplemented in subclasses. However, these algorithms do invoke a variety of op- 
erations which do need to be overridden in subclasses. Thus, Algorithms Manage In- 
heritance and Manage Inheritance Removal act as template methods ([GHJV95]), pro- 
viding the overall structure of the algorithms, but deferring some steps to subclasses. 
Subclasses are responsible for implementing functionality for determining selector and 
class indices, accessing and modifying the table structure, and modifying method-set 
hierarchies. 

Algorithms for Selector and Class Index Determination: Each selector and class 
instance is assigned an index by the DT Framework. The indices associated with a 
class/selector pair are used to establish an entry within the table for that class/selector 
pair. An index strategy is a technique for incrementally assigning indices so that the new 
index does not cause index conflicts. An index conflict occurs when two clqdselector 
pairs with differing method-sets access the Same entry in the table. Since it !is undesir- 
able for an entry to contain more than one method-set (see [VH94, VH96]), we want 
to resolve the conflict by assigning new indices to one of the clasdselector pairs. Note 
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that since indices are table specific, and each table has a single selector index strategy 
and class index strategy, it is the index strategy instances that maintain the currently 
assigned indices for each selector and class, rather than having each selector and class 
instance maintain multiple indices (one for each table they participate in). 

Given a class/selector pair, Algorithm Determine Selector Index returns the index 
associated with the selector. However, before returning the index, the algorithm ensures 
that no selector index conflict exists for the selector in question. If such a conflict does 
exist, a new selector index is computed that does not conflict with any other existing 
selector index, the new index is recorded, the selector dimension of the associated table 
is extended (if necessary), and all method-sets representing selector u are moved from 
the old index to the new index, within the table. Algorithm Determine Class Index per- 
forms a similar task for class indices. Algorithm Determine Selector Index is provided 
by classes in the SIS inheritance hierarchy, and Algorithm Determine Class Index by 
classes in the CIS inheritance hierarchy. 

4 Incremental Table-based Method Dispatch 

All of the table-based techniques can be implemented using the DT Framework. How- 
ever, due to the non-incremental nature of the virtual function table technique (VTBL), 
an incremental implementation of VTBL would be quite inefficient, so the current im- 
plementation of the framework does not support VTBL dispatch. All other techniques 
are provided, and the exact dispatch mechanism is controlled by parameters passed to 
the DT Environment constructor. The parameters indicate which table(s) to use, and 
specify the selector and class index strategies to be associated with each of these tables. 

1. STI: uses Extendable2DTable, PlainSIS, and NonSharedCIS. 

2. SC: uses Extendable2DTable, ColoredSIS, and NonSharedCIS. 

3. RD: uses lDTable, ShiftedSIS and NonSharedCIS. 

4. VTBL uses ClassTable, ClassSpecificSIS and NonSharedCIS. 

5. CT: uses a SeparatedTable with two PartitionedTable subtables, each with Fixed- 
Row2DTable subsubtables. The selector index strategy for all subsubtables of the 
standard subtable is AliasedSIS, and the strategy for all subsubtables of the conflict 
subtable is PlainSIS. All subsubtables use SharedCIS. 

6. ICT identical to CT, except that the standard subtable uses ColoredSIS instead of 
AliasedSIS. 

7. SCCT identical to CT, except that both standard and conflict subtables used Col- 
oredSIS (instead of AliasedSIS and PlainSIS respectively). 

The last two techniques are examples of what the DT Framework can do to combine 
existing techniques into new hybrid techniques. For example, ICT dispatch uses selector 
coloring instead of selector aliasing to determine selector indices in the standard table, 
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and is thus applicable to languages with multiple inheritance. Even better, SCCT uses 
selector coloring in both standard and conflict tables (remember that the CT dispatch 
effectively uses STI-style selector indexing in the conflict table). 

In addition to providing each of the above dispatch techniques, the framework can 
be used to analyze the various compression strategies introduced by CT dispatch in iso- 
lation from the others. For example, a dispatch table consisting of a PartitionedTable, 
whose FixedRow2DTable subtables each use PlainSIS and SharedCIS indexing strate- 
gies, allows us to determine how much table compression is obtained by class sharing 
alone. Many variations based on SeparatedTable and PartitionedTable, their subtables, 
and the associated index strategies, are possible. 

5 Efficiency issues within Compilers and Run-time Systems 

Both compilers and run-time systems benefit equally from the dispatch technique inde- 
pendence provided by the DT Framework. In addition, the framework provides each of 
them with additional useful functionality. 

5.1 Compilers 

The DT Framework provides compilers with the following advantages: 1) maintenance 
of inheritance conflicts, 2) compile-time method determination, and 3) the ability to 
perform separate compilation. 

In languages with multiple inheritance, it is possible for inheritance conflicts to 
occur, when a class with no native definition for a selector inherits two distinct methods 
for the selector from two or more superclasses. For the purposes of both efficiency and 
software verification, compile-time detection of such conflicts is highly desirable. 

The most substantial benefit that the DT Framework provides to compilers is the 
recording of information needed to efficiently determine whether a particular clasdsel- 
ector pair is uniquely determined at compile-time. In such cases, the compiler can avoid 
run-time method dispatch entirely, and generate an immediate function call or even 
inline the code. 

Another powerful capability provided to compilers by the DT Framework is sepa- 
rate compilation. Each library or collection of related classes can be compiled, and an 
extended dispatch table stored with the associated object code. At link-time, a separate 
DT Environment for each library or module can be created from the stored dispatch 
tables. The linker can then pick one such environment (usually the largest) and ask that 
environment to merge each of the other environments into itself. This facility is critical 
in situations where a library is being used for which source code is not provided. Since 
certain dispatch table techniques require the full environment in order to maintain accu- 
rate tables (i.e. SC, RD and CT) library providers who do not want to share their source 
code need only provide the inheritance hierarchy and selector definition information 
needed by the DT Framework. 

Finally, note that although it is necessary to use the extended dispatch tab1 to in- 
crementally modify the inheritance information, it is not necessary to maintain the ex- 
tended dispatch table at run-time in non-schema-evolving compiled languages. Once 
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linking is finished, the linker can ask the DT Environment to create a simple dispatch 
table from the extended dispatch table, and this dispatch table can be stored in the exe- 
cutable for static use at run-time. 

5.2 Run-time Systems 

The DT Framework provides run-time systems with: 1) tablebased dispatch in schema- 
evolving languages, 2) dynamic schema evolution, and 3) inheritance conflict detection. 

The utility of the DT Framework is fully revealed when it is used by run-time 
systems. Because of the efficiency of incremental inheritance propagation and dis- 
patch table modification, it can be used even in heavily schema-evolving languages 
like Smalltalk ([GR83]) and Tigukat ([OPS+95]). However, this functionality is pro- 
vided at the cost of additional space, because an extended dispatch table must be main- 
tained at run-time, rather than a traditional dispatch table containing only addresses. 
Note also that without additional space utilization, dispatch using an extended dispatch 
table is more expensive than normal table dispatch because of the indirection through 
the method-set stored at a dispatch table entry in order to obtain an address. By dou- 
bling the table size, this can be avoided by having the extended dispatch table store 
both a Methodset pointer and an address. In dispatch techniques like RD and CT that 
are space-efficient, this doubling of size may be worth the improvements in dispatch 
performance. 

Some mechanism to support dynamic schema evolution is necessary to provide lan- 
guages with full-fledged schema-evolution. The DT Framework allows arbitrary class 
hierarchy links to be added and removed no matter what the current state of the classes. 

Finally, the framework allows inheritanceconflicts to be detected at the time they are 
produced, rather than during dispatch. This allows schema-evolving languages to return 
error indicators immediately after a run-time environment modification. A common 
complaint with schema-evolving languages is a lack of software verification; the DT 
Framework provides a partial solution to this. 

6 Performance Results 

In the previous sections, we have described a framework for the incremental mainte- 
nance of an extended dispatch table, using any table-based dispatch technique. In this 
section, we summarize the results of using the DT Framework to implement STI, SC, 
RD, ICT and SCCT dispatch and generate extended dispatch tables for a variety of 
object-oriented class libraries. 

In order to test the algorithms, we can model a compiler or run-time interpreter with 
a simple parsing program that reads input from a file. Each line of the file is either a 
selector definition (consisting of a selector name and class name), or a class definition 
(consisiting) of a class name and a list of zero or more parent class names. The order in 
which the class and selector definitions appear in this file represent the order in which 
a compiler or run-time system would encounter the same declarations. 

[DH95] demonstrated the effectiveness of the non-incremental RD technique on 
twelve real-world class libraries. We have executed the DT algorithms on this same 
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set of libraries in order to determine what effects dispatch technique, input order and 
library size have on per-invocation algorithm execution times and on the time and mem- 
ory needed to create a complete extended dispatch table for the library in question. The 
cross-product of technique, library and possible input ordering generates far too much 
data to present here, so we have choosen two representative libraries from [DH95], Par- 
cplacel and Geode, as well as the change log from a commercial Smalltalk programmer 
in a local company called Biotools. Table 1 summarizes some useful statistics for these 
classes. 

[Library I C( SI MI ml PI B (  
IBiotools I 493140521 118021 593111.01132( 
Parcplacel 774 5086 178230 8540 1.0 401 
(Geode 1131 d6549(302709 I1419412.11795 I 

Table 1. Statistics for various object-oriented environments 

In the table, C is the total number of classes, S is the total number of selectors, M 
is the total number of legitimate class-selector combinations, rn is the total number of 
defined methods, P is the average number of parents per class, and B is the size of the 
largest complete behavior, (c.f. [DH95]). 

Of the 15 different input orderings we analyzed, we present three, a non-random 
ordering that is usually best for all techniques and libraries, a non-random ordering 
that is the worst of all non-random orderings, and our best approximation of a natural 
ordering. By natural ordering, we mean the ordering of class and selector definitions 
that would occur during the development of the hierarchy in question. In the case of the 
Biotools hierarchy, the natural ordering is easily obtained, since Smalltalk maintains a 
change log of every class and selector defined, in the order they are defined. For the 
ParcPlace and Geode libraries, we assume that a completely random ordering of the 
classes and selectors is representative of the natural ordering. 

Table 2 presents the total time and memory requirements for each of these data sam- 
ples, applied to each of the techniques on the best, worst and natural (real) input order- 
ings. The DT code is implemented in C++, was compiled with g++ -02, and executed on 
a Sparc-Station 20/50. This code is publicly available from ftp://ftp.cs.ualbertaca/pub/Dtf. 

Overall execution time, memory usage and table fill-rates for the published non- 
incremental versions are provided for comparision. We defineBZZ-rate as the percentage 
of total table entries having user-defined method addresses (including addresses that 
indicate inheritance conflicts). Note that in the case of CT, this definition of fill-rate is 
misleading, since class-sharing allows many classes to share the same column in the 

In [AR92], the incremental algorithm for SC took 12 minutes on a Sun 3/80 when 
applied to the Smalltalk-80 Version 2.5 hierarchy (which is slightly smaller than the 
Parcplacel library presented in Table 2), where this time excludes the processing of 

tabie4. 

A more accurate measure of fill-rate is possible, but is not relevant to this paper. So as not to 
misrepresent data, we do not describe CT fill-rates here. 
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Table 2. General Time and Space Results for the DT Framework 

certain special classes. The DT Framework, applied to all classes in this library, on 
a Sun 3/80, took 113 seconds to complete. No overall memory results were reported 
in (AR921 @T uses 2.5 Mb), but their algorithm had a fill-rate within 3% of optimal 
(the maximum total number of selectors understood by one class is a minimum on the 
number of rows to which SC can compress the STI table). Using the best input ordering, 
the DT algorithms have a fill-rate within 1% of optimal. 

In (DH951, non-incremental RD is presented, and the effects of different imple- 
mentation strategies on execution time and memory usage are analyzed. Our current 
DT implementation of RD is roughly equivalent to the implementation strategies DIO 
and SI as described in that paper. Implementing strategies DRO and MI, which give 
better fill-rates and performance for static RD, requires complete knowledge of the en- 
vironment. Their results were ran on a SPARCstation-20/60, and were 4.3 seconds for 
F’arcplacel, and 9.6 seconds for Geode. Total memory was not presented, but detailed 
fill-rates were. They achieved a 99.6% fill-rate for Parcplacel and 57.9% for Geode 
(using SI). Using the input ordering that matches their ordering as closely as possible, 
our algorithms gave fill-rates of 99.6% and 58.3%. However, fill-rates for the random 
ordering were 32.0% and 20.6% respectively. 

In [VH96], non-incremental CT is presented, with timing results given for a SPARC- 
station-5. A timing of about 2 seconds for Parcplacel can be interpolated from their 
data, and a memory consumption of 1.5 Mb. Results for Geode were not possible be- 
cause Geode uses multiple inheritance. In the DT Framework, we use selector coloring 
instead of selector aliasing, which removes the restriction to languages with single in- 
heritance. On a SPARCstation-5, the DT algorithms run in 21.1 seconds using 1.9 Mb 
when applied to Parcplacel, and run in 70.5 seconds using 4.8 Mb when applied to 
Geode. 

We have also estimated the memory overhead incurred by the incremental nature 
of the DT Framework. The data maintained by the Environment, Class and Selector 
classes is needed in both static and incremental versions, and only a small amount of 
the memory taken by Tables is overhead, so the primary contributor to incremental 
overhead is the collection of Methodset instances. The total memory overhead varies 
with the memory efficiency of the dispatch technique, from a low of 15% for STI, to a 
high of 50% for RD and SCCT. 
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6.1 

Since we are stressing the incremental nature of the DT Framework, the per-invocation 
cost of our fundamental algorithms, Add Selector, Add Class Links and Inheritance 
Manager, are of interest. Rather than reporting the timings for every recursive call of 
MA,  we report the sum over all recursive calls from a single invocation from Algo- 
rithm Add Selector or Algorithm Add Class Links. The per-invocation results for the 
Parcpfacel library are representative, so we will summarize them. Furthermore, SC, 
ICT and SCCT techniques have similar distributions, so we will present only the results 
for SC and RD dispatch. In Parcplacel, Algorithm Add Selector is always called 8540 
times, and Algorithm Add Class Links is called 774 times, but the number of times 
Algorithm Manage Inheritance is invoked from these routines depends on the input 
ordering. Per-invocation timings were obtained using the getrusage() system call and 
taking the sum of system and user time. Note that since Sun 4 machines have a clock 
interval of 1/100 seconds, the granularity of the results is 1Oms. 

Table 3 shows six histograms for SC dispatch. Each histogram indicates how many 
invocations of each algorithm fell within a particular millisecond interval. The lint  row 
represents per-invocation timings for the optimal ordering, and the second row for the 
random ordering. In all libraries, for all orderings, all algorithms execute in less than 
10 milliseconds for more than 95% of their invocations. Thus, without limiting the 
y-axis of the histograms, the initial partition would dominate all others so much that 
no data would be visible. For this reason, we have limited the y-axis and labelled the 
first partition with its number of occurences. For Algorithm Add Selector, maximum 
(average) per-invocation times were 30 ms (0.7 ms) for optimal order, and 120 ms (0.6 
ms) for random order. For Algorithm Add Class Links, they were 10 ms (0.1 ms) and 
4100 ms (27.3 ms), and for AlgorithmManage Inheritance, 30 ms (0.2 ms) and 120 ms 
(0.25 ms). 

Table 4 shows similar timings for RD dispatch. The variation in timing results be- 
tween different random orderings can be as much as 100% (the maximum time is twice 
the minimum time). For Algorithm Add Selector, maximum (average) per-invocation 
times were 80 ms (0.9 ms) for optimal order, and 1970 ms (6.7 ms) for random order. 
For Algorithm Add Class Links, they were 10 ms (0.1 ms) and 52740 ms (12763 ms), 
and for Algorithm Manage Inheritance, 70 ms (0.2 ms) and 3010 ms (24.5 ms). 

Per-invocation costs of the DT algorithms 

6.2 Effects on Dispatch Performance 

In [DHV951, the dispatch costs of most of the published dispatch techniques are pre- 
sented. The costs are expressed as formulae involving processor-specific constants like 
load latency (L) and branch miss penalty (B), which vary with the type of processor be- 
ing modeled. In this section, we observe how the incremental nature of our algorithms 
affects this dispatch speed. 
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At a particular call-site, the selector in the method send and the class of the receiver 
object together uniquely determine which method to invoke. Conceptually, in object- 
oriented languages, each object knows its (dynamic) class, so we can obtain a class 
index for a given object. This index, along with the index of the selector (which is 
usually bown at compile-time), uniquely establishes an entry within a global dispatch 
table. In this scheme, we do a fair amount of work to obtain an address: get the class of 
the receiver object, access the class index, get the global table, get the class-specific part 
of the table (based on class index), and get the appropriate entry within this subtable 
(based on selector index). 

The above dispatch sequence can be improved by making a simple observation: 
if each class explicitly stored its portion of the global dispatch table, we could avoid 
the need to obtain a class index. In fact, we would no longer need to maintain a class 
index at all (the table replaces the index). In languages where the size of the dispatch 
table is known at compile-time it is even more efficient to assume that each class is a 
table, rather than assuming that each class contains a table. This avoids an indirection, 
since we no longer need to ask for the class of an object, then obtain the table from the 
class: we now ask for the class and immediately have access to its table (which starts at 
some constant offset from the beginning of the class itself). Thus, all of the table-based 
dispatch techniques must do at least the following (they may also need to do more): 
1) get table from receiver object, 2) get method address from table (based on selector 
index), 3) call method. 

So, now we want to determine how much dispatch performance degrades when 
using the DT Framework, with its incremental nature, dynamic growing of tables as 
necessary, and the use of extended dispatch tables instead of simple dispatch tables. 
Note that during dispatch, indirections may incur a penalty beyond just the operation 
itself due to load latency (in pipelined processors, the result of a load started in cycle i 
is not available until cycle i+L). In the analysis of [DHV95], it is assumed that the load 
latency, L, is 2 (non-pipelined processors can assume L = 1). This implies that each 
extra indirection incurred by the DTF algorithms will slow down dispatch by at least 
one cycle (for the load itself) and by at most L cycles (if there are not other operations 
that can be performed while waiting for the load). 

Figure 3 shows a conceptual version of the internal state of the fundamental DT 
classes. In the figure, rather than showing the layout of all of the Table subclasses, we 
have chosen Extendable2DTable as a representative instance. The only difference be- 
tween this table and any of the other tables is the nature of the Data field. This field 
(like most fields in the figure) is of type Array, a simple C++ class that represents a 
dynamically growable array. The Data field of the Array class is a pointer to a contigu- 
ous block of words (usually containing indices or pointers to other DT class instances). 
Usually, such Arrays have more space allocated than is actually used (hence the Alloc 
and Size fields), but this overhead is a necessary part of dynamic growth. 

From Figure 3, it can be seen that the Extendable2DTable class has a Data field 
which is an Array class. This Array class handles dynamic growth as new elements 
are added, and also has a Data field, which points to a dynamically allocated block 
of contiguous words in memory. Each word in this block is a pointer to a DT Class 
object. In the figure, each Class object also has a Data field (another growable array), 
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which in turn points to a block of dynamically allocated memory. Each entry in this 
block is a pointer to a Methodset instance, which contains a pointer to the method to 
execute. Note that in Figure 3 Class instances are not considered to be dispatch tables, 
and instead contain a growable array representing the class-specific portion of the global 
dispatch table. 

Given this layout, two extra indirections are incurred, one to get the table from 
the class, and one to get the method-set from the table. Thus, dispatch speeds in all 
table-based techniques will be increased by at most 2 x L cycles. Depending on the 
branch miss penalty (B) of the processor in question (the dominating variable in dis- 
patch costs in [DHV951), this results in a dispatch slow-down of between 50% (B=l) 
and 30%(B=6) when L=2. 

Given these performance penalties, the DT Framework would not be desirable for 
use in production systems. However, it is relatively easy to remove both of the indirec- 
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tions mentioned, one by using a modest amount of additional memory, and the other by 
relying on implementations of object-oriented languages that do not use object-tables. 
By removing these indirections, the DT Framework has exactly the same dispatch per- 
formance as non-incremental implementations. 

We can remove the extra indirection needed to extract the address from the method- 
set by using some extra space. As is shown in Figure 4, each table entry is no longer 
just a pointer to a Methodset instance; it is instead a two-field record containing both 
the address and the Methodset instance (the address field within the method-set itself 
becomes redundant). This does slightly decrease the efficiency of incremental modifi- 
cation (it is no longer possible to change a single Methodset address and have it be 
reflected in multiple table entries), but optimizing dispatch is more important than op- 
timizing table maintenance. Furthermore, the amount of inefficiency is minimal, given 
how quickly Algorithm Add Selector executes. Finally, the extra space added by effec- 
tively doubling the number of table entries is not necessarily that expensive, especially 
in techniques like RD and CT. For example, in RD, the space for the table is about 25% 
of the total memory used, so doubling this table space increases the overall space used 
by 25%. 

The other extra indirection exists because in Figure 3 classes contain tables instead 
of being tables. In the non-incremental world, the size of each class-specific dispatch 
table is known at compile-time, so at run-time it is possible to allocate exactly enough 
space in each class instance to store its table directly. At first glance, this does not seem 
possible in the DT Framework because the incremental addition of selectors requires 
that tables (and thus classes) be able to grow dynamically. The reason this is difficult is 
because dynamic growth necessitates the allocation of new memory (and the copying 
of data). Either we provide an extra indirection, or provide some mechanism for up- 
dating every variable pointing to the original class object, so that it points to the new 
class object. Fortunately, this last issue is something that object-oriented language im- 
plementations that do not use object tables already support, so we can take advantage 
of the underlying capabilities of the language implementation to help provide efficient 
dispatch for the language. For example, in Smalltalk, indexed instance variables exist 
(Array is an example), which can be grown as needed. We therefore treat classes as 
being tables, rather than containing tables, and avoid the second indirection. Figure 4 
shows the object, class and table layouts that allow the DT Framework to operate with- 
out incuring penalties during dispatch. 

7 Related and Future Work 

7.1 Related Work 

[DHV95] presents an analysis of the various dispatch techniques and indicates that in 
most cases, IC and PIC are more efficient than STI, SC and RD, especially on highly 
pipelined processors, because IC and PIC do not cause pipeline stalls that the table 
indirections of STI, SC and RD do. However, even if the primary dispatch technique 
is IC or PIC, it may still be useful to maintain a dispatch table for cases were a miss 
occurs, as a much faster alternative to using ML (method lookup) or LC (global cache) 
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and ML, together. Especially in schema-evolving languages with substantial multiple 
inheritance, ML is extremely inefficient, since each inheritance path must be searched 
(in order to detect inheritance conflicts). 

[DGC95] discusses static class hierarchy analysis and its utility in optimizing obj- 
ect-oriented programs. They introduce an applies-to set representing the set of classes 
that share the same method for a particular selector. These sets are represented by our 
concept of dependent classes. Since each method-set implicitly maintains its set of de- 
pendent classes, the DT algorithms have access to such sets, and to the compile-time 
optimizations provided by them. 

[AR92] presents an incremental approach to selector coloring. However, the algo- 
rithm proposed often performs redundant work by checking the validity of selector col- 
ors each time a new selector is added. The DT algorithms demonstrates how to perform 
selector color determination only when absolutely necessary (i.e. only when a selec- 
tor color conflict occurs), and has generalized the approach to a variety of table-based 
approaches. [DH95] presents selector-based row displacement (RD) and discusses how 
to obtain optimal compression results. [VH96] presents the compact selector indexed 
table (CT), expanding on previous work in [VH94]. 

Predicate classes, as implemented in Cecil ([Cha93]), allow a class to change its set 
of superclasses, at run-time. The DT Framework provides an efficient mechanism for 
implementing predicate classes using table-based dispatch. 

7.2 Future Work 

The DT Framework provides a general description of all work that needs to be per- 
formed to handle inheritance management and method dispatch in schema-evolving, 
dynamically typed, single-receiver languages with multiple inheritance. A variety of 
extensions are possible. 

First, the framework as presented handles methods, but not internal state. A mecha- 
nism to incrementally modify object layout is a logical, and necessary, extension. Sec- 
ond, multi-method languages such as Tigukat [OPS+95] and Cecil [Cha92] have the 
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ability to dispatch a method based not only on the dynamic type of a receiver, but also 
on the dynamic types of all arguments to the selector. Multi-methods extend the expres- 
sive power of a language, but efficient method dispatch and inheritance management is 
an even more difficult issue in such languages. Extending the DT Framework to handle 
multi-method dispatch is part of our continued research in this area. Third, the frame- 
work currently assumes that inheriting the interface of parents classes implies that the 
implementation associated with the interface is inherited also. A more general mech- 
anism for inheritance management that separates these concepts is desirable. The DT 
Framework is planned to be used to implement all three of these concepts in Tigukat, an 
object-oriented database language with massive schema-evolution, multi-method dis- 
patch, multiple implementation types, and many other extensions to the object-oriented 
paradigm. 

Fourth, although the DT Framework provides a general mechanism for handling 
table-based method dispatch, it is really only one component of a much larger frame- 
work that handles all method dispatch techniques. The DT Framework can be extended 
so that framework clients call interface algorithms each time a call-site is encountered, 
similar to the manner in which the environment is currently called, when class and se- 
lector definitions are encountered. This would extend the DT Framework to encompass 
all known method dispatch techniques. 

Fifth, the DT Framework allows various compression techniques, like selector alias- 
ing, selector coloring, and class sharing, to be analyzed both in isolation, and in inter- 
action with one another. More research about how these techniques interact, and about 
how SCCT dispatch can be optimized, is necessary. 

8 Conclusion 

We have presented a framework that is usable by both compilers and run-time systems 
to provide table-based method dispatch, inheritance conflict detection, and compile- 
time method determination. The framework relies on a collection of technique inde- 
pendent algorithms for environment modification, which call technique-dependent al- 
gorithms to perform fundamental operations like table access and index determina- 
tion. The framework unifies all table-based method dispatch techniques into a cohesive 
whole, allowing a language implementor to change between techniques by changing 
the manner in which the DT Environment is instantiated. Incremental versions of all 
table-based techniques except VTBL have been implemented, all of which have low 
milli-second per-invocation execution times. 

The framework provides a variety of new capabilities. The various table-based dis- 
patch techniques have differing dispatch execution times and memory requirements. 
Since the framework allows any table-based dispatch technique to be used, a particular 
application can be optimized for either space or dispatch performance. Furthermore, the 
DT Framework allows table-based dispatch techniques to be used in schema-evolving 
languages. In the past, schema-evolving languages necessitated the use of a non-table- 
based technique. One reason that C++ uses virtual function tables is that they allow for 
separate compilation, unlike other table-based dispatch techniques. The DT Framework 
now allows all table-based dispatch techniques to work with separate compilation. Fi- 



300 

nally, the framework introduces a new level of software verification in schema-evolving 
languages by allowing inheritance conflicts to be detected immediately when they oc- 
cur, rather than during dispatch. 

The framework has been used to merge SC and CT method dispatch into a hybrid 
dispatch technique with the advantages of both. The CT dispatch technique is limited by 
its restriction to single-inheritance. By replacing selector aliasing by selector coloring, 
we obtain a dispatch technique that works with multiple inheritance and that benefits 
from the class sharing made possible by CT class partitioning. Furthermore, SCCT 
dispatch provides slightly better compression because the conflict table can be colored, 
unlike in CT dispatch, where it remains uncompressed. 

The DT Framework currently consists of 36 classes, 208 selectors, 494 methods, 
and 1081 meaningful class/selector pairs. When the DT Framework is applied to a com- 
pletely random ordering of itself, a SCCT-based dispatch table is generated in 0.436 
seconds. Since compiling the framework requires 390 seconds, even the slowest dis- 
patch technique and input ordering produce a dispatch table in a negligible mount of 
time, relative to overall compilation time. 
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