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Abstract

A key aspect in video modeling is spatial relationships. In
this paper we propose a spatial representation for specifying
the spatial semantics of video data. Based on such a repre-
sentation, a set of spatial relationships for salient objects is
defined to support qualitative and quantitative spatial prop-
erties. The model captures both topological and directional
spatial relationships. We present a novel way of incorpo-
rating this model into a video model, and integrating the
abstract video model into an object database management
system which has rich multimedia temporal operations. The
integrated model is further enhanced by a spatial inference
engine. The powerful expressiveness of our video model is
validated by some query examples.

1 Introduction

Management of multimedia data poses special require-
ments for database management systems. Many applica-
tions depend on spatial relationships among multimedia
data. There is significant research on spatial relationships in
image databases and geographic information systems (GIS)
[1, 5, 6, 13, 16, 17, 19, 21], but very little research has been
done on spatial modeling in the context of video data. Video
related work mostly concentrates on temporal relationships
[7, 10, 12, 14, 20]. We argue that a video spatial model is an
essential part of an abstract multimedia information system
model which can be used as the basis for declarative queries.

Information about the spatial semantics of a video must
be structured so that indexes can be built to efficiently re-
trieve data from a video database. Avideo consists of a
number ofclips. A clip is a consecutive sequence offrames,
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which are the smallest units of video data.Spatial data
pertains to spatial-oriented objects in a database, including
points, polygons, surfaces, and volumes. Spatial relations
have been classified [18] into several types, includingtopo-
logical relations that describe neighborhood and incidence
(e.g., overlap, disjoint);directional relations that describe
order in space (e.g., south, northwest); anddistance rela-
tions that describe space range between objects (e.g., far,
near). We focus on the first two types, i.e., topological and
directional relations.

One of the most important issues in modeling video spa-
tial relationships is how to handle user queries. The special
requirements of multimedia query languages in supporting
spatial relationships have been investigated within the con-
text of specific applications such as image database systems
and geographic information systems [19]. From a user’s
point of view, the following requirements are necessary to
support spatial queries in a multimedia information system:

� Support should be provided for object domains which
consist ofcomplex spatial objects in addition to simple
points and alphanumeric domains.

� Support should exist fordirect spatial searches, which
locate the spatial objects in a given area of images.
This can resolve queries of the form “Find all the faces
in a given area within an image or a video frame”.

� It should be possible to performhybrid spatial
searches, which locate objects based on some at-
tributes and some associations between attributes and
the spatial objects. This can resolve queries of the
form “Display the person’s name, age, and an image
in which he/she is riding on a horse”.

� Support should exist forcomplex spatial searches,
which locate spatial objects across the database by
using set-theoretic operations over spatial attributes.
This can resolve queries of the form “Find all the
roads which pass through city X”.



� Support should be provided to performdirect spatial
computations, which compute specialized simple and
aggregate functions from the frames.

� Finally, support should exist forspatio-temporal
queries which involve not only spatial relations, but
temporal relations as well.

We use the Common Video Object Tree model (CVOT)
[10] to build an abstract model. This abstract CVOT model
is integrated into a temporal object model to provide con-
crete object database management system (ODBMS) sup-
port for video data. The system that we use in this work
is TIGUKAT1 [15], which is an experimental system un-
der development at the University of Alberta. The major
contributions of this paper are: the introduction of a unified
representation of spatial objects, comprehensive support for
user spatial queries, and support for user spatio-temporal
queries. Our work is further enhanced by a rich set of spa-
tial inference rules.

The rest of the paper is organized as follows. Section 2
reviews the related work in object spatial representations.
Section 3 introduces our representation of object spatial
properties and relationships. Section 4 describes a new
video model and a novel integration of the new model into
an OBMS. Section 5 shows the expressiveness of our spatial
representation by discussing some query examples. Section
6 presents our concluding remarks.

2 Related Work

Egenhofer [6] has specified eight fundamental topolog-
ical relations that can hold between two planar regions.
These relations are computed using four intersections over
the concepts ofboundary andinterior of pointsets between
two regions embedded in a two-dimensional space. These
four intersections result in eight topological relations. A
spatial SQL [5], based on this topological representation,
supports direct spatial search, hybrid spatial search, com-
plex spatial search, and direct spatial computation.

Papadias et al. [16, 17] assume a construction process
that detects a set of special points in an image, calledrep-
resentative points. Every spatial relation in the modeling
space can be defined using only these points. Two kinds of
representative points are considered:directional and topo-
logical. In the case of using two representative points the
directional relations between objects can be defined as in-
tervals which may facilitate the retrieval of spatial objects
from a database using an R-tree based indexing mechanism
[17].

1TIGUKAT (tee-goo-kat) is a term in the language of Canadian Inuit
people meaning “objects.” The Canadian Inuits (Eskimos) are native to
Canada with an ancestry originating in the Arctic regions.

Nabil et al. [13] propose a two dimensional projection
interval relationship (2D-PIR) to represent spatial relation-
ships based on Allen’s interval algebra and Egenhofer’s 4-
intersection formalism, which enable a graph representation
for pictures based on 2D-PIR to be constructed. In order to
overcome some problems of using the minimum bounding
rectangle (MBR) with boundaries parallel to horizontal and
vertical axes in the 2D-PIR representation, two alternative
solutions are proposed: slope projection and the introduc-
tion of topological relations. However, neither of these two
solutions is complete in the sense that there still exist cases
that cannot be handled by the 2D-PIR representation.

The Video Semantic Directed Graph (VSDG) model is a
graph-based conceptual video model [4]. One feature of the
VSDG model is an unbiased representation of the informa-
tion that provides a reference framework for constructing a
semantically heterogeneous user’s view of the video data.
This model also suggests using Allen’s temporal interval
algebra to model spatial relations among objects. However,
their definitions of such spatial relations are both incomplete
and unsound.

Abdelmoty et al. [1] extend the 4-intersection formalism
[6] for topological relations to representorientational rela-
tions. The orientational relations require a reference object
called anorigin to establish a spatial relation. The direc-
tional relations between two objects are defined using the
intersections of these four semi-infinite areas. Hernández
[9] defines the composition of topologicaland directional re-
lations, with the result being pairs of topological/directional
relations. Composition is accomplished usingrelative topo-
logical orientation nodes as a store for intermediate results.
This work is extended in [3] to handle composition of dis-
tance and directional relations.

3 Spatial Properties of Salient Objects

A salient object is an interesting physical object in a video
frame. Each video frame usually has many salient objects,
e.g. persons, cars, etc. We use the term objects to refer to
salient objects whenever this will not cause confusion.

3.1 Spatial Representations

It is a common strategy in spatial access methods to store
object approximations and use these approximations to in-
dex the data space in order to efficiently retrieve the potential
objects that satisfy the result of a query [17]. Depending on
the application domain, there are several options in choos-
ing object approximations. MBR has been used extensively
to approximate objects because they need only two points
for their representation. While MBR demonstrates some
disadvantages when approximating non-convex or diagonal
objects, they are the most commonly used approximations



in spatial applications. Hence, we use MBR to represent
objects in our system.

Definition 1 The bounding box of a salient objectAi is
defined by its MBR(Aix; Aiy) and a depthAiz where
Aix = [xsi; xfi ]; Aiy = [ysi ; yfi ]; Aiz = [zsi ; zfi ]. xsi
andxfi areAi’s projection on theX axis withxsi � xfi
and similarly for ysi , yfi , zsi , and zfi . The spatial
property of a salient objectAi is defined by a quadruple
(Aix; Aiy; Aiz; Ci) whereCi is the centroid ofAi. The cen-
troid is represented by a three dimensional point(xi; yi; zi).
This can be naturally extended by considering a time dimen-
sion: (At
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also characterized by the centroid ofAi andAj. Our goal is
to support both quantitative and qualitative spatial retrieval.

Spatial qualitative relations between objects are very im-
portant in multimedia object databases because they implic-
itly supportfuzzy queries which are captured by similarity
matching or qualitative reasoning. Allen [2] gives a tempo-
ral interval algebra (Table 1) for representing and reasoning
about temporal relations between events represented as in-
tervals. The elements of the algebra are sets of seven basic
relations that can hold between two intervals and their in-
verse relations.

Relation Symbol Inverse Meaning

B beforeC b bi BBB CCC
B meetsC m mi BBBCCC
B overlapsC o oi BBB

CCC
B duringC d di BBB

CCCCC
B startsC s si BBB

CCCCC
B finishesC f fi BBB

CCCCC
B equalC e e BBB

CCC

Table 1. 13 Temporal Interval Relations

The temporal interval algebra essentially consists of the
topological relations in one dimensional space, enhanced

by the distinction of the order of the space. We consider
12 directional relations in our model and classify them into
the following three categories:strict directional relations
(north, south, west, and east),mixed directional relations
(northeast, southeast, northwest, and southwest), andposi-
tional relations (above, below, left, and right). The defini-
tions of these relations in terms of Allen’s temporal algebra
are given in Table 2. The symbolŝ and_ are the stan-
dard logicalAND andOR operators, respectively. A short
notationfg is used to distribute the_ operator over interval
relations. For exampleAix fb;m;ogAjx is equivalent to
Aix bAjx _Aix mAjx _Aix oAjx.

Among Egenhofer’s eight topological relations there are
two inverse relations:covers vs covered by and inside vs
contains. Hence, only six topological relations are defined
here, as shown in the last part of Table 2. Note that the
definitions of directional and topological relations are based
on two dimensional (2D) space since video frames are usu-
ally mapped into 2D images. In 3D space, the depth of an
object has to be considered and the extension is straightfor-
ward. Figure 1 shows all the cases ofAi northwest of Aj

(Ai NWAj).
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Figure 1. All the Cases of Ai NWAj

Figure 2 shows all the topological relations. While any
two spatial objects always have a topological relation, they
may not have any directional relation. For instance, consider
objectsAi andAj in the case ofAi OLAj in Figure 2.Ai

andAj have no directional relation. This coincides with our
intuition about spatial objects.

A i A j

A jA i DJ
A i

A j

A jA i TC

A i A j

A jA i IS

A j A i

A i A jOL

A i A j

A jA i EQA jA i CV

A i A j

Figure 2. Definitions of Topological Relations

In our definition, if two objects overlap, they do not
have any directional relation. This is certainly an arguable
definition. In Figure 3 it is natural to sayAi overlaps Aj

in (a) andAi west of Aj in (c). However, it may not be
reasonable to say they are still true in cases (b) and (d).
The problem comes from the representation of the temporal
interval algebra which does not distinguish the degree of the
overlap regions.

3.2 Reasoning about Spatial Relations

Logic-based representations, such as rules, are used in
qualitative spatial reasoning since they provide a natural and



Relation Meaning Definition

Ai STAj South Aix fd; di; s; si; f; fi; egAjx ^ Aiy fb; mgAjy

Ai NTAj North Aix fd; di; s; si; f; fi; egAjx ^ Aiy fbi; migAjy

Ai WTAj West Aix fb; mgAjx ^ Aiy fd; di; s; si; f; fi; egAjy

Ai ETAj East Aix fbi; migAjx ^ Aiy fd; di; s; si; f; fi; egAjy

Ai NWAj Northwest (Aix fb; mgAjx ^ Aiy fbi; mi; oigAjy) _ (Aix fogAjx ^ Aiy fbi; migAjy)
Ai NEAj Northeast (Aix fbi; migAjx ^ Aiy fbi; mi; oigAjy ) _ (Aix foigAjx ^ Aiy fbi; migAjy)
Ai SWAj Southwest (Aix fb; mgAjx ^ Aiy fb; m; ogAjy) _ (Aix fogAjx ^ Aiy fb; mgAjy)
Ai SEAj Southeast (Aix fb; mgAjx ^ Aiy fb; m; ogAjy) _ (Aix foigAjx ^ Aiy fb;mgAjy)
Ai LTAj Left Aix fb; mgAjx

Ai RTAj Right Aix fbi; migAjx

Ai BLAj Below Aiy fb; mgAjy

Ai ABAj Above Aiy fbi; migAjy

Ai EQAj Equal Aix fegAjx ^ Aiy fegAjy

Ai ISAj Inside Aix fdgAjx ^ Aiy fdgAjy

Ai CVAj Cover (Aix fdigAjx ^ Aiy ffi; si; egAjy ) _ (Aix fegAjx ^ Aiy fdi; fi; sigAjy)_
(Aix ffi; sigAjx ^ Aiy fdi; fi; si; egAjy )

Ai OLAj Overlap Aix fd; di; s; si; f; fi; o; oi; egAjx ^ Aiy fd; di; s; si; f; fi; o; oi; egAjy

Ai TCAj Touch (Aix fm; migAjx ^ Aiy fd; di; s; si; f; fi; o; oi; m; mi; egAjy )_
(Aix fd; di; s; si; f; fi; o; oi; m; mi; egAjx ^ Aiy fm; migAjy )

Ai DJAj Disjoint Aix fb; bigAjx _ Aiy fb;bigAjy

Table 2. Directional and Topological Relation Definitions

A i

A j
A j

A i
A i A j A i A j A i A j

(a) (b) (c) (d) (e)

Figure 3. Some Non-directional Spatial Cases

flexible way to represent spatial knowledge [16]. Such rep-
resentations usually have well defined semantics and simple
inference rules that can be integrated into any deductive
system. For example, if there areA1 north of A2, andA2

overlap A3, andA3 north of A4, then we deduceA1 above

A4, which can be expressed as a rule

A1 NTA2 ^A2 OLA3 ^A3 NTA4 ) A1 ABA4:

A spatial inference rule can support spatial analysis without
transforming any spatial knowledge into the domain of un-
derlying coordinates and point-region representations. We
have constructed a comprehensive set of spatial inference
rules [11] and have proven the correctness of those rules.
A broad range of qualitative spatial queries are supported
as both topological and directional relations are considered.
Since all the rules are propositional Horn clauses, they can
be easily integrated into any multimedia object database by
using either a simple inference engine or a lookup table.

4 Video Modeling

Video modeling is the process of translating raw video
data into an efficient internal representation which helps to
capture video semantics. The procedural process of extract-
ing video semantics from a video is calledvideo segmen-

tation. In this section we briefly introduce the Common
Video Object Tree (CVOT) model (a video model) and its
integration into a temporal OBMS.

4.1 The Common Video Object Tree Model

There are several different ways to segment a video into
clips, two of which arefixed time intervals and shots. A
fixed time interval segmentation approach divides a video
into equal length clips using a predefined time interval (e.g.
2 seconds) while ashot is a set of continuous frames cap-
tured by a single camera action. Two common problems
with existing models are restrictive video segmentation and
poor user query support. The CVOT model [10] is primar-
ily designed to deal with these two problems. One unique
feature of the CVOT model is that a clip overlap is allowed.
This can provide considerable benefit in modelingevents
which are discussed in Section 4.3. Generally, a smooth
transition of one event to another event,event fading, re-
quires having some scene or activity overlap between the
end of the previous event and the start of the next event.
Such a transition phase is usually reflected in a few frames
as shown in Figure 4.

ClipFrame

C1 3CC2 C

Video

m

Figure 4. Stream-based Video

The main purpose of the CVOT model is to find all the
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Figure 5. Salient Objects and Clips

common objects among clips and to group clips according
to these objects. A tree structure is used to represent such a
clip group. Thetime interval of a clip is defined according
to the clip’s starting frame and ending frame.

Example 1 Figure 5 shows a video in which John and Mary
walk toward their house. Later, Mary rides a horse on a ranch
with her colt and dog. Let us assume that the salient objects
areSO = fjohn;mary; house; tree; horse; colt; dogg. If the
video is segmented as in Figure 5, then we have five clips
C = fC1; C2; C3; C4; C5g with john, mary, house, and
tree in C1, john, house, and tree in C2, mary, horse,
colt, and dog in C3, mary, horse, and colt in C4, and
mary, horse, colt, anddog in C5. Figure 6 shows a CVOT
instance for Figure 5. The CVOT model directly supports
queries of the type “Find all the clips in which a salient
object appears” and “How long does a particular salient
object occur in a video”.

C1 C2 C3 C4 C5

Root

{john,mary,house,tree} {john,house,tree} 

NN

[1, 3] [4, 4]

[1, 4]

[5, 6] [7, 7] [8,12]

[5, 12]

[1, 12]
{ }

{john,house,tree} 
1 2

{mary,horse,colt}

{mary,horse,colt} {mary,horse,colt,dog}{mary,horse,colt,dog}

Figure 6. A CVOT Built from Figure 3

4.2 The OBMS Support

CVOT is an abstract model. To have proper database
management support for continuous media, this model needs
to be integrated into a data model. We work within the
framework of a uniform, behavioral object model such as
the one supported by the TIGUKAT system [15]. The im-
portant characteristics of the model, from the perspective of
this paper, are itsbehaviorality and and itsuniformity. The

model isbehavioral in the sense that all access and manipu-
lation of objects is based on the application of behaviors to
objects. The model isuniform in that every component of
information, including its semantics, is modeled as afirst-
class object with well-defined behavior.

The primitive objects of the model include:atomic enti-
ties (reals, integers, strings, etc.);types for defining common
features of objects;behaviors for specifying the semantics of
operations that may be performed on objects;functions for
specifying implementations of behaviors over types;classes
for automatic classification of objects based on type; andcol-
lections for supporting general heterogeneous groupings of
objects. In this paper, a reference prefixed by “T ” refers to a
type, “C ” to a class, “B ” to a behavior, and “T X< T Y >”
to the typeT X parameterized by the typeT Y. For example,
T person refers to a type,C person to its class,B ageto
one of its behaviors andT coll< T person > (T coll
stands forT collection) to the type of collections of per-
sons. A reference such asDavid, without a prefix, denotes
some other application specific reference. Consequently,
the model separates the definition of object characteristics
(a type) from the mechanism for maintaining instances of a
particular type (aclass).

Temporality has been added to this model [8] as type and
behavior extensions of the type system discussed above.
Figure 7 gives part of the time type hierarchy that includes
the temporal ontology and temporal history features of the
temporal model. Unary operators which return the lower
bound, upper bound, and length of the time interval are
defined. The model supports a rich set of ordering operations
among intervals, e.g.,before, overlaps, during, etc. (see
Table 1) as well as set-theoretic operations, viz.union,
intersection anddifference. A time duration can be added
or subtracted from a time interval to return another time
interval. A time interval can be expanded or shrunk by a
specified time duration.

One requirement of a temporal model is an ability to
adequately represent and manage histories of objects and
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Figure 7. The Basic Time Type Hierarchy

real-world events. Our model represents the temporal
histories of objects whose type, isT X as objects of the
T history<T X> type as shown in Figure 7. A temporal
history consists of objects and their associated timestamps
(time intervals or time instants). Atimestamped object (of
typeT timestampedObject<T X>) knows its times-
tamp and its associated object (value) at the timestamp. A
temporal history is made up of such objects. Table 3 gives
the behaviors defined on histories and timestamped objects.
BehaviorB historydefined onT history<T X> returns
the set (collection) of all timestamped objects that comprise
the history. Another behavior defined on history objects,
B insert, timestamps and inserts an object into the history.
TheB validObj behavior allows the user to get the objects
in the history that were valid at (during) the given time.

Each timestamped object is an instance of the
T tsObj<T X> type where T tsObj stands for
T timeStampedObject. This type represents objects
and their corresponding timestamps. BehaviorsB value
andB timeStamp, defined onT tsObj, return the value
and the timestamp of a timestamped object, respectively.

4.3 System Integration

Integrated multimedia systems can result in a uniform
object model, simplified system support and, possibly, better
performance. Figure 8 shows our video type system. The
types that are in a grey shade are directly related to the
CVOT model and they will be discussed in detail in the
following subsections.

4.3.1 Integrated System Model

We start by defining theT video type to model videos.
An instance ofT video has all the semantics of a video
and is modeled as a history of clips. We model a clip
set by defining the behaviorB clips in T video. B clips
returns a history object of typeT history< T clip >,

whose elements are timestamped objects of typeT clip
(T tsObj < T clip >).

The behaviorB cvotTree on T video returns an in-
stance of a CVOT for a video. A common question to
myVideo would be its length (duration). This is modeled
by theB length behavior. Video information should also
include metadata, such as the publishers, producers, pub-
lishing date, etc. A video can also be played by using
B play2.

Each clip has a set of consecutive frames, which is
modeled byT history<T frame>. All the salient ob-
jects within a clip are grouped by the behaviorB slObjects
which returns an instance ofT coll< T history <

T slObjects>>. Similarly, all the events within a clip are
grouped by the behaviorB events, which returns an instance
of T coll< T history < T event >>.

The basic building unit of a clip is the frame which is
modeled byT frame in Table 3. A frame knows its location
within a clip and such a location is modeled by a time instant
(B location), which can be a relative frame number. We
model frames within a clip as a history which is identical to
how we model clips within a video. Different formats of a
frame are defined by the behaviorB format of T frame.
B format on typeT frameFormat, an enumerated type,
defines the format of a frame. The content of a frame,
B content, is an image which defines many image properties
such as width, height and color.

4.3.2 Modeling Video Features

The semantics or contents of a video are usually expressed
by its features which include video attributes and the rela-
tionships between these attributes. Typical video features
are salient objects andevents. An event is a kind of activ-
ity which may involve many different salient objects over a
time period, like holding a party and riding a horse etc.

Since objects can appear multiple times in a clip or a
video, we model the history of an object as a timestamped
object of typeT history< T slObject >. The behav-
ior B slObjectsof T clip returns all the objects within a
clip. Using histories to model objects and events results in
powerful queries, as will be shown in the next subsection.
Furthermore, it enables us to uniformly capture the tem-
poral semantics of video data because a video is modeled
as a history of clips and a clip is modeled as a history of
frames. B activity on T event in Table 3 identifies the
type of events andB rolesidentifies all the objects involved
in an event.B inClips indicates all the clips in which this
event occurs. It is certainly reasonable to include other in-
formation, such as the location and the real-world time of

2A full set of behaviors can, of course, be defined onT video to
enable typical actions, such as pause, fast forward, and rewind. We do not
elaborate on these any further in this paper.



T history<T X> B history: T coll<T tsObj<T X>>
B insert: T X,T interval! T boolean

B validObj: T interval ! T coll<T tsObj<T X>>
T tsObj<T X> B value: T X

B timeStamp: T interval
T video B clips: T history<T clip>

B cvotTree: T tree
B search: T slObject, T tree! T tree
B length: T span

B publisher: T coll<T company>
B producer: T coll<T person>

B date: T instant
B play: T boolean

T clip B frames: T history< T frame >

B slObjects: T coll<T history<T slObject>>
B events: T coll<T history<T event>>

T frame B location: T instant
B format: T videoFormat
B content: T image

T event B activity: T eventType
B roles: T coll<T slObject>

B inClips: T video! T history< T clip >

T slObject B inClips: T video! T history< T clip >

B category: T slObjectCategory
B status: T status

T spObject B xinterval: T interval
B yinterval: T interval
B zinterval: T interval
B centroid: T point

B area: T real
B disp: T interval, T interval ! T real

B distance T spObject, T interval ! T real
B south: T spObject ! T boolean
B north: T spObject ! T boolean
B west: T spObject ! T boolean
B east: T spObject ! T boolean

B northwest: T spObject ! T boolean
B northeast: T spObject ! T boolean

B southwest: T spObject ! T boolean
B southeast: T spObject ! T boolean

B left : T spObject ! T boolean
B right: T spObject ! T boolean

B below: T spObject ! T boolean
B above: T spObject ! T boolean
B equal: T spObject ! T boolean
B inside: T spObject ! T boolean

B overlap: T spObject ! T boolean
B cover: T spObject ! T boolean
B touch: T spObject ! T boolean

B disjoint: T spObject ! T boolean

Table 3. Primitive Behavior Signatures

an event, into typeT event, but they are not important to
our discussion.

Any object occupying some space is an instance of
T spObject. In type T slObject, a subtype of
T spObject, the behaviorB inClipsreturns all the clips in
which the object appears.B categorydescribes the category
of objects, such as static objects (e.g. mountains, houses,
trees) and mobile objects (e.g., cars, horses, boats).B status
may be used to define some other attributes of objects, such
asrigidness. The rest of the behaviors are related to the di-
rectional and topological relations and are self-explanatory.
Table 3 also shows the behavior signatures of spatial objects.

5 Query Examples

In this subsection we present some examples to show
the expressiveness of our model from the spatial proper-
ties point of view. We first introduce an object calcu-
lus [15]. The alphabet of the calculus consists of object
constants (a; b; c; d), object variables (o; p; q; u; v; x; y; z),
dyadic predicates (=;2; 62), ann-ary predicate (C;P;Q), a
function symbol (�) called abehavior specification (Bspec),
and logical connectives (9; 8;^;_;:). A term is a constant,
a variable or a Bspec. Anatomic formula (atom) has an
equivalent Bspec representation. From atoms,well-formed
formulas (WFFs) are built to construct the declarative cal-
culus expressions of the language. WFFs are defined recur-



T_frameFormat

T_eventType

T_salientObjectStatus

T_salientObjectCategory

T_discrete

T_event

T_point

T_video

T_clip

T_frame T_history<T_frame>

T_history<T_clip>

T_history<T_event>

T_history<T_salientObject>

T_timeStampedObject<T_frame>

T_timeStampedObject<T_clip>

T_timeStampedObject<T_event>

T_timeStampedObject<T_salientObject>

T_timeStampedObject

T_object

Supertype Subtype

T_spatialObject T_salientObject

T_history

Figure 8. The Video Type System

sively from atoms in the usual way using the connectives
^;_;: and the quantifiers9 and8. A query is an object
calculus expression of the formft1; : : : ; tnj�(o1; : : : ; on)g
wheret1; : : : ; tn are the terms over the multiple variables
ando1; : : : ; on. � is a WFF.

We assume that all the queries are posted to a par-
ticular video instancemyVideo and salient objects and
events are timestamped objects as discussed in Section 4.
We also assume that all clips are timestamped clips and
c 2 myVideo:B clips:B history where c is an arbitrary
clip. For simplicity, if a clip, salient object, or event be-
longs to a timestamped object classC tsObj, we omit it in
the query calculus expressions.

Query 1 Is the salient objecta in clip c?
fq j q = a:B timeStamp:B during(c:B timeStamp)g.

The query checks whether the time interval of objecta is a
subinterval of clipc. For convenience, predicateIN (o; c)
is used to denote that objecto is in clip c.

Query 2 Find all the objects in a given areaa at timet.
fz j 9c(C interval(t)^C slObject(a)^C history(x)^

C collection(y) ^ x 2 c:B value:B slObjectŝ
y 2 x:B history^ t:B during(y:B timeStamp)^
z = y:B value^ z:B inside(a))g

wherec is an instance of a timestamped clip. Suppose we

can find a clip (c) in which some object (y) appears at timet
(t.B during(y.B timeStamp)), then this object (y) is selected
to check if it is inside areaa.

Query 3 Find all the objects that are very close to objecta.
fz j 9y(C history(x) ^C real(h) ^ IN (a; c) ^ 8x

(x 2 c:B slObjectŝ y 2 x:B historŷ
a:B timeStamp:B during(y:B timeStamp)^
y:B value:B distance(a:B value):B lessthan(h)^
z = y:B value))g

wherea is an instance ofT tsObj < T spObject >

and h is a predefined threshold value for measuring
very close. In this query formula we locate the clip
c in which a appears and go through all the salient
objects in c. If any object shows up ata’s time
(a:B timeStamp:B during(y:B timeStamp)), then the dis-
tance between this object anda is computed and its value is
compared with a predefined thresholdh.

Query 4 Find a video clip in which a dog approaches Mary
from the left.
fc j 9x9x29x39y9y29y3(C history(x) ^C history(y)

^C real(h1) ^C real(h2) ^ x; y 2 c:B value:
B slObjectŝ x2; x3 2 x:B history^ y2; y3 2
y:B history^ x2:B value= dog ^ y2:B value=
mary^ x2:B timeStamp:B equal(y2:B timeStamp)



^x2:B value:B left(y2:B value)^x3:B value= a^
y3:B value= b ^ x3:B timeStamp:B equal
(y3:B timeStamp)x3:B value:B left(y3:B value)^
x3:B timeStamp:B after(x2:B timeStamp)^
x2:B value:B disp(x2:B timeStamp;
x3:B timeStamp):B greaterThan(h1)^ y2:B value:
B disp(x2:B timeStamp; x3:B timeStamp):
B lessThan(h2))g

wheredog andmary are two instances ofT slObject.
Suppose clipc is what we are looking for and two salient
objects, denoted byx2 andx3, are introduced to represent
dog and to reflect different time stamps. The same strategy
is used for the objectmary. We compute thedog’s displace-
ment over the time period and enforce this displacement to
be greater than a predefined valueh1 to insure that enough
movement is achieved. The displacement ofmary is also
computed and is required to be less than a predefined value
h2. This particular requirement ofmary is to guarantee that
it is the dog approaching Mary from the left, instead of Mary
approaching the dog from the right.

6 Conclusions

Spatial relationships play a very important role in multi-
media information systems. In this paper we explore the spa-
tial properties of salient objects in a video object database.
The major contributionof this work is that the proposed spa-
tial model supports a comprehensive set of queries. Both the
qualitative and quantitative spatial properties of objects are
considered. We show that the integrated CVOT model sup-
ports the above requirements. The support for object spatial
relationships is further strengthened by incorporating a rich
set of spatial inference rules. A uniform approach to model-
ing video objects using histories is also discussed and the ex-
pressiveness of the CVOT model is demonstrated by means
of example queries within the context of the TIGUKAT sys-
tem. We intend to build a video query language based on the
CVOT model. The spatial, temporal, and spatio-temporal
queries can be translated into the query calculus and then the
query algebra. It is then possible to optimize these queries
using object query optimization techniques.
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